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Nonlinear Burnett coefFicients
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We derive exact equilibrium fluctuation expressions for the nonlinear Burnett coefficients for the
electrical conductivity of a fluid. The Burnett coefficients define a Taylor-series expansion of the
conductivity in powers of the electrical current density. The fluctuation expressions may be calcu-
lated from an analysis of the time-dependent fluctuations of the equilibrium system constrained so
that the mean electrical current is zero.

I. INTRODUCTION

B (0)exp f3F, I ds J ( —sF )—

(B(t,))=
exp PF, J ds J—( —sF)

0

(3)

This representation for the nonlinear response is called
the Kawasaki representation since Kawasaki first derived

We have recently derived fluctuation expressions for
the derived properties of nonequilibrium steady states
such as the thermal expansion coefficients and the specific
heats. ' The derivation of these expressions depended
upon the development of a tractable nonlinear response
theory. Although other representations have been
developed, there are two principal expressions for
the thermostatic nonlinear response of an arbitrary
phase variable, B (I ), to a perturbing external field F, . If
a canonical ensemble of systems f (0)
=exp[ 13HO(I )]—/ J d I exp[ PHD(I')] —is subject to the
external field which is turned on at t =0, then the tran-
sient time correlation function expression for the ther-
mostatic response at time t is '

(B(tF ) ) = (B(0) ) pF, f ds (—J (0)B(sF ) ) . (1)
0

The dissipative flux J is defined in terms of the adiabatic
(i.e., unthermostatic) derivative of the internal energy Ho,

Ho i' = —J(1 )F, .

We use the notation B ( tF } to denote the phase variable B
propagated in time with the field-dependent thermostatic
phase propagator. In its adiabatic form Eq. (1) was first
derived by Dufty and Lindenfeld and later by Cohen.
Morriss and Evans were the first to give the thermostatic
generalization. They have also tested this generalization
using nonequilibrium molecular dynamics computer
simulation (NEMD), and found that the direct simulation
agrees within statistical uncertainties, with the transient
time correlation function (TTCF) prediction.

A second but formally equivalent representation for
the thermostatic nonlinear response has also been derived
by Morriss and Evans,

equations of this form in treating the adiabatic nonlinear
response of systems to planar Couette flow.

These expressions may be used as nonequilibrium par-
tition functions. For example, if a particular derivative
commutes with the thermostatic, field-dependent propa-
gators implicit in (1) and (3), then one can formally
differentiate both sides of these equations yielding fluc-
tuation expressions for the so-called derived properties. '
The key point in such derivations is that the particular
derivative should commute with the relevant propaga-
tors. If this is not so, one cannot derive tractable or use-
ful results.

In order to constrain thermodynamic variables two
basic feedback mechanisms are employed: the integral
feedback mechanism employed for example in the Nose-
Hoover thermostat and the differential mechanism em-
ployed in the Gaussian thermostat. A third mechanism,
the proportional mechanism, has not found much use in
either simulations or in theory because it necessarily em-
ploys irreversible equations of motion. '

For our present purpose of differentiating expressions
for phase averages with respect to the thermodynamic
flux, we will use the Gaussian mechanism to fix the
current at its initial value. We will then apply constant-
current dynamics to an ensemble of initial phases whose
currents are distributed normally about a prescribed
value, J0. Since the subsequent dynamics are indepen-
dent of J0, calculating the derivatives of steady-state
averages with respect to J0 essentially involves
differentiation of the initial distribution function. No
terms arise from differentiation of the propagator.

In the present paper we will use these ideas to derive
useful fluctuation expressions for the nonlinear Burnett
coefficients. These coefficients L, give a Taylor-series
representation of a nonlinear transport coefficient L (X}
defined by a constitutive relation between a thermo-
dynamic force X and a thermodynamic flux J(I ),

(J ) =L (X)X

=L X+—L X+—L X+.1 2 1
1 21 2 31 3

It is clear from this equation that the Burnett coefficients
are given by the appropriate partial derivative of (J),
evaluated at X =0. In this paper we will actually be
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working in the Norton ensemble in which the thermo-
dynamic force X is the dependent rather than the in-

dependent variable. " So we will in fact derive expres-
sions for the inverse Burnett coefficients.

We will use two independent methods to show that the
steady-state derivative of phase variables with respect to
the current is simply related to the steady-state covari-
ance of that phase variable and the current.

The formulas we derive in this paper are statistical
rather than mechanical in nature. Response theory has
often been criticized as being no more than mechanical
perturbation theory. ' This implies there is no direct
connection between the linearity of individual trajectory
responses and the ensemble averages of trajectory
responses. The results derived in this paper do not re-
quire a detailed description of dynamics. They do, how-
ever, require a detailed specification of the ensembles
used. The results derived are quite specific with regard to
the ensemble employed.

