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Nonlinear theory of a correlated emission laser
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A nonlinear theory of correlated emission lasers is presented. It is shown that if three-level atoms
in the V configuration are injected in a coherent superposition of the upper two states in a doubly
resonant cavity, the diffusion coefficient for the relative phase vanishes under certain conditions.

I. INTRODUCTION

It is well known that the natural linewidth of a laser
arises due to spontaneous-emission fluctuations. The
quantum noise is undesirable particularly in high-
precision experiments where small changes of a physical
quantity are converted into a phase shift (passive scheme)
or frequency shift (active scheme). The procedure fol-
lowed in such measurements is to place a lasing medium
or sending laser light in a cavity whose optical path
length is sensitive to the physical effect to be measured.
The shift is then determined by heterodyning the light
from this laser with that from a reference laser. Exam-
ples include gravitational wave detection, laser gyro-
scope, measurement of thermal expansion coefficients,
and tests of metric theories of gravitation. Because of
its potential applications to the above-mentioned prob-
lems, the idea of correlated spontaneous emission has
drawn a great deal of interest.

Recently Scully showed that, in a correlated emission
laser (CEL), it is possible to eliminate the quantum noise
in the beat note by correlating the spontaneous emission
events of two laser modes generated from three-level
atoms inside a doubly resonant cavity. It was shown
that in a doubly resonant cavity, if the atoms are excited
coherently to the upper two states, the spontaneous-
emission events are strongly correlated under certain con-
ditions which is indeed the case in the quantum-beat ex-
periments and Hanle effect experiments. ' In Ref. 9 a
linear theory of the quantum-beat laser was given and it
was shown that the relative phase-diffusion coefficient
vanishes under certain detuning conditions.

The results of that paper can be summarized as fol-
lows. Consider the atomic system in Fig. 1. If the atoms
are prepared in a coherent superposition of

~

a ) and
~

b )
via an external driving field v3, the difference of the corre-
sponding phase (b, —Pb is constant. The random phase

(b, cancels from the beat signal of the two spontaneously
emitted fields thus leading to a nonfluctuating contribu-
tion to the beat pote of the lasing modes. The physical
condition under which the noise quenching occurs is that
the field detunings from the corresponding atomic lines
are equal to half the Rabi frequency of the driving field
and they are much larger than the atomic decay con-
stants. Subsequently a nonlinear theory of the quantum-

beat laser was formulated. ' In this paper the strong
coupling of the upper states is taken to all orders and
starting with the conditions derived in Ref. 9, it is shown
that the quenching of the relative phase noise persists
even above threshold.

However, instead of using the strop, g microwave signal
to couple the upper two levels, one could pump the atoms
in a coherent superposition of the upper levels to quench
the relative phase noise between the two modes as, e.g. , in

the Hanle laser. In another scheme, correlated emission
could be achieved in a ring cavity through spatial modu-
lation of the gain medium. "

In this paper we present a nonlinear theory of CEL.
We follow the first scheme, i.e., we consider three-level
atoms being pumped to a coherent superposition of upper
two levels inside a doubly resonant cavity. Unlike Ref.
10, we do not impose any a priori conditions. In the re-
sulting diffusion coefficient, which is complicated, various
parameters such as gain coefficients, coupling constants,
detuning, etc., can be chosen arbitrarily. In Sec. II we

derive an equation of motion for the element of the re-
duced density matrix for the field modes. In Sec. III we
calculate the diffusion coefficient for the relative phase
angle between the two modes. Conditions can then be de-
rived for the gain coefficients, coupling constants, detun-

ing, and decay rate under which the diffusion coefFicient
vanishes. We also discuss one particular condition under
which this coefFicient vanishes completely.

ia

tc)
FIG. 1. Energy-level diagram for quantum-beat laser.
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Here
~

a ) and
~
b ) are the upper two levels and

~
c ) is

the ground level, g, and g2 are the coupling constants for
the transitions

~

a )~
~
c ) and

~

b )~
~

c ), respectively,
and a, and a2 (a, and a& ) are the destruction (creation)
operators for the photons in the modes 1 and 2, respec-
tively. The wave function

~
g) can be written as

~
P) = g ( C, „„~a, n„n2)+Cl, „„~b, n„n2)

+C, „„~c,n, ,n2)) . (4)

In our scheme the only states that couple together are the
states 1, 2, and 3 defined as

FIG. 2. Energy-level diagram for CEL.

