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Driven Morse oscillator: Classical chaos and quantum theory for two-frequency excitation
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We extend our previous comparison of classical and quantum theories for the excitation and dis-
sociation of a sinusoidally driven Morse oscillator [Phys. Rev. A 37, 796 (1988)] to the case of two-
frequency driving. In both the classical and quantum theories the total threshold intensity for disso-
ciation can be considerably smaller in the two-frequency case. This is consistent with results ob-
tained with more artificial models of laser-driven molecular systems, and we provide an approxi-
mate resonance-overlap analysis to explain this trend. We also compare results obtained with adia-
batic and sudden turn-on of the applied field, and comment on the use of absorbing boundaries for
the computational identification of dissociation or ionization.

I. INTRODUCTION

Recently we compared the classical and quantum
theories for a Morse oscillator driven by a monochromat-
ic electric field. ' Using Morse parameters appropriate to
the HF molecule, we focused attention on the classical
and quantum predictions for the photodissociation rate
and threshold field strength. One of the main conclusions
from that study was that the classical and quantum
theories are in surprisingly good agreement except for
driving frequencies near multiphoton resonances or non-
linear classical resonances of order Ng 1. The disagree-
ment at the higher-order nonlinear resonances was ex-
plained in terms of classical resonance overlap. In partic-
ular, the disagreement between the classical and quantum
theories is most pronounced when the difference between
the appropriate classical and quantum resonance frequen-
cies exceeds the width of the classical resonance zone.

Classica11y, dissociation is associated with resonance
overlap and the onset of chaos. We argued in Ref. 1 that
in some ways a quantum analogue for classical resonance
overlap and chaos is the coupling of a large number of
energy levels by the applied field. For very strong fields
the number of levels mixed by the field is large enough for
substantial continuum excitation (dissociation), in analo-

gy to the diffusive excitation and dissociation found clas-
sically when resonance overlap occurs. Semiclassical
quantization suggests that the number of levels with
significant occupation probability should be proportional
to the square root of the applied electric-field amplitude,
and this surmise was confirmed in numerical experiments
on the driven Morse oscillator. '

The fact that the classical and quantum theories come
into better agreement as the width of the resonance zones
(and therefore the applied field strength) increases may be
understood intuitively by comparing the width (AJz) of a
classical resonance with the fundamental quantum unit of
action A. In the notation of Ref. 1 we have

bJ~/fi=(K
~

A~
~

)'~

where K is proportional to the amplitude of the applied
electric field. For a Morse oscillator initially in the

ground state we calculate AJ& /6=0. 32K' for an N=1
resonance. Thus hJ, /fi & 1 for K & 10, and so we expect
that K should be large compared with 10 in order to have
reasonably good agreement between the classical and
quantum theories for an initially unexcited Morse oscilla-
tor. This was indeed the case in Ref. 1, where we focused
our attention on the large field amplitudes necessary for
photodissociation. In addition, we showed a case for
K=10 (Figs. 7 and 8 of Ref. 1) for which the classical and

quantum theories were not in good qualitative agreement
even for an N=1 classical resonance. This is consistent
with the fact that AJ& /A' in this case is not large. In fact,
Eq. (1.1) indicates that the classical and quantum theories
come into better agreement at larger field amplitudes, a
result noted in Ref. 1 and in an earlier paper by Shirts
and Davis.

Equation (1.1) may also be invoked to understand why
the classical and quantum theories for the driven Morse
oscillator differ most significantly at the higher-order
classical resonance frequencies:

~
A~, and therefore

hJz/A, decreases with increasing N, and so larger pump
amplitudes I( are required to realize the "classical re-
gime" b,J&/A»1. For an initially unexcited Morse os-
cillator and a driving frequency corresponding to a classi-
cal N =4 resonance, for instance, we require
K =3.4&&10 in order to have b J~/fi= l. This is much
larger than the critical K value necessary for dissociation
given in Fig. 9 of Ref. 1, and so the large discrepancy be-
tween the classical and quantum predictions in this case
is not surprising.

In the case of the monochromatically driven surface-
state electron, or one-dimensional hydrogen atom, the
condition AJ~/fi && 1 may be shown to take the form

~

4e EoNJ~(N)/3
~

' &&Ace, (1.2)

where Eo is the amplitude of the applied field of angular
frequency ~ and J~ is the derivative of the Bessel func-
tion of order N Alternatively, . (1.2) may be written in
terms of the Keldysh adiabatic tunneling parameter y:
y « ,

' Jz(N)no, —where no is the principal quantum num-

ber corresponding to the classical orbit. Numerical esti-
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mates indicate that the condition b,J&/fi»1 is well

satisfied in recent experiments on the microwave ioniza-
tion of highly excited (n0=66) hydrogen, for which clas-
sical theory has been found to be a remarkably good
predictor of the field strength necessary for 10% ioniza-
tion.