II. EQUATIONS OF MOTION

Consider the following equations of motion for an E-
particle system of charged particles which describe the
motion in a system with fixed current and fixed kinetic
energy. For simplicity we assume that the system is elec-
trically neutral and cons&sts only of univalent ions of
charge +e =+1. This system is formally identical to the
color conductivity system which has been subject to a
number of studies, "' '

function, f (0),

f(0)=
exp —P g —(v, —e, Jo) +4m

fdI exp —P g —(v; —e;Jo) +4
l

(9)

In this equation Jo is a constant which is equal to the
canonical average of the current,

( J(0) ) =Io——iJo . (10)

If we now subject this ensemble of systems, which we will
refer to as the J ensemble, to the equations of motion (5)
and (6), the electrical current and the temperature of each
system will remain fixed at their initial values and the
mean value of the field multipler A, will be determined by
the electrical conductivity of the system.

It is relatively straightforward to apply the theory of
no+equilibrium steady states to this system. It is easily
seen from the equations of motion that the condition
known as the adiabatic incompressibility of phase space
holds. Using Eq. (7), the adiabatic time derivative of the
energy functional is easily seen to be

ad

H
~

' =
d g —(v; —e, J ) +4 =NA(I')J(I ) .
dt

Plq;= =—v, ,
m

mv; =F, +ice, —a(v; —ie;J) . (6)

The intermolecular forces are given by F, . In these equa-
tions, A, and a are Gaussian multipliers chosen so that the
x component of the current per particle, J=g; e;v„;IN,
and the temperature, T =g, m (v, ie; J) l3Nks, are-
constants of the motion. This will be the case provided
that

I',.e,

a
H = —mN(J —Jo) .

BJ0
(12)

In this equation 4 is the intermolecular potential energy.
This equation is unusual in that the adiabatic derivative
does not factorize into the product of a dissipative flux
and the magnitude of a perturbing external field. This is
because in the J ensemble the obvious external field A, is
in fact a phase variable, and the current J is a constant of
the motion. As we shall see this causes us no particular
problems. The last equation that we need for the applica-
tion of nonlinear response theory is the derivative,

and

gF (v; —ie J)
I

g v;. (v, —ie;J) (8)

III. KAWASAKI REPRESENTATION

If we use the isothermal generalization of the
Kawasaki expression for the average of an arbitrary
phase variable B, we find

In more physical terms A can be thought of as an external
electric field which takes on precisely those values re-
quired to ensure that the current J is constant. Because it
precisely fixes the current, it is a phase variable. It is
clear from (7) that the form of the phase variable A, is in-
dependent of the value of the current. Of course the en-
semble average of X will depend on the average value of
the current. It is also clear that the expression for a is
similarly independent of the average value of the current.

These points can be clarified by considering an initial
ensemble characterized by the canonical distribution

8 ( )e0xp 13N f ds JA.(sz)
(&(r, ) &=

exp X ds JA s~
(13)

In distinction to the usual case we have treated in the
past, the Kawasaki exponent involves a product of two
phase variables J and A., rather than the usual product of
a dissipative flux (i.e., a phase variable), and a time-
dependent external field. We use the suffix J on the time
arguments to denote Gaussian thermostatic, constant
current dynamics. The only place that the ensemble
averaged current appears in (13) is in the initial ensembles
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averages. We can therefore easily differentiate (13}with
respect to J0 to find that

a(8(t, ))
=pmN( 68 (tJ )b J(0) )

0

a&8(t, };J,)(8(tJ);J)= (B(tJ);JD)+bJ BJ

~J' a'&8(t );J, )
+ (17)

=PmN(bB(t, )AJ(t, )), (14)

f dJ exp( PmNb J /—2)(8(t);J)
&8(t)) =

dJ exp —pygNAJ 2
(15)

We use the notation ( 8 (t);J ) to denote a b,J ensemble.
The probability of the J ensemble taking on an initial x
current of J is easily calculated from (9) to be proportion-
al to exp( PmNb, J /2)—. Since the current is a constant
of the motion, we do not need to specify a time at which
the current takes on the specified value.

Differentiating (15), we can write the derivative with
respect to the average current as a superposition of AJ-
ensemble contributions,

fdJ exp( PmNb J /2)AJ—(B(tJ);J)
=PmN

aJ0 f dJ exp( —PmNb J /2)

where 6(B(t))=8 (t) —(8 (t) ) and 6(J(t) )=J(t}
—( J(t) ) =J(0)—J0. This is an exact canonical ensemble
expression for the J derivative of the average of an arbi-
trary phase variable. If we let t tend toward infinity we
obtain a steady-state fluctuation formula which comple-
ments the ones we derived earlier for the temperature and
pressure derivatives.

