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Random-sequential-packing simulations in three dimensions for spheres
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The goal of one three-dimensional random-parking (occupation) -limit problem is to determine
the mean fraction of space that would be occupied by fixed equal-size spheres, created at random lo-
cations sequentially until no more can be added. No analytical solution has yet been found for this
problem. Our earlier simulations, done for ratios of cubic-region side length (L) to sphere radius (R)
up to L/R =20, predicted a parking-limit volume fraction (as volume becomes very large) of
0.37-0.40, using regression equations that indicated the approach to this limit as a function of the
ratio of the volume of spheres tried to the volume of the region and the ratio L/R. Our results for
random parking in a volume with penetrable ~alls can be adjusted with a multiplicative correction
factor to give the results for the same volume with impenetrable walls. An improved algorithm, al-
most an order of magnitude faster than our earlier one, was used to extend our simulations to
L/R =40 and confirm the original predictions, for a series of six runs totaling 9)(10 attempts at
sphere placement. The results supported a narrower estimate of the parking-limit volume fraction:
0.385%0.010.

Much recent attention has been given to the two-
dimensional parking (occupation)-limit problem, deter-
mining the area fraction that would be covered at satura-
tion by the random placement of disks on a plane, such
that none overlaps. ' The results are applicable to vari-
ous coverage problems, including adsorption on surfaces.
The three-dimensional problem for spheres, determining
the fraction of volume that would be filled at saturation
by the random creation of equal-size spheres, has re-
ceived less attention, although it has been the subject of
two investigations. ' Applications include modeling con-
densation, modeling coagulation and clustering, model-
ing Quid structures, and the statistical problem of sam-
pling a three-dimensional space without replacement.
Tory and Jodrey" recently reviewed the literature on this
and other packing problems, placing them into a joint
context.

The problem of "parking" spheres of radius R in a cu-
bic volume of side L can be described mathematically by
two dimensionless groups: L/R and n3, the number of
spheres tried times the volume of each sphere divided by
the volume of the cube. Although the one-dimensional
parking problem has been solved analytically, ' the
problem in higher dimensions, for disks, spheres, etc., has
not. It has been shown theoretically and by simula-
tion"' ' that the parked volume fraction F approaches a
"parking limit" F', such that (F' F) oc(1 jn3)'i . —For
the method of simulation used here it has been shown
theoretically and by simulation that the parked volume
fraction approaches the parking limit for small R /L as
(R /L)', for large n 3

Combining these two relationships and determining the
best-fit coeIcients by linear regression on a set of simula-
tions means, we found

F=0.383—0.202(1/n3)'i + 1.29(R /L ) .

The standard errors of estimate of these coefficients were

0.007, 0.025, and 0.06, respectively, with coeScient of
determination (r ) of 0.99 for a set of nine values of
n 3= 41.9,83.8, 16 7. 5and L/R =10,14.14,20.

We wanted to extend these simulations, which typica1-
ly ended with having hundreds of spheres placed, to
larger values of L /R, such as L /R =40, requiring
thousands of spheres placed. For a given L /R ratio, the
time used was proportional to the number of attempts.
Six runs of 320 000 placement attempts per run
(2.56X10 attempts in all) at L/R =20 took about an
hour on our IBM 3081 computer system, using a com-
piled form of the BASIC computer language (similar to
FORTRAN in running time). We expected L /R =40, with
eight times the volume, to take almost an order of magni-
tude longer, which was unacceptably long. We needed to
develop a faster program so that we could study
L/R =40, and thus test the regression we had obtained
from L/R =10—20.

With our previous algorithm' we chose the coordinates
of each trial sphere at random within x,y, z=O-L.
Spheres already placed were tested to see whether they
were within 2R of the sphere being tried; if so, the trial
sphere was rejected. If there were no spheres that would
intersect the trial sphere, the trial sphere was added to
the volume. The volume fraction was calculated as the
number of spheres placed times the volume per sphere di-
vided by the cubical volume. Periodic boundary place-
ment was not attempted; rather, the edge effects (R/L
efFects) were eliminated by extrapolation to R/L=0.
The previous algorithm was changed to the new, ac-
celerated algorithm by having the new program divide
the region into octants and search by octants. This was
facilitated by making the placements on x,y, z = L/2 to—
+L/2. If no intersections were found in the octant in
which the tria1 sphere was generated, then the other oc-
tants were searched as well. The time consumed by sort-
ing the spheres into octants was much less than the time
saved in searching what was often only one-eighth the
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TABLE I. Summary of results of six independent L/R =40 simulations and the regression-equation

(1) predictions.

Number
tried

640000

1 280000

2 560000

Volume
ratio

41.9

83.8

167.5

Number
placed

5452
5423
5651
5648
5809
5808

Number
predicted

by Eq. (1)

5455

5639

5785

Volume
fraction
placed

0.3568
0.3549
0.3699
0.3697
0.3802
0.3801

Volume
fraction

predicted

0.3570

0.3690

0.3786

volume. This approach is a compromise between search-
ing the entire volume each time and cutting up the
volume into smaller cubes, about 2R on edge, then
searching the 27 smaller cubes that might have sphere
centers, which would be analogous to an approach used

by Haile et al. ' for a related problem. Haile et al. re-

ported an increase in speed of a factor of 8 due to their
approach, compared to searching the entire region. We
achieved almost this acceleration, in the limit of large
numbers of spheres tried, with less programming com-

plexity. For example, at L/R =20, the attempted place-
ment of 80000 spheres was four times as fast with the ac-
celerated program; numerical experiments with placing
fewer spheres showed that the ratio of the speed of the
accelerated program to that of the original program in-
creased as the number of attempted placements in-
creased. As the probability of successfully placing a
sphere tends to zero, the probability of that happening in
the first octant tried tends to 1, making the search of oth-
er octants rare, accelerating the process by almost a fac-
tor of 8.