Of course the simple condition b JN/A&~1 cannot be
regarded in general as sufficient for the accuracy of classi-
cal theory and provides only a rough first estimate for
when classical theory might be expected to make reason-
able predictions. In the case of the kicked pendulum,
for instance, b J/Pi=2&K /r, but a purely quantum-
localization effect occurs regardless of how large K is
made.

Previously we suggested that quasiperiodically driven
quantum systems, although not chaotic in the strict sense
of exponential sensitivity of the state vector to initial con-
ditions, can nevertheless exhibit properties that mimic
those of chaotic systems, especially when a large number
of incommensurate frequencies are involved in the dy-
namics. ' We argued, therefore, that "statistical"
features like ergodicity or effectively diffusive energy
growth do not necessarily require an underlying chaos.
In a quasiperiodically kicked two-state quantum system,
for instance, there is "ergodicity" on the Bloch sphere, al-
though of course the dynamics of the state vector is not
chaotic. And in the quasiperiodically kicked pendulum
there is diffusive energy growth, at least over very long
times, in contrast to the quantum localization that
suppresses the energy growth in the case of the periodi-
cally kicked pendulum. ' The fact that statistical prop-
erties like ergodicity can be exhibited when there are
many incommensurate frequencies in a nonchaotic sys-
tem has been recognized for a long time. Two important
examples we noted earlier are the work of Montroll and
Mazur on the ergodic properties of coupled harmonic os-
cillators' and Slater's theory of unimolecular reactions. "

Recent experiments of Moorman et al. ' indicate that
highly excited hydrogen atoms are more unstable (easier
to ionize) when the microwave field is bichromatic rather
than monochromatic. We are unaware of any theoretical
work on the two-frequency microwave ionization of hy-
drogen. ' Numerical experiments of Noid and Stine, '"
however, indicated that a Morse oscillator is more easily
dissociated when two laser frequencies are used rather
than one. Their treatment assumed the validity of classi-
cal dynamics. Later quantum calculations for two-
frequency driving using a simpler model' showed agree-
ment with the classical theory in that two-frequency driv-
ing produced greater excitation. That model, however,
could not adequately describe a dissociation process.

It is the purpose of this paper to report the results of
rather extensive quantum computations on the two-
frequency excitation and dissociation of the Morse oscil-
lator. We also discuss, in the following section, two as-
pects of this kind of calculation that should be relevant
more generally to other systems, namely the effects of
sudden field turn-on and artificial absorbing boundaries
used to define ionization (or dissociation). Our main re-
sults for two-frequency excitation are summarized in Sec.
III. Generally we have found, in agreement with the

classical results of Noid and Stine, that two-frequency
driving lowers the threshold for dissociation. In Sec. IV
we provide a heuristic explanation, based on classical res-
onance overlap, for the tendency of two-frequency driv-
ing to lower the dissociation threshold. Our results are
summarized in Sec. V.

II. REMARKS ON FIELD TURN-ON AND ABSORBING
BOUNDARIES

In Ref. 1 we used the interaction Hamiltonian

Ht(t) = —d, x Eacos(cot) (2.1)

and assumed that this interaction was effectively switched
on suddenly at t=0. From an experimental perspective a
more realistic interaction would take the form

Ht(t) = d, xE—(t)cos(cot), (2.2)

= —KX cos(pr ), 2nalp, & r. (2.3)

where the notation is that of Ref. 1 [cf. Eq. (4.9)]. The
parameter a is the number of cycles of the field required
to "turn on" the field. Both quantum and classical com-
putations, as described previously, ' were carried out for
the interaction (2.3). Typical results are shown in Fig. l.

It is seen in Fig. 1 that the amount of energy absorbed
by the "molecule" depends in a significant way on the
field turn-on time. Both the classical and quantum
theories predict that a gradual turn-on of the field
reduces the excitation energy compared with what is ob-
tained assuming a sudden turn-on. In light of the two-
frequency results in the following section, this is not
surprising, as a sudden turn-on introduces additional fre-
quency components in the driving field. These results in-
dicate that a detailed comparison of theory and experi-
ment in such computations will generally require one to
take into account the details of the field turn-on.