One can check that this expression is correct by rewrit-

ing the right-hand side of (14) as an integral of responses
over a set of Norton ensembles in which the current takes
on specific values. We shall call the subset of a J ensem-

ble in which the current takes on a precisely fixed value a
b J ensemble. Using Eq. (9) we can write the average of
8(t) as

Substituting (17) into (16) and performing the Gaussian
integrals over J, we find that

a(8(t, )) a(8(t, );J, ) 1 a(8(t, );J, )

aJ, aJ 2pmN aJ
+ 0 ~ ~

IV. THE TTCF REPRESENTATION

If one differentiates and, in turn, reintegrates the
Kawasaki expression (13), with respect to time one gen-
erates the so-called transient time correlation function
representation for a nonequilibrium phase average:

( 8 ( tJ ) ) = (8 (0) ) +pN f ds ( AB (sJ }g(0)J ) . (19)
0

The initial values of the current will be clustered about
J0. If we write

(bB (s)A(0)J ) = (58 (s)A(0) )J0+ (bB (sQ(0)EJ ),
(20)

it is easy to see that if 8 is extensive then the two terms
on the right-hand side of (20} are O(1) and O(1/N) re-
spectively. For large systems we can therefore write

(8(t)) =(8(0))+pN f ds(bB(sj}A(0))J0 . (21)

(18}

This is a very interesting equation. It shows the rela-
tionship between the derivative computed in a canonical
ensemble and a b J ensemble. It shows that differences
between the two ensembles arise from nonlinearities in
the local variation of the phase variable with respect to
the current. It is clear that these ensemble corrections
are of order 1/N compared to the leading terms.

=PmN(bB(t, )bJ(0)) . (16) It is now a simple matter to calculate the appropriate J
derivatives:

This expression is, of course, identical to Eq. (14) which
was derived using the Kawasaki distribution. It was de-
rived, however, without the use of perturbative mechani-
cal considerations such as those implicit in the use of the
Kawasaki distribution. This second derivation is based
on two points: the initial distribution gives a normal dis-
tribution of currents about J0, and the dynamics
preserves the value of the current. Of course, the result is
still valid even when J is not exactly conserved provided
that the timescale over which it changes is much longer
than the timescale for the decay of steady state fluctu-
ation.

We will now derive relations between the J derivatives
in the J ensemble and in the constrained ensemble in
which J takes on a precisely fixed value (the b J ensem-
ble). In the thermodynamic limit the spread of possible
values of b,Jwill become infinitely narrow suggesting that
we can write a Taylor expansion of (B(tJ ); J ) in powers
of hJ about Jo..

a(8(t )) = PN f ds(8(sJ )k(0) )
0 0

+PJ,N f'ds fdrB(s, )X(0) f
0 aJO

= PN f ds(8(sJ)A(0))
0

+P JQmN f ds(B( )As(J0)bJ) .
0

(22)

This equation relates the J derivative of phase variables
to transient time correlation functions. If we apply these
formulas to the calculation of the leading Burnett
coefficient we, of course, evaluate the derivatives at
J0=0. In this case the TTCF s become equilibrium time
correlation functions. The results for the leading Burnett
coefficients are
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a&B(t, )&
=PNI d &B( )&(0)&,„,

8J0 J =p

&'&B(r, ) &

=2P mN I ds & B (sJ )A(0)b J & qBJ'

(23)

(24)

time zero the distribution function is (9), factor into ki-
netic and configurational parts. Of course, these results
for the Burnett coefficients could have been derived from
the transient time correlation function (19), using the AJ
ensemble methods used earlier.

V. DISCUSSION

a'&B(t, ) &

=3P m N I ds& B(sz)A, (0)
QJO Jo ——0 0

x(&'J —&&'J &) &,

(25)

Surprisingly, the expressions for the Burnett
coefficients only involve equilibrium, two-time correlation
functions. At long times assuming that the system exhib-
its mixing they break each factor into a triple product
& B (s ~ ~ ) & & A (0) & & cumulants( J) &. The terms involv-
ing A.(0) and the cumulants of J(0) factor, because at

We have derived a number of new results for the non-
linear dynamic susceptibilities of nonequilibrium steady
states. The derivations are statistical rather than pertur-
bative in nature, and hence they avoid many of the earlier
criticisms of response theory. Equation (14) shows that
the dynamic susceptibility has a simple relation to
steady-state fluctuations. It is essentially identical in
form to that found earlier for the compressibility of
steady states.

The results for the Burnett coefficients are particularly
simple in form, and it is hoped that they may find use in
computer simulation studies of nonequilibrium systems.
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