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A two-level atom illuminated by a laser may be driven into a population-inverted steady state if it

is coupled to a cavity. This is a result of the quantum nature of the electromagnetic field and is for-

bidden by the semiclassical theory. We numerically and analytically analyze this inversion. We find

the maximum possible inversion and determine the rate of approach to the steady state. The quan-

tized cavity modifies the electromagnetic vacuum seen by the atom; this connects our work to that

on cavity-enhanced spontaneous emission and on dynamical line narrowing. Experimental signa-

tures of the inversion and potential experimental difficulties are considered. For example, neither

the presence of many atoms in the mode nor many modes in the cavity destroys the inversion.

I. INTRODUCTION

Recently one of us (C.M.S.) predicted a new nonclassi-
cal effect of the interaction between a single two-level
atom and a quantized cavity field The atomic popula-
tion inversion can have positive values in the steady state.
In this paper we study the mechanisms producing the in-

version and explore its experimental implications.
Steady-state inversion is a consequence of the

modification of the electromagnetic vacuum by the cavi-

ty. Thus it is related to cavity-enhanced and inhibited
spontaneous emission, ' and to dynamical suppression of
spontaneous emission. Other work on the interaction of
a two-level atom with a quantized cavity includes Rice
and Carmichael's on nonclassical photon statistics and
Savage and Carmichael s on single-atom optical bistabili-

6

In the semiclassical theory the electromagnetic field

obeys Maxwell's classical dynamics and only the atom is
quantized. A driven two-level atom in a cavity may be
transiently inverted during Rabi oscillations, but steady-
state inversion is semiclassically forbidden. However,
when the field is quantized steady-state inversion be-
comes possible. The interaction between the electromag-
netic field and atoms is known to show features that can-
not be explained in semiclassical terms; for example,
squeezing and antibunching. These phenomena follow

from small quantum fluctuations around the semiclassical
steady state; therefore a linearized stochastic treatment is
adequate. A shift of a semiclassical mean value, however,
cannot happen in the usual linearized stochastic treat-
ment '" a negative inversion remains negative in the
presence of the small fluctuations treated by the linear-
ized theory. Thus population inversion is, like quantum
revivals of (collapsed) Rabi oscillations, ' outside the usu-
al linearized fluctuation regime of quantum optics. Work
on superpositions of well-separated quantum field states
by Yurke and Stoler, ' Kennedy and Drummond, ' and
Wolinsky and Carmichael' also trancends the small-
quantum-fluctuation regime.

The plan of this paper is as follows. Section II intro-
duces our model and its associated master equation.

From this the semiclassical theory is derived by making
the usual factorization approximation. The numerical
solution of the system's master equation is described in
Sec. III. We present a parameter space survey of the pos-
itive inversion and show that it cannot exceed a certain
small value. In Sec. IV we use truncation in the (vacuum
picture) Fock state basis to obtain approximate, analyti-
cal solutions of the master equation. A connection to the
Weisskopf-Wigner theory of spontaneous emission is es-
tablished in Sec. V. Section VI deals with the experimen-
tal feasibility of positive inversion. We suggest exerimen-
tal signatures of inversion. Section VII is a summary of
our results.

II. MODEL AND ITS PROPERTIES

The system under investigation consists of a single
atom, inside a Fabry-Perot cavity, driven by a mono-
chromatic laser beam, Fig. 1. Although it is difficult to
faithfully represent all the details of such a system, the
model we present contains the essential elements in the
simplest possible way.

The dynamical participants in the system, the atom
and the light field, are both treated quantum mechanical-
ly. The cavity naturally separates the light field into two
parts; the vacuum field and the resonant cavity modes.
We assume that the cavity-mode amplitude is linearly
coupled to the external pump field amplitude. The model
atom is a two-level system, assumed to be in exact reso-
nance with the cavity mode. The interaction between the
two-level system and the light field is treated in the dipole
approximation using the Jaynes-Cummings interaction

FIG. 1. Schematic diagram of the single atom in a cavity ex-
perimental setup. A laser of amplitude proportional to E drives
the cavity.
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Hamiltonian in the rotating-wave approximation. The
essential dynamical effects of the vacuum modes are dissi-

pation of the electronic excitation via spontaneous emis-

sion and damping of the resonant cavity-mode excitation,
which we describe with the usual rates y and ~, respec-
tively.

With the assumptions made above the system obeys the
following Liouville master equation for the atom-field
density operator p:

p=—L,r(p)+L/(p)+L, (p) .d (2.1)

The first term is the Hamiltonian atom-field interaction,

L&( p)=g[ a' o —a'o+, p], (2.2)

where a' (a' ) is the annihilation (creation) operator of
the cavity mode, o (o+) the lowering (raising) operator
of the atomic levels, and g is the coupling constant, as-
sumed to be real, and defined by

' 1/2
3&pc (2.2a)

2N
)
u(r)/

where y is the spontaneous emission rate (Einstein- A

coefficient), co is the transition angular frequency, and c
the speed of light. u(r) is the normalized cavity-mode
function at the atomic position r (see Sec. VI). We also
introduce the atomic inversion operator Ap,

Ap =0+a —o 0+ . (2.3)

The linear coupling of the pump-field amplitude with the
cavity-mode amplitude is characterized by the constant F.
which is proportional to the pump-field amplitude. The
cavity decay rate is 2~. The last term in the master Eq.
(2.1) describes atomic spontaneous emission and has the
form

L, (p) =(y /2)(2cr po + —o +o p pcr+o ) . (2.5)—

The expectation value of this operator, ( bP ), is the pop-
ulation difference between the excited and ground atomic
states. The second term in Eq. (2.1) describes the pump-
ing and decay of the cavity mode,

LI(p) =E[a' a', p]+tc(2a—'pa' a' o'p —pa' a')—.