It has sometimes been suggested that the replacement
of cos(pw) by sin()M&) in the interaction (2.1) will mitigate
the effects of the artificial sudden turn-on, since then the
field is initially zero. We have found, in both the classical
and quantum theories of the driven Morse oscillator, that
the difference arising from this replacement is quite small
compared with that found by assuming an adiabatic
turn-on requiring, say, ten cycles or more.

In our previous work' we determined the dissociation
probability by computing the probability at a given time
that the system is in any of the bound states. The dissoci-
ation probability was then defined by subtracting this
bound-state projection from unity. This approach,

where the envelope function E(t) takes into account the
turning on and off of the field. It is easy to account for
such effects in our numerical solution of the Schrodinger
partial differential equation as in Ref. 1. We have found,
generally speaking, that the artificial sudden turn-on of
the field leads to greater excitation of the Morse oscillator
compared with the case of an adiabatic turn-on of the
field.

For this study we used the interaction Hamiltonian

Ht(t) = —KX sin (pr/4a)cos(pr), 0 & r & 2m a/p
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though physically transparent, in practice limits one to
the regime of small dissociation probabilities, since the
part of ll'r with a nonvanishing projection onto the contin-
uum will propagate to the edge of the finite spatial grid
assumed in the numerical computations. This gives rise
to spurious reAections from the boundaries once the wave
function acquires a substantial continuum component. In
a similar (ionization) problem Kulander' used an absorb-
ing boundary to effectively capture that part of t/i extend-
ing to the edge of the grid and so to identify the ioniza-

tion rate. This technique allows one to go beyond the re-
gime of small dissociation (or ionization) probability.
More importantly, this approach may be used in cases
where a projection onto all bound states is impractical, as
in the case of the hydrogen atom.

We have examined the accuracy of the absorbing-
boundary approach for the example of the Morse oscilla-
tor, where a comparison can be made with the "exact"
results obtained by projection onto the bound states. An
example is shown in Fig. 2, which compares the dissocia-
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FIG. 1. Energy absorbed by a Morse oscillator with initial energy equal to the quantum-mechanical ground-state energy, p=40
and %=45 for (a),(d) sudden turn-on of the field; (b),(e) turn-on over five optical cycles; and (c),(f) turn-on over ten optical cycles.
Plots (a)—(c) are classical calculations and plots (d)—(f) are quantum calculations.
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FIG. 2. Dissociation probability calculated using (a) projec-
tion onto the bound states and (b) an absorbing boundary.

tion probability obtained by (a) projection onto the
bound states and (b} the removal of P from the grid. The
wiggles in curve (a) correspond to bound-continuum-
bound transitions, and suggest that not all of the continu-
um part of P "dissociates" immediately. We will refer to
that part of g that does dissociate immediately as the
"dissociative part" of P. The time delay between the two
curves shown in Fig. 2 is due to the finite time required
for the dissociative part of f to propagate to the absorb-
ing boundary and register "dissociation. " Both computa-
tions were done using an absorbing boundary on the grid
so that large dissociation probabilities could be com-
pared. The use of an absorbing boundary in the calcula-
tion of curve (a) has only a small effect on the result. We
note, for instance, the significant excitation of the contin-
uum compared with the magnitude of the bound-
continuum-bound transitions before the dissociated part
of g reaches the boundary [when (b} becomes nonzero],
and the fact that the bound-continuum-bound transitions
remain after the dissociated part of P reaches the bound-
ary. Apart from the small oscillations and the time delay
the two curves are practically the same and give the same
dissociation rate. We have confirmed in such examples
that a sufBciently distant absorbing boundary provides an
accurate measure of dissociation (or ionization) in numer-
ical solutions of the time-dependent Schrodinger equa-
tion.

As in Ref. 1 we compare the classical theory to the quan-
tum by averaging over an ensemble of classical trajec-
tories with di8'erent initial conditions.

Figure 3 shows typical results for one- and two-
frequency driving. In this figure one of the driving fre-
quencies is held fixed at p, =42.0, red-shifted from the
value 45.637 for an %=1 classical resonance, ' and the
amplitude for this frequency is fixed at K, =30. As the
second driving frequency p2 is scanned, the correspond-
ing amplitude E2 necessary for dissociation is determined
both classically and by numerical integration of the
Schrodinger equation, as described earlier. The scaled in-
tensity plotted versus p2 in Fig. 3 is proportional to the
total intensity associated with both frequencies. As in
Ref. 1 we note that the classical and quantum predictions
for the threshold intensity are in fairly good agreement.
Both theories predict that two-frequency driving lowers
the threshold intensity needed for dissociation, i.e., disso-
ciation is more easily accomplished with two-frequency
driving.

