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Modulational instability oscillation in nonlinear dispersive ring cavity
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Periodic-intensity self-oscillation caused by modulational instability is observed for the first time

in a nonlinear dispersive fiber ring cavity. The oscillation stops immediately when the phase coher-

ence is disturbed by cavity detuning. It is found that a noninstantaneous response of the nonlinear

index competes with the modulational instability gain and produces asymmetrical Stokes sidebands.

Modulational instability (MI) is a general feature of
wave propagation in nonlinear dispersive media and has
been studied in such diverse fields as fluid dynamics, non-
linear optics, and plasma physics. ' It refers to a process
in which weak perturbations from the steady state grow
exponentially as a result of an interplay between non-
linearity (self-phase-modulation) and group velocity
dispersion (GVD).

In optical fibers, MI is responsible for the break-up
into solitons ' of cw optical excitation. In 1980,
Hasegawa and Brinkman proposed a new coherent in-
frared source by means of MI, in which a coherent signal
is generated by extracting the sideband of the MI spec-
trum. Tai et al. have recently reported observation of
this phenomenon. Induced modulational instability,
which can be achieved by applying a weak external field,
has also been theoretically and experimentally investigat-
ed. ' The effects of fiber loss, the envelope time deriva-
tive, and the cross phase modulation on MI have been
studied by several authors.

It is well known that a ring cavity filled with a non-
linear dielectric medium and subjected to intense light ex-
hibits instabilities and chaos. ' ' When the GVD of the
nonlinear medium is negligibly small, the system can be
described as an Ikeda instability, where a nonlinear phase
shift of the order of m is crucial. ' ' When one incorpo-
rates GVD; i.e., in the case of solitons in the ring cavity,
it has been theoretically shown that instability and chaos
are also observed as the pump power increases. ' '

In this paper we show that a new type of a periodic in-

tensity oscillation occurs through the MI in a nonlinear
dispersive fiber ring cavity. The physical mechanism
behind the instability oscillation is one of periodic feed-
back into the nonlinear dispersive cavity, in which the
MI gain can compensate for the loss in the cavity, result-
ing in a steady-state self-oscillation. Since the MI oscilla-
tion (MIO) has a wide generality in nonlinear systems,
one may apply it to a plasma or fluid to ~enerate very
high-intensity plasma ar fiuid-pulse trains. ' '

The experimental setup for the MIO is shown in Fig. 1,
which a nonlinear ring cavity is constructed with a

single-mode fiber. The pump source is a 100-MHz
mode-locked color-center laser at a 1.5-pm region. After
passing through an isolator, the pump pulse is coupled
into a ring cavity through a beam splitter. As the pump
pulse propagates down the fiber, the small MI builds up
from the self-phase-modulation noise. The output from
the fiber is reflected at the movable corner cube, and then
the pump with the small modulational instability is fed
back (in part) into the ring cavity to "seed" the pulse
breakup. If the pump is synchronized to the succeeding
pump pulse, the MI is amplified coherently in the cavity,
and eventually steady-state MI oscillation takes place.
When proper synchronization is achieved, the sideband
signals become large, whereas they collapse when the
phase coherence is disturbed. A A,/4 plate is inserted into
the cavity to change the coupling efficiency to the next
loop.

The MI gain of the Stokes field amplitude, g&„is given
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FIG. 1. Experimental setup for observation of modulational
instability oscillation.
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1/2

Here, n2 is the nonlinear index coeScient, k" the group
velocity dispersion (equal to 8 k/Bco ), c the speed of
light, and E the field amplitude of the pump wave. The

maximum gain is achieved at Q,„(=2mf,„)
1/2
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FIG. 2. Pump-wavelength dependence the oscillation waveforms and spectra of the MIO. (a)—(d) correspond to pump wavelengths
of 1.525, 1.535, 1.540, and 1.550 pm, respectively. Spectra are on the left-hand side and the corresponding autocorrelation waveforms
are on the right-hand side. One division of the autocorrelation waveforms corresponds to 0.5 ps.
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g,„=,'n—, —/E/'. (3)

If we take an example of the pump peak power coupled
into the cavity I =20 W, n2 ——3.2)&10 ' cm /% for sil-

ica, 3,&
——5)(10 cm, and A, =1.55 pm, the amplitude

coeScient of the MI gain g,„becomes as high as
2.6 X 10 (1/m).

For the self-induced Raman gain, Gordon, Mitschke,
and Mollenauer have pointed out that the noninstantane-
ous response of the nonlinear index is essentially the same
phenomenon as the Raman gain. ' ' Thus one may sup-
pose that the index change An follows

dhn bn n2I

dr T T

and the solution is

(4)

n2I nqIbn= (1+iAT),
1 i QT— I+(IIT)'

(5)
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Comparing Eq. (6) with Eq. (3), the growth rate of the MI
is the same as that of the Raman gain at the frequency
offset such that 0T= 1. At smaller frequency offsets the
MI gain dominates.