(2.4)

L,&(p)~ [o. —o+,p]+g[a cr —ao'+, p],gg
K

L&(p)~lc(2apa —a ap —po a) .

(2.7)

(2.8)

The Liouvilleans (2.5), (2.7), and (2.8) are used in the ac-
tual calculations performed in the rest of this paper. In
Fig. 2 we show the state structure and the interactions
between the states for the first two (transformed) Fock
states.

In the case of many nearly degenerate cavity modes, of
which only one is coupled to the external field, we can
still use the equations for a single cavity mode, but with
scaled parameters. We restrict ourselves to equal cavity
dampings ~ and equa1 coupling g of each mode with the
atom. By performing an orthogonal transformation on
the modes a new set can be found such that only one
mode couples to the atom. All the new modes have the
same cavity damping as the old ones. Hence only the
coupled mode survives in the steady state, the others are
damped to extinction. However, the effective atom-field
coupling constant g is scaled by the number of modes
N

P=gE/ic~P, g~+N g, lc~x . (2.9)

Therefore the results of this paper can be used in the de-
generate multimode case.

In order to compare quantum-mechanical results con-
cerning the atomic inversion with the semiclassical re-
sults, we brieAy consider the semiclassical model. The
semiclassical theory assumes that the atomic and light
field degrees of freedom are separate and neglects
higher-order coherences between the atomic and field
variables. Specifically, expectation values containing
atomic and field operators are assumed to factorize,
which is equivalent to assuming that the density matrix is
a direct product of the form

p patom pfield ' (2. 10)

Using the untransformed Liouvilleans (2.2), (2.4), and
(2.5), we find the following equations of motion for the

In the absence of the atomic interaction the steady-state
field is the pure coherent state, p=

~

E/ic)(E/lc
~

. We
transform away the empty cavity (classical) field by divid-

ing the field operator into a classical and a quantum part,

I 0,+&

gE y
'I

a'= —+a .
K

(2.6) QE
JC lI

The new operator a obeys the same boson algebra as a',
this transformation takes us into the so-called vacuum
picture. ' The atomic expectation values are not
inAuenced by this transformation. Instead of the field
pumping term the transformed equations of motion have
a semiclassical atom-field interaction

FIG. 2. State structure for two Fock state truncation. Ar-
rows indicate possible directions of population movement. The
arrow labels correspond to terms in Eqs. (2.5), (2.7), and (2.8).
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expectation values ( a') =F./«+ (a ) and ( Ap ):

—(a'& =E—«(~'&+g&~
dt

(2.11)

)= —y/2& &+g& '~P&
dt

= —y/2&~ &+g(u'&&&p), (2.12)

—(bp) = —y((bp)+1) —2g(a' o ) —2g(o'+u')
dt

= —y(& ap &+1)—2g(a'&(~
—2g(~+) &'& .

The steady state inversion is then

(bP)—:hp = — &0 .
1

1+
y

(2.13)

(2.14)

Hence the semiclassical inversion cannot be positive.
However, nothing prevents positive inversion when the
semiclassical approximation, Eq. (2.10), breaks down.

If the driving is done through a cavity mirror, as we as-
sume for our discussion, this system can yield absorptive
optical bistability in the semiclassical limit. However,
when the photon number in the cavity is low, semiclassi-
cal bistability is destroyed by the quantum mechanics. '

The saturation photon number n„naturally determined

by Eq. (2.14), and other dimensionless parameters charac-
terizing the semiclassical theory are defined by

n, = ~, C=, Y=ny g —inE
8g KP K

The inverse relations are

g/«=(8n, )' C, y/«=8n, C, E/«= Yn,'

(2.15)

(2.16)

~n, +)~in +1, —)~~n, —),

We are interested in parameter regimes where the
quantum-mechanical corrections to the population inver-
sion are dominant, i,e., the semiclassical inversion is zero.
From the semiclassical theory we expect the spontaneous
emission to decrease the inversion towards bp= —1.
When the spontaneous emission rate y is the slowest rate
one might expect the inversion to be saturated to zero.
However, this is not in general the case. The cavity
damping provides an additional spontaneous decay chan-
nel, called cavity-enhanced spontaneous emission, with
the route

The condition stated by Eq. (2.17) means that the
quantum-mechanical coupling between the atom and the
field is weak. The quantum part of the field then au-
tomatically cascades towards low quantum numbers
where fluctuations can be large in comparison to the
large quantum-number region. If, however, g &&y the
system collapses into the zero photon state, which is a
pure semiclassical two-level system. To have essential
quantum effects we must, hence, be in the region where

&&g ~ (2.18)

Indeed, as shown in Sec. III, when Eqs. (2.17) and (2.18)
are fulfilled we obtain positive inversion in the steady
state.