II. EQUATION OF MOTION FOR REDUCED
DENSITY MATRIX FOR THE FIELD MODES

~1)= ~a, n, —l, n~),

~

2) =
~

b, n&, n2 —1),
13&=

I
c ni n2)

(5a)

(Sb)

(5c)

We consider the system of three-level atomic system
shown in Fig. 2 inside a doubly resonant cavity interact-
ing with a two-mode field being pumped in a coherent su-
perposition of the upper two levels at rate r. The Hamil-
tonian for the system is

H =Ho+ V,

where

Ho= XA'a) li &('
l

+&vi iai+&v2 2a2

The matrix element of the reduced density matrix for the
field pF is obtained by taking a trace of the atom-field
density matrix over atomic variables, i.e.,

(n, , n2 I ps I
n', , n2 )

(6)

V=A(g, a& I
a &&c

I +gfat c &&a
I +g2a21b &&c

I

+g,",'~. &&b ~). (3
The Schrodinger equation for the matrix element
(n„n2

~ pF ~

n', , n2 ) is therefore

(ni, n2
l PF I

n
1 n2 &= —i/&(V]3P3&' p/3'V3'f')„

i/fi(V23P32. —Pz3, V32, ) +, ilfi(V3&p&3+ V32P23. —P3& Vi3 P32 23 ) . (7)

In order to evaluate p». ,p». ,p23 p32, we start with the Schrodinger equation

~
1i(t))I = i/IVI

~

p(—t)), ,

which gives

ibt
C~ „1 ~ „=—Ig] V n ie Cc, nl, n2

Cb „„t—— ig2+n2e' —'C, „

C „„=—l(gf'1/n)C „)„+g2+ n2gC„„)) e

(8)

(9a)

(9b)

(9c)

For simplicity, we have taken the detunings to be equal, i.e.,

h, =62=6,
where

A~ =co —co —v~

~2 ~b ~c +2

(10a)

(10b)

Since we assume the initial atomic state to be a superposition of upper two levels, the initial state of the system is
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(C,
I

a ) +Cb
I

b ) ), where C, and Cb are the atomic probability amplitudes associated with the levels
I
a ) and

I
b ).

On solving the set of equations (9a)—(9c) for an initial time t p and including the level decays in the usual way, we obtain

C, „)„(t)=
—]/2(@+i h)(t —to)

X[( lg21 n2e

e

Ig) I'n)+ Ig21 n2

' +
I g, I n, Icos[p(t t—o)]—(ib, /2p)sin[p(t to—)]I }

—(i 5/2)(t —to )
X C, „)„(to ) —g, g 2 Qn )n 2(e

' —[ cos[p(t to—) ]
—(ib, /2p)sin[p(t —to)] I}Cb„„,(to)], (1 la)

Cb, , )(t)=
—] /2(y+i 5)(t —to)

e

lg) I'n)+ lg21 n2

—(ih/2)( t —to)
X [ —g, g2+n) n2(e —

[ cos[p(t to)]——(ib /2p)sin[p(t —tp)]I )

—(i 5/2)(t —to)x C.„).,(to-)+(
I g) I

'n, e

+ I g, I

'n, Icos[p(t —t, )]—(iiI), /2p)sin[p(t —t, )]I )C,„„,(t, )], (1 lb)

i sin [p( t —to }] ) l2(y+—i t). )) ) —), )
C, „„(t)= — e [g) )/n) C „)„(to)+g2 )/n2Cb p, „)(tp)], (1 lc)

where

p=(~'/4+
I g) I

'n)+
I g21 n2)'" ~ (12)

(13)

On substitution from Eqs. (1 la) and (1 lc) we obtain

For simplicity, we have taken the decay rates for the three levels to be equal, i.e., y, =yb ——y, =y.
We can now determine p)&, by summing the contribution C,„,„(t)C, , (t) of all atoms which are injected at