Similar conclusions apply for excitation of the Morse
oscillator below the dissociation threshold. In Fig. 4 we
show the maximum energy absorbed as a function of JM&

and p2 for an intensity for which there is no dissociation
probability; for simplicity both frequency components
have the same amplitude. Generally speaking we can say
that a Morse oscillator tends to absorb more energy when
it is driven bichromatically than when it is driven mono-
chromatically. As discussed earlier, this trend has been
observed in other driven nonlinear oscillator systems.
We note, however, that, just as there are optimal frequen-
cies for monochromatic excitation, there are optimal fre-
quency combinations for bichromatic excitation. In par-
ticular, if one of the frequencies, say, p„is near the op-
timal frequency for monochromatic excitation, then the

III. TWO-FREQUENCY EXCITATION

In the case of two driving frequencies we use the in-
teraction Hamiltonian

HJ ( t ) = —d i x [E i cos( co i r ) +E2cos( QP2r ) ] . (3.1)

The classical Newton equation for the Morse oscillator
may be conveniently scaled as follows:

o
n

20. 0 0'1. 0 i50. 0

d X (4/B )(e —e )+.2E—, COS(im, r)
df

+2E2cos(iM2~) (3.2)

in the notation of Ref. 1. Similarly, the Schrodinger
equation may be scaled to the form

FIG. 3. Threshold intensity for 5% dissociation for (a), (b)
monochromatic driving and (c),(d) bichromatic driving.
Curves (a) and (c) are the result of classical calculations and
curves (b) and (d) are the result of quantum calculations.
I(TW/cm') =0.1578&((scaled intensity).
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For the driven Morse oscillator aaction-angle space. or
fre uen-resonance zone maymay be associated with a driving requen-

=N (J) where co is the oscillator frequency, acy coN= co, w e
function of t e actionh

' J This defines what may be called
~ ~

a classical X resonance. The resonance-overlap criterion
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ECON+ ) + ECON )CON+ )
—CON (4.1)

C 0

IO0

h 6 is the width in the resonance frequency coNw eie coN is e
definedcorpespon ing o N

d' t the width AJAR of the action JN e
at is co is theb ¹o(J )=co: bcoz=coz(J&)bJ&. That is, co& is e
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'
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Ho(J) is the unperturbed Hamiltonian and Vz(J) is pro-
portional to the driving amplitude and to the coefficient
of cos(NO) in the Fourier expansion of the unperturbed
coordinate x (J, O). (The unperturbed motion is periodic
and as such may always be represented by a Fourier
series. ) From this form of the Hamiltonian we obtain the
action-angle equations

(a)

J= —g NV~(J)[sin(NO cut)—+sin(NB+cot)], (4.3)

B=coo(J)—g Vv(J)[cos(NO ~t)+cos(NB+cot)] .
N=0

(4.4)

In the absence of the driving force J is, of course, con-
stant, and we denote this constant initial value of J by J.
Let us assume that the driving force is a weak enough
perturbation that

CO

0. 0
T

40. 0 80. 0 120. 0 160.0

1

200. 0

J =J+/c J,
~

bJ/J &&I .

Then,

(4.5)

H =Ho(J) —g V~(J )[cos(NO cot)+cos—(NB+cot)]
N=0

—b J g V~ (J )[cos(NO cot )+cos(—NB+ ~t ) ]
N=0

0. 0 40. 0
T

60 0 120 0 160.0

I

200. 0

(4.6)

b J= —g NVz(J )[sin(NO —cot)+sin(NB+cot)] .
N=0

(4.7}

Under the further approximation that 0= coo( J ) we have

b J= g NV~(J)I[Nemo(J) —co] 'cos(NO cot)—
N=0

+[Nero(J)+co] 'cos(NO+tcpt))

(4.8)

in a lowest-order classical perturbation theory.
The approximation (4.8) indicates that the perturbation

becomes strong when co=Ncoo(J), i.e., near an N reso-
nance. Figure 5(a) shows the peak value of the (oscillato-
ry) energy of a driven Morse oscillator as a function of
the scaled driving frequency p for a fixed driving ampli-