III. NUMERICAL RESULTS
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The parameters C =1, n, =0.01 (g/«=0. 28, y/«
=0.08) satisfy the inequalities (2.17) and (2.18). Figure 3
plots the resulting inversion as a function of driving field
Y. Positive inversion first occurs for Y= 12 —(p/«—= 3.4).
In Sec. VI we suggest that the local maximum of the in-
version, shown in Fig. 3, is a signature of positive inver-
sion. We have calculated the inversion, maximized with
respect to the driving field, as a function of C and n, .
The results are shown in Fig. 4 as contours of the inver-
sion Ap in the C, n, plane. The maximum inversion for
C E [0,5] and n, E [0,0.001] is a little over 0.045.

What is the maximum possible inversion? In Fig. 4 the
maximum occurs for small n, and large C. The limit
n, —+0 with C(8n, )'~ =g/«constant, is the limit of zero
spontaneous emission, y~0. It is physically reasonable
that the largest inversion should occur for zero spontane-
ous emission. For y =0 we have numerically maximized
the inversion with respect to the two remaining parame-
ters: g and E. The resulting maximum inversion
cpm, „=0.070 occurs for g/«=1. 2 and E/«=1. 63. This
is a physical upper limit to the steady-state inversion in
our model.

y g ««,p. (2.17)

where
~

n, + ) is the product of a field Fock state
~

n )
and the atomic ground or excited state. The first step of
this route is made by the quantum-mechanical atom-field
coupling and the second step by the cavity damping (see
Fig. 2). This rate may be estiinated to be g /«when
g ««[Sec. IV B]. In order to keep the system saturated
this rate and the spontaneous emission rate must be small
in comparison with the Rabi frequency 2p; y, g /««p.
These conditions are met if

02025 I II i I I & I I I I I & & I I i I I i I I

~0/~

0 20 40 60 80 100

FIG. 3. Graph of the inversion hp vs the cavity driving field

Y. The maximum of the inversion occurring for Y=20 corre-
sponds to a maximum of the fluorescence as a function of driv-

ing field. This is a signature of positive inversion. Parameters:
C =1, n, =0.01 (g/a =0.28, y/~=0. 08).
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FIG. 4. Contour plot of the inversion, maximized with
respect to the driving field, vs log&o(n, ) and C. For given C and

n, the contours indicate the maximum inversion obtainable by
varying the driving field Y. For example, the parameters C=2
and n, =10 yield a maximum inversion hp of about 0.03. In
the region to the right of the rightmost contour (the zero con-
tour) the inversion is always negative.

Next we compare our numerical results with the pre-
dictions of the one-atom semiclassical theory (Sec. II) and
of Rice and Carmichael. They find in their bad cavity
limit,

spontaneous emission term is added.
Solving for the inversion as a function of driving field

we find the results shown in Fig. 6. As the number of
atoms increases the maximum inversion decreases, and it
occurs for larger driving fields. With five atoms in the
cavity the maximum inversion per atom is hp=0. 025,
compared with the maximum inversion for one atom,
hp =0.032, with the same parameters.

Also shown in Fig. 6(a) are the semiclassical predic-
tions for hp versus driving field. (For saturation photon
numbers less than 1, such as we have here, any bistable
behavior is expected to be completely washed out by
quantum fiuctuations. ' } Agreement is good for small
driving fields and improves as the number of atoms in-
creases. For large driving fields both the semiclassical
and quantum results saturate to zero. With five atoms
the exact result agrees well with the lower branch of the
semiclassical result.

We next discuss the numerical methods used to obtain
the preceding results. After choosing a particular atom-
field basis the master equation (2.1) may be represented
by a linear system of ordinary differential equations, of
infinite order. However, if the system contains only a
small @umber of energy quanta it may be truncated to a

I I I I

t
I I I I

i
I I I 1

~/y~~, n, ~0, E/a~O;C, Y constant

that the inversion is given by

(1+2C)'
(1+2C}+ Y

(3.1)

(3.2)

0.0

The factors of (1+2C) in this expression are the result
of cavity-enhanced spontaneous emission. Figure 5
shows that both the semiclassical and the bad-cavity-limit
approximations break down before positive inversion
occurs.

The semiclassical theory should be valid when there
are a large number of atoms in the cavity. Does positive
inversion vanish as the number of atoms increases? We
have investigated this question using the relevant general-
ization of the master equation (2.1) to N„t amos.

" For
each atom a new Jaynes-Cummings interaction and a new
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FIG. 5. Graphs of the inversion Ap vs the drivirig field Y
from the exact numerical calculations (solid line), the semiclassi-
cal theory (dashed line), and the theory of Rice and Carmichael
{Ref. 5) (dotted line). Parameters: C=2, n, =0.01 (g/a=0. 57,
y/v=0. 16).