1 2 &'& 1'~2
random initial times t at rate r in a coherent superposition of the upper levels, i.e.,

to

p)2 r——dt))C, „)„(t)C', , (t) .
1 2 &'~1'&2

LT

I g) I
'n)+

I g21 n2
g)Qn', I g21 n2 I g) I n,

+ IC,
I

(n, —l, n21pF ln', —l, nz}
nl, n2 nl, n2

2 1—g]g2 y' n jn ]n2
Ln, , n2

M„
C'Cb(n) n2 1 lpF In) 1 n2&

D„

+g2V' 2'

I g21 n2

Lnl, n2

I g, 12n)M„„
C.C)', (n) —l, n,

I pF I n), n2 —1)
nl, n2

1—g) I g21 v n)n2n2
tl 1, tl2

M„
I Cb I (n) n2 1

I pF in) n2 1} (14}
D„

where

y 'rb'
I g) I

(n) n') )
I g21 (n2 n2}

I.. ., =r'+ ir ~+
I g ) I

'n
) +

I g 2 I
n 2

D. . =r'+r'~'+2r'[ lg) I'(n)+nI }+
I
g21'(n, +n2)]+[ I g) I'«) — I)nI+g21'(n2 —n2

Similarly,

(15)

(16)
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I,T
Pz3' =

I gi I'ni+
I g21 n2

1—lgl I g2~ ntnln2 I.„ D„

M„
I C. I'&n~ —i, n2 IpF InI —1,n2&

+gi+6 +
ni, n&

I g21 n2~. ..
C;Cb&n, , n2 —1

I pF I
n', —1,nz &

D„

2~ 1—g1g2 y' n]n2n2 I.„
M„

C, Cb'&n& —1 n2 I PF I
nl'n2 —»

D„

+g, Qn,' +
n~, n&

I g21 n2~. ..,
Cb I'&n~, n2 —1lpb In~, n2

D„

Also

lp&3'~n ~n', n ~n2 (19)

P32 =I:P~31„*„„,„,„„; (20)

Henceforth, a complex conjugate would also imply the interchange n, + n1 and n2~nz. On substitution from Eqs.
(14)-(20) in Eq. (7) we obtain

&nl n2IPFInl n~&

. —r
D„+1„

—,
'

I g) I (n) n', ) + ,'y —(n—~+nI+2)+iyhn~

N. +i,n, t

+ I g2 I
'«i+1)n2+ I g2 I

'«'i+1)n2
g n

t + 1,n2

+ —,
'

Ig~ I (n2 —n'» +-,'y (n2+n2, +2)+iy~n2,
D„

N„ „ +( 1

+ lgi I'(n~+»ni+ lgi I'«2+»ni
I Cb I &nl n2 IPF I

nl n2&
n&, n&+1

+
Dn +1„ giga V (n&+1)n2 2

I g) I
(n (+1) [y +iy—A+

I g, I (n, +1)

Nn +1„
+

I g~ I
'n21+

I g & I
'(nI +1)

n) +1,n2

Cb& ]+n1, n21 Ip~ lnI, n2

Nn'+1.

n]+1,n2

N„ +1 „
+

I g] I I g2 I V (
g

n1+)( I+n1)npn2 1+
n] +1 n2

x & n, +1,n, —1
I p~ I

n', + l, n,' —1&
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+
D„

L

T

g*, gz&n, (nz+1) 2lgz I
(nz+1) —[y +iy~+ Ig, I n, + Igz I

(nz+1)]

N„' „+)
+ lgz I'(nz+1) ~nl, n2+1

C, Cb*

+ &nl 1 n2+1
I pF I nl n2 &

N„
+

I gl I

'
I gz I '+nlnI(nz+1)(n2+1) 1+

L„

x & n 1 1 nz+ 1
I pF I

n'1 —1 n 2+1 &

2

+ (
I g 1

I'V nlnl I C. I
'&nl —1 nz I PF I

n 1
—1 nz &

nl, n2

+glgzVnlnzC Cb &nl —1 nz I pF I
nl n2

+glgz V nln2Co Cb&nl n2 1 lpF I
nl 1 n2 &

+
I gz I V nznz I C„ I

& n, , nz —1
I PF I

n', , n'z —1&) +c.c. , (21)

with

„=2y +
I gl I

(nl 2n 1
—)+

I gz I
(nz 2nz) . — (22)

ln the above equation wherever n, (nz ) is shifted it is implicit that n ', (n z ) is also shifted.
Equation (21) gives the time evolution of the elements of the reduced density matrix for the field modes 1 and 2 in the

gain mechanism. In addition, the following terms should be included which correspond to the cavity losses:

&nl n2 IPF I nl n2 &loss= —
—,'[Cl(nl+n'»+Cz(nz+n2)1&nl n2 IPF I

nl n2 &

+Cl[(nl+1)(nl+1)]' &nl+l, nz IpF I
nl+l, nz&

+Cz[(nz+1)(nz+1)]' &n, , nz+1 IPF I
n', , nz+1&, (23)

where C, and C2 are the loss coefficients for modes 1 and
2, respectively. As would be seen in Sec. III, the cavity
loss terms do not contribute to the diffusion constant of
the relative phase angle.

i 81
a&

——r&e
i8&a2= rye (25a)

with r; =n; (i =1,2) as the mean number of photons in a
particular mode and

III. DIFFUSION CONSTANT
FOR THE RELATIVE PHASE

We can now derive the Fokker-Planck equation for the
coherent state representation for the field P(al, az) which
is defined by

PF fd lfad a2P(al a2)
I
al a2&&al az I

(24)

Here
I
a „az & is a coherent state which is an eigenstate of

the destruction operators a],a2 with eigenvalues a& and
a2, respectively. a& and a2 are complex numbers.

Since we are interested in the relative phase angle be-
tween the two modes, we define

8=0,—82,

8, +82p=
2

(25b)

C. = e'&,1

v'2
—ip

V'2
(26)

Here we assume that the mean number of photons in
mode 1 and 2 is very large and hence amplitude fluctua-
tions can be neglected. We also assume that the atoms
have initially been prepared in a coherent superposition
of the upper two states, i.e.,
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Transforming the Fokker-Planck equation into new
variables is somewhat lengthy but straightforward.
Apart from other terms, the terms that interest us are
D (8), D (p, 8), and D (p) which are the coefficients of the
second-order derivatives 8 P/8 8, d P/Bpr)8, and
8 P/3 p, respectively. Following the same procedure as
in Ref. 9, we obtain the following values for the above-

mentioned coeScients:

D(8)=D, (8)+D,(8),
D (p, 8)=D, (Iz, 8)+Dz(p, 8),
D (p) =D~(p)+Dz(p),

with

(27a)

(27b)

(27c)

1/16
(y'+~'+4

I g i I

'ni+4
I g z I

'nz) n1n2
« 1

—nz }'+2(~11 I gi I

'+ ~22 I gz I

'}

A22+
n1 n2

—2
n1n2

A
i(2$—8je

+
n1n2

A 12 e' ~ '[ Ig, I
(nz —3n, )+

I gz I (n& —3nz)] . +c.c. , (28a)

Dz(8)=
—1 /16

(y'+~'+4
I gi I

'ni+4
I gz I

'nz }(y'—iy~+
I gi I

'ni+
I gz I

'n»

A1 g
X[ I g, I (n, +2n, nz+n, n z n t

—n, n—z+n z}
ll 2 2 —3 —2- ——2 —2 —— —2

n1n2

+
I gz I

(n z+2n, n z+n )nz+n (
—n)nz nz) ——2y (n)+nz) ]

s~—A, z
e'" '[

I g, I
(4n, +4n, nz+n, +6nz}—

I gz I
(3n 1+2n, nz n', +3n, +—5nz)

n1n2
—2y (n, +nz)]

+~zi I gz I'& " "[Igi I'(3nz+2niriz —n f+5ni+3nz) —
I gz I'(4n z+4ninz+«i+rTz}

+2y (n, +nz)] +c.c. ,
(28b)

D, (p, 8)= 1/16
[y'+~'+4

I g i I
'ni+4

I gz I
'nz ]

A 12 s(lg
I

n —Igzl rT )+
n1n2

A11
+p

A 22 +c.c.