The oscillation waveforms and spectra of MIO are
shown in Fig. 2, where the fiber length was 100 m and the
pump wavelength was varied from 1.525 pm (zero GVD)
to 1.550 pm (negative GVD). For the parametric process
in pulsed operation, the temporal overlap among the
Stokes, the anti-Stokes, and the pump pulses is important
to achieve a large gain. Since the Stokes shift is a few 10
nm to a 1.5-pm region, the walk-of becomes 10—30
ps/km, which means that the effective interaction length
is approximately equal to the ring-cavity length of
100—300 m for a pump-pulse width of 13 ps. Figures
2(a)—2(d) correspond to pump wavelengths of 1.525,
1.535, 1.540, and 1.550 pm, respectively. The pump
power for each wavelength was 45, 42, 40, and 39 W, re-
spectively. It is apparent that the MIO takes place when
the pump wavelength is in the negative GVD region.
There was no parametric process when the pump wave-

length was set in the positive GVD region (A, =1.510 pm,
k"=0.94 ps /km). Parametric four-photon mixing is ob-
served at zero dispersion (k"=0.01 ps /km), the Stokes
and the anti-Stokes wavelengths of which are kz ——1.569
pm and X„s——1.481 pm. Although the sidebands are gen-
erated, no modulational instability was observed as seen
in the autocorrelation trace, Fig. 2(a). When the pump
wavelength is slightly shifted to the negative GVD

where 0 is the modulation frequency and T is a relaxa-
tion time constant of bn(t) Thus .b, n is complex, and
there is gain for 0&0 on the low-frequency side (the
Stokes field is amplified) and loss for 0 &0 on the high-
frequency side (the anti-Stokes field is absorbed). The
Raman gain of the Stokes amplitude peaks at QT= 1, and
is given as

gR ~„II bn jk——o
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FIG. 3. Output characteristics of the MIO. (a) f,„and the
modulation period changes as a function of pump wavelength,
(b) f,„and the modulation period changes as a function of k",
(c) threshold and output (modulation depth) vs average pump
power for fiber length of 250 m, and (d) asymmetry change be-
tween IAs and Is as a function of pump wavelength.

(A, = 1.530 (ttm, k"= —0.31 ps /km), small MI oscillations
began to be observed. As the pump wavelength is extend-
ed toward larger wavelengths as shown in Figs. 2(b)—2(d),
clear MIO can be seen. Here, some asymmetry is ob-
served between the Stokes and the anti-Stokes signals,
where k" values for Figs. 2(b) —2(d) were —0.64, —0.96,
and —1.63 ps /km, respectively. In addition, as we ex-

pected from Eq. (2), the period of the MIO decreases with

an increase of the pump wavelength (increase of k"), the
results of which are plotted in Figs. 3(a)—3(b).

It can be said that the asymmetric sideband is generat-
ed by competition between the MI gain and the Raman
gain. As we discussed, the Ra~an gain becomes large
when the period of the MI (corresponding to soliton
width) is short. This means that the asymmetry can be
enhanced when 0 is large, that is, the pump wavelength
is set near the zero dispersion region. This can be experi-
mentally confirmed in Figs. 2(b) —2(d). However, this
asymmetry becomes small in Fig. 2(d) by setting the

pump wavelength to 1.550 pm. The oscillation period of
the MIO becomes long at 1.550 pm, so that the Raman
gain can be reduced and the MI gain becomes dominant.
This phenomenon corresponds to removing the self-
frequency shift for soliton propagation by extending the
input pulse width, which means that the nonlinear index
can respond instantaneously.

Output characteristics of the MIO are summarized in
Figs. 3(a)—3(d). f,„and the modulation period changes,
as a function of wavelength, are shown in Fig. 3(a). The
open circles are experimental data for f,„and the
closed circles for the modulation period. The solid and
dashed lines are theoretical curves given by Eq. (3), where
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a fiber core diameter of 10 pm and a pump peak power of
42 W are used for the calculation. It is shown that these
agree well. For example, the calculated f,„at1.535 asm

is 2.35 THz, which is in good agreement with the experi-
mental value of 2.13 THz. A small deviation from the es-
timation is due to the difference of the coupled power for
each wavelength and to the fact that the pump is not ac-
tually a continuous wave, but a pulse. Figure 3(a) is
redrawn in Fig. 3(b) as a function of k".

The threshold characteristics at A, = 1.545 pm are
shown in Fig. 3(c), where the fiber length was extended to
250 m. The modulation depth, measured at the center of
the autocorrelation trace, increases linearly with an in-
crease of pump power coupled into the fiber. There is no
doubt that the system has a clear threshold level, and the
average pump power of the threshold was 17.5 mW, cor-
responding to the pump peak power of 13.5 W. The ratio
of the anti-Stokes to Stokes intensities, defined I„s/Is,is
described in Fig. 3(d) as a function of the pump wave-
length. For large f,„,the response of the index change
becomes noninstantaneous, so that the Raman gain

builds up and the asymmetry is enhanced. It was also
found that the MIO stopped for cavity detunings of +1
mm, where there was no apparent change in period of the
MIQ for the cavity detunings; i.e., 0 was Axed.

In our experiments, the pump power required for gen-
eration of the N= 1 soliton is of the order of 10 mW and
the soliton period is longer than 50 km because of the
broad pump width (13 ps) and small GVD ( —1

ps/kmnm). However, the pump power that we used in
the experiment was about 40 W, which is 4&(10 times
larger than the N=1 soliton power. Thus, we may say
that the MI on the soliton pulse is equivalent to effective
excitation of very-high-order solitons by synchronous
pumping. It has not been made clear yet experimentally
if the instabilities and chaos occur for the pump power
corresponding to N =2—5. '

The authors would like to express their thanks to Y.
Kimura for fruitful discussion, and to M. Ohashi and N.
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