FIG. 6. Graphs of the inversion per atom hp vs Y for
different numbers of atoms in the cavity. From left to right the
three sets of curves correspond to one atom, three atoms, and
five atoms. Parameters: C =2, n, =0.01 (g /~ =0.57,
y/~=0. 16). (a) The solid curves are exact numerical results,
while the dashed curves are the semiclassical predictions. (b)

Close up of positive inversion region showing convergence of all

three curves for large driving fields.
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correspondingly small-order system. This allows a nu-

merical solution.
We choose our basis to be the tensor product of the

field Fock states
~

n ) and the atomic ground state
and excited state

~
+ ),

[ /
+,n &=—

/

+&S
/

n &,
[
—,n &—=

/

—&
/

n &;

n=0, 1,2, . . . j . (3.3)

Making the transformation of Eq. (2.6) significantly
reduces the number of Fock states required in the prob-
lem because we do not need to represent the coherent
state "tail." The empty cavity part of the field, the
coherent state

~
E/n&, is transformed into the vacuum

state.
The steady state of the master equation (2.1) is now

found by solving the truncated linear system for the
density-matrix elements. An inhomogeneous equation
for the diagonal sum, corresponding to the normalization
of the trace of the density matrix equal to one, must first
be substituted into the system.

The accuracy of the solution in the truncated basis was
checked by increasing the number of Fock states and
demanding no change in the density-matrix elements.
Table I shows the results of a typical steady-state solution
obtained after a truncation to six Fock states. Taking
into account the symmetry of the density matrix, 78 real
density-matrix elements were solved for. Numerically
this presented no problem.

When we have more than one atom coupled to the
mode the problem becomes too large for standard linear
equation solvers. With N~ atoms and N Fock states the

N„
total number of states in the truncated basis is 2 "XN.
For example, five atoms and five Fock states gives a total
of 160 basis states and 80)& 161=13,480 density-matrix
elements. Such a large linear system may be solved by
the method described by Savage and Carmichael: The
master equation (2.1) may be expressed in the form

ments. This system of linear, ordinary, differential equa-
tions may be solved by the one step Euler method,

p(t)~[I+(t/k)L]"p(0), k~ ~ . (3.5)

The steady state is the long time solution. L is a sparse
matrix having at most 2+5N~ nonzero elements per
row. For large numbers of atoms the number of density-
matrix elements required may be greatly reduced by us-

ing the atomic permutation symmetries. ' For arbitrarily
large numbers of atoms the Langevin equation method
described by Smith and Gardiner is appropriate. '

IV. ANALYTICAL RESULTS

A. Positive inversion

The model described in Sec. II can be solved approxi-
mately in certain limits. A positive inversion is obtained
when the classical part of the field is large enough to to-
tally saturate the atomic transition. The quantum-
rnechanical effects are then able to raise the inversion to a
positive value. We analytically evaluate the theory in the
limit when the quantum-mechanical field coupling is
weak compared to the cavity damping. This does not
mean that we can neglect the small coupling. In the
neighborhood of the zero photon states the small cou-
pling measured by g becomes important, as discussed in
Sec. II. We now assume that g &&~. Because g measures
the only process which takes the system upwards in the
photon states, the system automatically cascades towards
the lower photon numbers. In this limit the truncation of
the photon state basis to the

~

0& and 1 & Fock states is
a natural approximation. One should, however, bear in
mind that due to our transformation to the vacuum pic-
ture we are talking about photons "on top" of the
coherent state

~

E/a. &. This approximation is not
equivalent to a perturbation expansion in g if p & g.

The set of equations we have to solve is then

dP z
dt

(3.4) d—p(0, 0)=p[cr —o +,p(0, 0}]+L,{p(0,0) )

where the density matrix p is represented as a vector p,
using some arbitrary ordering of the density-matrix ele-

TABLE I. Steady-state, diagonal, and vacuum-picture
density-matrix elements in the basis of field Pock states and
atomic eigenstates of hp. Parameters are C=2, n, =0.01, and
Y=20. The column sums show an excess of population in the
excited atomic state.

—g[p(0, 1)cr +o+p(1,0)]+2np(1, 1),

d—p(1, 1)=P[o. —o +,p(1, 1)]+L,(p(1, 1))
dt

+g[cr p(0, 1)+p(1,0)cr+]—2rcp(1, 1),

d—p(1, 0)=P[cr —o+,p(1,0)]+L,(p(1,0))

(4.1)

(4.2)

0 0.423
1 0058
2 0.003
3 5X10-'
4 4~ 10-'
5 lz10 '

0.485
0.030
6X 10-'
5 X10-'
2x 10
6&& 10-"

0.908
0.088
0.004
& 10-4
&10
&10

(n, —
/

p/n, —)
n (n, —/p„/n, —) (n, + fp„/n, )++(n, + /p„/n, )+ +g[o p(0, 0)—p(1, 1}o ]—~p(1,0), (4.3)

p(0, 1)=p(1,0)

where p=gE/rc. The form of the spontaneous emission
part, L„ is given by Eq. (2.5). The notation used is sim-

ply

(0
~ p ~

0) =p(0, 0), etc. ,
Sum 0.484 0.516

where the matrix elements are taken in the photon Pock
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states. Hence the "matrix elements" are still operators
on the atomic states.