"ii I gz I 2 2(n 2 n 1)+2( ~11 I gl I ~zz I gz I
)

n1n2

(29a)
n1 n2

Dz(p, 8)= 1/16
(y'+~'+4lgi I'ni+4I gz I'nz}(y' —~y~+ lg& I'ni+

I gz I
'nz}

A g
X [ I g, I (n, n, n z n, +3n—, nz—nz)+ I gz I (n, nz nz+—n, +n z

——3n&nz)
11 2 2 —3 ——2 —2 —— —2 2 —2— —3 —2 —2

n1n2

+2y (n z n f)]—
A 12+

I gi I

e' [ I gi I
(4n &nz+6nz)+

I gz I
(3n &+n z

—2nz) —2y nz]
n1n2

A2
lgz I

e ' '[ lg, I (rT, +3n z
—2n, )+ lgz I

(4rT, rTz+6rT, ) —2y n, ] +cc.
n1n2

(29b)
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1 /64
(y'+ ~'+41g i I

'n i+41gz I
'n»

X
~ii lgz

'
« i+ nz)'+2( ~ » I gi I

'+ ~22
I gz I

')+r'
n&n2

+
7l )

12 j(2$ g)e'
A 22 +

2 nln2

A)2+
n&n2

e"" "[Igi I
'(3ni+nz)+

I gz I (nl+3nz)] +c c (30a)

D, (p)= 1/64
(r'+ ~'+41gi

I

'n i+41gz I

'n»(y' —ir ~+
I g i I

'ni+
I gz I

'n»

X [ I g, I
(2n, nz —n, n z n—, +Sn, nz+n, nz)—

n&n2

+ Igz I
(2n, n z n —fnz nz—+5n, nz n—, +n z)+2y (n, nz)—]

~lz I gl I ~zy e~+ e' '[
I g&1 (4n, nz 4n—, +6nz n, )+—

I gz I
(n z

—3n f+2nznz+3n, +nz)
n, n2

+2y (n, nz)]—

~zi I gz I

'
+

n&n2

"[
I gi I

(n 1
—3n z+2n, nz+n, +3nz)+

I gz I
(4n, nz 4n —z+6n, nz)—

+2y (nz n~)] +—c.c. (30b)

In the above equations the gain coefficients A; 's are
defined as

2Tg; gj
A; =

y2
(31)

D (8)=G [1—cos(2$ —8)],
where

1/8
(y +b, +81g I

n)

y Ax +2& Ig I'

(32)

Note that for g2 ——0, the above expressions reduce to the
well-known results of Scully-Lamb theory. It should also
be pointed out here that the cross-gain terms, i.e., the
terms proportional to A &2 and A2& have a phase depen-
dence and arise due to the coherent pumping.

It is clear that when the coupling constants g& and g2
are real and equal, i.e., g& ——g2

——g and the cavity losses
for both modes are equal, the equation of motion for the
density matrix p~ [cf. Eq. (21)] becomes symmetric in n,
and n2 and hence nj ——n2 ——n. Under these conditions,
the diffusion coefficient takes the form

diffusion coefficient as in Eq. (32) peaks around a particu-
lar value 80. Hence for a particular choice of the phase
2$=8o, the diffusion coefficient vanishes. Under the
same conditions D (p, 8) also vanishes. It is also possible
to obtain other set of conditions under which the
diffusion coefficient vanishes.

IV. CONCLUSION

In conclusion, in this paper we have presented a non-
linear theory of correlated emission laser to all orders in
coupling constants. The two modes are coupled by ini-
tially preparing three level atoms in a coherent superposi-
tion of the upper two levels inside a doubly resonant cavi-
ty. We have calculated the diffusion coefficient for the
relative phase angle between the two modes for arbitrary
values of gain coefficients, coupling constants, detunings,
and decay rates. We also discussed one of the conditions
under which the diffusion coefficient vanishes, i.e., the
spontaneous-emission events from the upper two levels to
the lower level are strongly correlated. In this general
framework, it is possible to obtain other sets of condi-
tions on the laser parameters under which the CEL ac-
tion takes place.

I

2 I g I

'(4n —1 ) —4r'
(33)

y' irk+21—g I

'n

It has been shown by Schleich and Scully' that the solu-
tion of a general Fokker-Planck equation with the
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