It is likely that even greater acceleration can be
achieved by having the simulation algorithm look for
"holes" in which to place spheres and then place them
there randomly. This has been done in two dimensions
by several investigators. ' ' However, the random
selection of which hole to fill and the random selection of
where to place the object in that hole are difficult to
achieve without subtle bias; thus, small differences be-
tween the procedure adopted by Tanemura and that
adopted by Lotwick' produced substantial differences in

the two-dimensional parking limits inferred. ' The
method we used is truly random in its choice of possible
placement positions.

The results of the new set of simulations, L/R =40,
are shown in Table I. The first column shows the number
of attempts at placement per run; n3 is listed next, the ra-
tio of volume tried to volume of region, the third column
shows the number of spheres successfully placed; the
fourth column shows the number predicted to be placed,
based on regression equation (1); the fifth column shows
the volume fraction placed; the sixth column shows the
predicted volume fraction, based on regression equation
(1).

Figure 1 shows (a) the regression lines for R /L =0, —',
and —,'„(b) the previous results (X) for R /L = —,'„part of
the data on which the regression (1) was based; (c) our

F=0.385 —0.209(1/n3)'~ +1.29(R /L ) . (2)

The standard errors of estimate of these coefficients were
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FIG. 1. Volume fraction parked (packed) vs (1/n3)', the
cube root of the ratio of the volume of the region to the total
volume of all spheres tried: regression lines for R/L=0, ~,
and, p; previous results (X and 6) for R /L pp

new R /L = ~
results (4); path (irregular line) of a previous R /L = 2'p simula-

tion; path () of a new R /L = ~ simulation.

new R/L = ~~ results (6) from Table I; (d) the results

(k) of our two previous R /L = —,', simulations of
2.56X 10 attempts each; (e) the path of one of our previ-
ous R/L = —,', simulations; and (f) the path (0) of one of
our new R/L= —' simulations of 2.56)&106 attempts.
(The paths are from runs chosen at random, not from
selected runs. ) Some of the symbols are masked due to
overlapping. Figure I shows close agreement between
our previous regression equation and our new simulation
results. It shows F to be nearly linear with respect to
(n3) '~3 for n3 ~1.

To improve our estimate of the parking-limit fraction,
the results of L /R =40 were combined with our previous
simulation results. A set of means were obtained from
the siinulation data for the combinations of
n3 ——41.9, 83.8, 167.5 and L/R =10,14. 14,20, 40. A
least-squares linear regression on the 12 means yielded
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0.0046, 0.018, and 0.03, respectively. The coeScients are
little different from those of (1) but do have smaller errors
of estimate. Regression equation (2) had a coefficient of
determination (r ) of 0.9960, indicating that 99.6% of the
variation in the means is included in the regressiog ex-
pression. The predictions from regression equation (2)
were little different from those of regression equation (1);
for example, at n3 = 167.5 and R /L = ~~, F=0.3793 was

predicted by (2), and F=0 378.6 was predicted by (1).
The assumptions underlying linear regression include

that the errors are normally distributed and that the vari-
ances do not depend on the values of the independent
variables. The assumption of normally distributed errors
for least-squares regression is more likely to be satisfied

by regressing against the means, as we have done, be-
cause errors in the means are more normally distributed
than the errors in the individual data. The assumption of
equal variance for each of the independent variable
values (homoscedasticity) is probably not correct, which
means that although our use of unweighted least-squares
regression will produce unbiased results, the coefficients
will not have the minimum variance possible. ' The
small fraction of random variation (1 r) here m—akes
this effect small.

The probability of a successful placement equals the
(marginal) change in the number placed per unit change

in the number tried. The probability can be obtained by
differentiating the regression equation or by counting the
change in number placed per additional number tried.
Using regression equation (1), the probability becomes
(0.202/3)( n 3 ) . At the end of the run displayed,
2.56)&10 attempts at R/L =—', the last 8 of the 5808
successful placements took 87 664 attempts, thus averag-
ing about 9 successful placements per 100000 attempts.
The regression equation (1) predicts 7 per 100000, a close
match.

For regions where the walls are impenetrable, our
simulations are equivalent to having the distance between
the walls be L+2R. That means that the volume frac-
tion for impenetrable walls will be L /(L+2R) multi-
plied by that found here for penetrable walls. At
L/R =40, for example, the impenetrable-wall volume
fraction will be 0.867 times the penetrable-wall volume
fraction.

These results confirm the previous regression, Eq. (1),
which gave estimates of F* from 0.37 to 0.40. The re-
vised regression, Eq. (2), gives a revised estimate of F (6
two standard errors): F'=0.38 5+0. 010. Dividing the
region to be searched into octants accelerates the search
up to almost a factor of 8, without adding greatly to the
complexity of programming.
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