To solve Eqs. (4. 1)—(4.4) is straightforward but tedious
and we do not go into the details of it. We are interested
in the total atomic inversion, which is given by

&p=(+!p(o, O)! +)+&+!p(1, 1)!+)
—( —

! p(o, o)! —) —( —
! p(1, 1) —),

because the higher photon states are neglected. The re-
sult has the general form

0.01

0.00

-0.01
0.5

(a)

exact
Eq (4.5)
Eq. {4.9)
Eq. {4.8)

bp=— 1 F/—H
1+G/H '

where

(4.5)

0.1

2

X g +ir+ +
2 K 2

F 2g 2p2(D g
2

)
y y'. y2—
ye K

, 1 r—/r, yDH = g ir+4p
y+2K 2

(4.5a)

(4.5b)

O 0

-0.1
0

exact
Eq. (4.5)
Eq. (4.9)
Eq (4.8)

2 3

and where

ye =y+K+2 g (r+2ir)
(y+ 2'�)(r+.4a.)+8p

2

+K+
2 K

ir+4p
y+2K

2

6=2P'(D —g') D —g'+
K

(4.5c)

(4.6}

FIG. 7. Graphs of the inversion bp vs driving field f3=gE/v
as given by various analytic approximations. The solid curve is
the exact numerical result. The other curves are various analyt-
ic approximations discussed in Sec. IV A. (a) Parameters:
C=0.5, n, =0.005 (g/K=0. 1, y/~=0. 02). The approxima-
tions of Eqs. (4.5) and (4.9) almost coincide with the exact result.
(b) Parameters: C=2, n, =0.01 (g/~=0. 57, y/~=0. 16). The
agreement is not as good as in case (a) because g is now larger.

+2p' 1 —r 2—
ye K

(4.7)

Equations (4.5}, though complete, do not show us the
structure of the result. The simplest possible approxima-
tion that still contains the inversion is the neglect of the
spontaneous emission by setting y=O. In addition, we
have already assumed that g &&K. This gives us the result

2P (s. +4P )

2( 2+ 2p2 }
(4.8)

2p2(K2+4p2)2'+ 424( 2 +2p2 }

We see that the inversion is positive when p & g /&2 and
continues to be positive when p increases. In the limit
p~ oo, bp approaches zero from the positive side. The
behavior of Ap is shown in Fig. 7. Note that the result of
Eq. (4.8) is more general than that given by the straight-
forward perturbation expansion, which would be ob-
tained by taking the limit g~0 and keeping the lowest-
order term. The perturbative result would give the
wrong small-intensity behavior because it assumes that g
is the smallest of the parameters and hence also smaller
than p. The order of the limiting processes near a singu-
lar point is not interchangeable. As mentioned, the sys-
tem ha.s a cavity induced spontaneous emission process

which vanishes when g ~0. With vanishing damping the
inversion reaches zero value with any finite field. Howev-
er, with any finite damping the inversion goes towards
bp = —1 with vanishing field P. This behavior is familiar
also from semiclassical two-level systems.

From Eq. (4.8) we see that when p—=&gs. we have
Ap=g /i~ and when P&&ir we obtain bp =-g /4P . In
the current approximation the inversion has a maximum
value of the order g /s . Our assumptions of the relative
sizes of the parameters demand that the inversion be
small. In Sec. III we numerically showed that by increas-
ing the ratio g/K we cannot increase the maximum inver-
sion beyond the value 0.07. The positive inversion is al-
ways small. For the multimode case, discussed near the
end of Sec. II, the threshold of positive inversion shifts to
higher fields (by a factor of N'~ ) according to the scaling
of Eq. (2.9). Also, the inversion at the maximum is in-
creased N times. However, the maximum inversion ob-
tainable does not change because it is obtained optimiz-
ing the coupling constant g. The maximum value is ob-
tained in a region where our approximate analytic result,
and consequently conclusions drawn from it are not val-
id.

To obtain Eq. (4.8) the spontaneous emission was corn-
pletely neglected. We now use Eqs. (4.5) to see how the
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spontaneous emission influences the inversion. We as-

sume that g and y are small but finite, which gives us a
result of the form Eq. (4.5),

where now

1 —F/0
1+6/H ' (4.9)

2

(K2+2P2)+ +(K2+4P2)
K 2

X g'K+ (K2+4P2)
2

(4.9a)

F=2P g («+4P ),
G 2P2(K2+4P2)2

(4.9b)

(4.9c)

B. Approach to steady state

From the experimental point of view it is important to
know how fast the system reaches the steady state. We

I

As expected, increasing the spontaneous emission uni-

formly decreases the inversion. In Fig. 7 we compare the
approximate result Eq. (4.9) with exact numerical results
and at the same time show that the spontaneous emission
decreases the inversion. If we have y & &2g, then the in-
version can no longer be positive and the effect disap-
pears. If the buildup of coherence between different pho-
ton states is prohibited by the spontaneous emission, the
quantum effects are unimportant and positive inversion
cannot occur.

again completely neglect the spontaneous emission by as-
suming y to be the slowest rate. The system has a natu-
ral rate K for cascading down the photon ladder. Howev-
er, in the absence of spontaneous emission the cavity
damping alone is not able to bring the system into steady
state. It cannot relax the state

~
0, + ) down to

~
0, —)

and consequently the Rabi oscillations in the zero photon
state are not damped. The quantum-mechanical coupling
between states

~
0, + ) and

~

1, —), measured by g, pro-
vides a way to incoherently connect the state

~
0, + ) to

~

0, —) because the state
~

1, —) decays due to the cavity
losses to

~
0, —). The rate is estimated by g /«. using

Fermi's golden rule; g is the interaction matrix element
and K is the effective width of the intermediate state

~

1, —). This rate is much smaller than the cavity damp-
ing rate K, so the time in which the system reaches the
steady state is considerably longer than K '. Also, for
large photon numbers n the rate is, as a spontaneous
emission rate should be, essentially independent of n be-
cause g ~v'n g, and K~n K

To get quantitative results about the rates we solve the
eigenvalue problem determined by Eqs. (4.1)—(4.4). The
smallest eigenvalues give the inverse time scales for
reaching the steady state. In general this leads to a 16-
dimensional eigenvalue determinant. However, in the
limit g &&K we can reduce the system by introducing a
suitable linear combination of the equations. We write
the equations with p(0, 0)+p(1, 1) and p(1, 1) as the in-

dependent variables. Because of the weak coupling the
contribution of p(1, 1) can be neglected. The remaining
problem is 12 dimensional, but can be evaluated. The re-
sulting eigenvalue equation is

A(A+K) [A[(X+K) +4P ]+g (A+«)] [[(A+K)(A, +4P )+kg ][(A+K) +4P ]+2g (A+K)[A(A+K)+g —4P ]]=0 .

(4.10)

The eigenvalue zero corresponds to the steady state. We
are not interested in the eight eigenvalues of the order of
K but instead only in the three with real part of the order
g /«. The first eigenvalue is

i2P, -=
2(K+i 2P)

and its complex conjugate. When P is small the eigenval-
ues are purely real and we have

2g g
K

g K

«+4@
corresponding to damping of the off phase or the imagi-
nary part of the polarization; the second constant of
motion in a two-level system in exact resonance. We no-
tice that the damping rate decreases with increasing
external field. The remaining two eigenvalues correspond
to the damping of the Rabi oscillations. With finite g one
has to separately consider the case P small and P large. If
P is large we obtain the approximate eigenvalue

I

The Rabi oscillations relax essentially with the rate g /K
as expected but the off-phase polarization can decay more
slowly, like g K/4p, with high Rabi frequencies. The ei-
genvalues obtained show how the cavity has enhanced
the spontaneous emission. The quantum-mechanical
field coupling provides additional decay routes increasing
the total decay rate (Sec. II) from the (here neglected)
value y. Additionally these eigenvalues determine the
positions and widths of the peaks of the resonance
fluorescence spectrum. Hence, we predict a triplet of
peaks the widths of which get narrower with increasing
external field P. This is in accordance with the results of
Lewenstein et al.

V. CONNECTION TO THE WEISSKOPF-WIGNER
THEORY OF SPONTANEOUS EMISSION

In this section we relate the positive inversion to
modifications of mode couplings in the context of the
commonly used Weisskopf-Wigner theory of spontaneous
emission. As noted earlier strong cavity damping cas-
cades the quantum part of the resonant mode to low pho-
ton numbers and therefore makes the spontaneous pro-
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cesses important. In this case the model becomes
equivalent to the one used when we study the spontane-
ous emission in the presence of a strong semiclassical
mode. However, the coupling coefficients are modified by
the resonant cavity in comparison to the pure vacuum
case. To discover the origin of the positive inversion and
what conditions must be satisfied to obtain it we work
through the Weisskopf-Wigner theory in a generalized
form. '

That part of the density-matrix equation representing
coupling to the quantum field modes is given by

L.r(p) =r, g(~)[a~a o.a—+ pl (5.1}

where Oz is the detuning between the atomic transition
and the mode A, . Cavity damping is introduced later and
included in the adiabatic damping parameter.

We look for the equation of motion for the reduced
density matrix p„, obtained by tracing over the field,

p„=trf(p) .

The equation of motion for p„ is then

—p„=L,(p„)+trf(L„(p}).d (5.3)

The first term on the right-hand side of Eq. (5.3) describes
the interaction with the semiclassical field and the second
term the interaction with the quantum field. The second
term can be written in the form

trf(L i(p))=gg(A, ){[a,trf(a„p)]

—[o, trf (a„p)]j . (5.4)

By neglecting the higher off-diagonal density-matrix ele-
ments of the photon states and the coherences between
different modes we obtain the equation of motion

—trf(a&p) =(L, —iQi )[trf(aip)]d

where the sum is over all field modes. The model studied
in previous sections is regained by setting g (A, ) equal to a
5 function. We include the interaction with the semiclas-
sical field in the atomic part of the equation of motion
and the free photon Hamiltonian is included in Lf. We
restrict ourselves to the case of the atom being in exact
resonance with the driving field. Then

L, (p}=[13(a —o+ },p],
Lf (p) = i g—fl'i[a iai, p],

(L, i Q—i i)—i)[trf(a&p)]= —g(A. )a p„. (5.6)

A similar equation is obtained for trf(ai p). We do not
go into the details of inverting Eq. (5.6} because it is
straightforward. After inserting the result in Eqs.
(5.3)—(5.4) we obtain the equations of motion

& =p(~p) ——,'( + )( )
d
dt

+ ,'i(a+——a )(o+o ),
(a, &=(a )

d—(bp) = —2Re{[2p+ ,'i(a—+—a )](a ) jdt

—Re(2a +a +a )(a a ),

(5.7)

where the coefficients a are given by

ao ——g g(A, )
g+iO&

'

Equations (5.7) have the familiar damping terms except
that they are modified by the driving field. In the pure
vacuum case these modifications vanish because of the
broad density of states and structureless coupling
coefficient. If the coupling constant has structure, the
spontaneous emission can be considerably changed. This
leads, for example, to the cavity-enhanced spontaneous
emission discussed earlier. In addition to the damping
and the Lamb-shift-type terms we have also introduced
new coupling between (bp ) and (a ). In the pure vac-
uum case this coupling vanishes because of its dispersive
nature, which causes the integral over frequencies to
average to zero. However, when some modes are
privileged, the coupling measured by

a+ —a
2

may be nonzero and may even be dominant if the ordi-
nary spontaneous emission to vacuum modes is small.

From Eq. (5.7) we see that if the system is saturated
due to the external field and if the spontaneous emission
is negligible the steady-state inversion is given by

d
dr
—trf (a&p) ~rii trf (a &p ) .

Here g& can describe either cavity damping or damping
by the continuum of vacuum modes. We obtain the equa-
tion

+g(A. )[a trf(alai p)

—trf(aiaip)a+] . (5.5)
ca+ —n

(bP) =Im
2

(5.8)

The modes are practically empty so we get

o trf(ai ai p) trf„(alai —p)a+ =-a p„.
We adiabatically eliminate trf (o &p ) by inserting a damp-

ing rate and taking the steady state of Eq. (5.5). So we
write

2

(&p&=
q'+4p' (5.9)

because (o ) -=0 and (o+o ) = —,'. In our case, when

only one mode has a dominant effect and is in resonance
with the external field, the result, inserting u's, is
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The inversion is positive. This result can be obtained
from Eq. (4.5) in the strong-field limit after setting g=lr.
In the multimode case the inversion is additive as long as
this approximation is valid and we stay at small photon
numbers and can neglect the coherences between
different modes; but is not additive in general.

VI. EXPERIMENTAL CONSIDERATIONS

This section considers equations which arise when one
asks how steady-state inversion might be considered in
the laboratory. We first suggest experimental signatures
of positive inversion and then discuss the conditions
necessary for its realization.

In semiclassical theory population inversion is associat-
ed with gain. One may then look for inversion by seeking
gain on a probe beam or by attempting laser oscillation
with the inverted atoms as the laser medium. But
steady-state positive inversion is possible only because
semiclassical theory fails. So we cannot rely on its pre-
diction of gain from our inverted medium.

The correct quantum-mechanical treatment of a probe
beam interacting with our atom in a cavity is a three-
wave mixing problem, which is an interesting subject for
further research. Preliminary work suggests the absence
of a semiclassical type of association of population inver-
sion and gain in our system.

We discuss two signatures of the positive inversion in
the atomic fluorescence. First consider an experiment
such as performed by Heinzen, Childs, Thomas, and
Feld on cavity-enhanced spontaneous emission. The
atom is driven by a laser from outside the cavity. The
cavity is then blocked and unblocked, modifying the
structure of the electromagnetic vacuum seen by the
atom. Heinzen et al. found a fluorescence decrease on
unblocking the cavity. On the contrary, for our condi-
tions (small-, high-finesse cavity), we predict a fluores-
cence increase when the cavity is unblocked. This is be-
cause the fluorescence is proportional to the excited state
population, ' which is increased by the coupling to the
cavity. In the original experiment of Heinzen et al.
cavity-enhanced spontaneous emission depopulated the
excited state and the fluorescence decreased.

Figure 3 illustrates the second signature. As the driv-

ing field increases from zero the inversion passes through
a maximum, and then saturates to zero. So the fluores-
cence out the side of the cavity will also have a maximum
and subsequent decrease as the driving field is increased
from zero. This maximum in the fluorescence is a signa-
ture of positive inversion. When positive inversion does
not occur the fluorescence has no maximum and the atom
saturates to zero inversion from below. This fluorescence
maximum is a small effect; for a maximum inversion of
Ap=0. 01 the maximum fluorescence intensity exceeds
the large field saturation value by 1%.

Having found signatures of positive inversion we next
consider the requirements for achieving it. The work of
Sec. III (Fig. 4) showed that population inversion requires
a small saturation photon number, n, « 1, and a large C.
Small n, corresponds to a small number of photons pro-
ducing an electric field at the atom sufficient to saturate
the transition. In practice this is achieved using a tightly

i
u(r)

~

=[—,'mLw(z) ] ' exp[ —r /w(z)], (6.1)

where L is the cavity length, w (z) is the beam radius at

0.5

D.D

-0.5

10
0 5 10 15 20 25

FIG. 8. Graph of the inversion vs time showing damped
Rabi oscillations. At time zero the state was the field in the
coherent state of amplitude E/x and the atom in the ground
state. Time is in units of the inverse cavity damping time K

Parameters: C =2, n, =0.01, Y=20 (g/~=0. 57, y/K=0. 16,
E/a =2).

focused Gaussian cavity mode. The atom is placed in the
strong electric field at the beam waist. A large C is
achieved with a high-finesse cavity and ensures that the
field-atom feedback is strong.

How can we ensure that the steady state has been
reached? One needs to clearly distinguish it from the
transient inversion due to Rabi oscillations, for example.
From this point of view an ion trap or very slow atomic
beam is desirable. A related difficulty is the variation of
the atom-field coupling constant g with position in the
cavity mode, Eq. (2.2a). Lack of atomic localization im-
plies that the fluorescence maximum will be washed out
by the variation in the optimum driving field with g; see,
for example, Eq. (4.8). Because of this a ring cavity is
preferable to a standing wave Fabry-Perot, in which g
varies from zero to its maximum over half a wavelength
of longitudinal distance. In contrast a ring cavity might
only require localization to a few wavelengths in the
transverse direction.

Figure 8 shows the inversion as a function of time. At
time zero a ground state atom was injected into the emp-
ty, but driven, cavity. Therefore the initial state was an
unexcited atom and cavity mode in the coherent state,

~

—}
i
F./a}. The fi. gure shows damped Rabi oscilla-

tions in accordance with the discussion of Sec. IV. How
long must the atom remain in the beam before it reaches
steady state'? For the parameters of Fig. 8 ( C =2,
n, =0.01) about 15 cavity lifetimes or 15/(4X10")—=40
ns are required. This is the time the atom (or ion) must
remain in the beam waist for steady-state inversion to be
achieved. For a beam experiment this yields an upper
limit on the beam velocity of U,„—=2wo/40 ns. For sodi-
um and a beam waist of ten wavelengths U,„=-300ms
For a beam waist of five wavelengths U,„—= 150 ms

As a quantitative example we use the sodium D transi-
tion, which has angular frequency co=3.4X10' s ' and
spontaneous emission rate (Einstein- A coefficient)

y =6.3&& 10 s '. We approximate a ring cavity mode by
the Gaussian mode function,
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longitudinal coordinate z, and r is the transverse radial
coordinate. Assuming the atom to be localized at the
beam waist, w (0)= wo, and taking r =0 Eq. (2.2a} yields

37TQ C

2' I
0

I
=(1.4X10' )L '(wQ/A, )

(6.2}

Then from Eq. (2.15)

n, =(0.35}L(wo/A, )

C = (0.047)F( wo/X)

(6.3a}

(6.3b)

where we have introduced the cavity finesse F = rrc /2Lir.
Inverting Eqs. (6.3) we find

L =(2.9)(wo/A, ) n„F=(21)(tu~/A, ) C . (6.4)

Therefore a small n, corresponds to a short cavity length
and a high C implies high cavity finesse. With a beam
waist of ten wavelengths Eqs. (6.4) become

L =(0.03)n, (meters), F=(2100}C . (6.5)

For example, a F maximized inversion of bp =0.01, ob-
tained with n, =0.04 and C=0.5, implies L =1.2 mm
and F=1000. A smaller beam waist lowers the required
finesse and increases the required cavity length. For ex-
ample, with a beam waist of five wavelengths, L=4.8
mm and F=250. The preceding parameter estimates are
more favorable than those of Ref. 1. There the mode was
assumed to be plane wave with volume n.tuttL, which
reduces the maximum coupling g.

In conclusion we find no fundamental technological
obstacles to observing steady-state positive inversion.
However, a combination of atomic beam slowing and/or
ion trapping technologies with state-of-the-art cavities
seems desirable.

VII. SUMMARY

We have studied the occurrence of population inver-
sion in a driven two-level atom in a cavity. The semiclas-
sical prediction that a two-level transition cannot be in-

verted in steady state by a coherent driving field is violat-
ed. The inversion is a consequence of large quantum fluc-
tuations in that it does not follow from the usual linear-
ized treatment of quantum fluctuations.

Our mathematical model of the driven, dissipative
atom-field system contains all of its essential elements.
We have given various analytic approximations which
show the inversion and agree well with the "exact" nu-
merical solutions in appropriate limits. As a function of

driving field the inversion reaches its maximum soon
after becoming positive. Thereafter the inversion de-
creases to zero for large driving fields. This qualitative
effect is a signature of steady-state inversion.

Numerically we have demonstrated that the inversion
in our system cannot exceed a certain small value;
bp (0.07. If more than one atom is interacting with the
cavity mode the inversion per atom slowly decreases as
the number of atoms increases. If the atom is (equally)
coupled to more than one cavity mode it behaves as if
coupled to a single mode but with an enhanced coupling
constant g.

We have placed the positive inversion result in the con-
text of enhanced and inhibited spontaneous emission '

by explicitly considering the Weisskopf-Wigner spontane-
ous emission theory in the presence of a resonant cavity.
The discrete mode structure of the cavity, in contrast to
the vacuum s continuum, allows positive inversion in ad-
dition to cavity-enhanced spontaneous emission.

Investigation of the experimental requirements for pos-
itive inversion gave encouraging results. At least two ap-
proaches are possible. The Heinzen et al. setup, in
which the cavity is alternately blocked and unblocked, or
a search for a fluorescence maximum as a function of
driving field. An important consideration is whether the
atoms remain in the beam waist long enough to have
reached the steady state. The required cavities are small
(millimeters) and high finesse (F=—500).

Reference 1 gave a simple explanation of the steady-
state inversion. This involved atomic polarization trans-
port into the ground field state leading to population
transport into the excited atomic state. The explanation
depended on cavity damping, which is consistent with the
view that the inversion is a result of vacuum modification
by the cavity. We have not found any coherences, which,
without losing the inversion, could be neglected in order
to obtain a simpler explanation of the inversion. This
suggests that the details of the inversion are subtlely
dependent on the entire system dynamics.

Steady-state positive inversion provides a possibility to
test our commonly used model for a single atom interact-
ing with the electromagnetic field in the presence of a res-
onant cavity.
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