FIG. 5. Maximum energy absorbed by a classical Morse os-
cillator as a function of p with an initial energy equal to 4 the

dissociation energy and (a) K= 1, (b) K= 20.

tude E= 1. This plot is obtained by averaging over 20
trajectories, but the basic resonance structure shown is
approximately the same for each individual trajectory.
In particular, the resonance structure predicted by (4.8) is
clearly evident. The width of each X resonance increases
with K as v'K, so that an overlapping of resonances
occurs when K is increased. Figure 5(b) shows the
broadening of the resonances when K is raised to 20.
This figure reveals also that there are additional reso-
nances, at co=co ( 0J) 2/, 3' (0J) 2/, . . . , that are not pre-
dicted by the lowest-order perturbation theory leading to
(4.8).

These additional resonances are brought out by carry-
ing the simple analysis above one step further. Using
(4.8) in (4.6) and ignoring terms with Ncoo(J)+co in the
denominator, we obtain

H =Ho(J) —g V~(J )[cos(NO cot)+cos(NB+cot)]—
N=0

M V~(J ) V~(J )[Meso( J ) —co]
N=OM=O

X{cos[(M+N)B—2cot]+cos(M N)O+cos(M +N)B+cos[—(M N)B 2cot]] . — —(4.9)

Thus at this level of approximation we find resonances not only at ~=N~O(J), but also at M= '(M+N)~0(J), -
M, N =0, l, 2, . . . . In particular, we have the subharmonic resonances at coo(J ), 3coo(J )/2, . . . see»n Fig. 5(b).
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These additional resonances make it easier for resonance overlap to occur at large driving amplitudes. This accounts
in part for the fact that in numerical experiments we find critical K values for dissociation smaller than those predicted
based on the lowest-order resonance-overlap analysis without the subharmonics. Recently Gu and Yuan' have found a
series of secondary resonances for the Morse oscillator corresponding to co=n l(n —1}coo(J),n =2, 3,4, . . . . Our re-

sults imply, however, that the resonances co =(M+N)coo( J ) l2 contribute the most to excitation and dissociation.
We now turn our attention to the case of two-frequency driving, starting in this case from the Hamiltonian

H =Ho( J) g—V~( J)[cos(NO ~&t)+ cos(NO+co, t)+cos(NO co2t—)+cos(NO+ co2t) ]
N=O

(4.10)

and assuming for the sake of the present discussion that the two fields have the same amplitude. Proceeding as above
we obtain

H =Ho( J) gVz—(J )[cos(NO co, t—) +cos(NO+ ro& t) +cos(NO co2t—}+cos(N8+ cozt) ]
N

——,
' g QNV~(J)Vxt(J)

N M

X ( [Meso( J ) —t0(] '(cos[(M +N)8 2')t—]+cos(M N)8+—cos(M +N)8

+cos[(M N)8 —2t0&t]+—cos[(M +N)8 (co, +co—2)t]

+cos[(M N)8 —(co& —co&)t]—+cos[(M +N)8 (to& —co2)t]—

+cos[(M N)8 (t—0 i+ f02—)t] I

+ [Mtoo( J)—taz] 't cos[(M +N)8 2co2t)+—cos(M N}8 +—cos(M +N)8+cos[(M N)8 2—co2t]—

+cos[(M +N)8 (co, +to&)—t]+cos[(M N)8+(co—, co2}t]—
+cos[(M +N)8+ (co, to&)t]+—cos[(M N)8 (co—, +F02)—t] I ) . (4.11)

In this case we find "additional" resonances at

and

I
~i+2

I
=

I

M+N
I
~0(J ) (4.12a)

(4.12b)

0, 0 40. 0 80, 0 120. 0

h

160.0 200.0

The frequency denominators in (4.11), however, indicate
that these two-frequency resonances are only strong when
at least one of the frequencies is close to an ¹esonance.

In Fig. 6 we show typical results for the maximum en-

ergy absorbed as a function of the second frequency p2
for two differen, fixed, values of p, and the same value of
K. We clearly see the additional resonances of Eq. (4.12}.
Note the shift in the secondary peaks when p, is changed.
These secondary resonances can also be seen as small
ridges in the "flat" regions of Fig. 4.

V. SUMMARY

0. 0
T

40. 0
T

80, 0 120. 0 160.0 200. 0

FIG. 6. Maximum energy absorbed by a bichromatically
driven classical Morse oscillator starting with energy equal to —'

the dissociation energy as a function of p2 with @=10 and (a)

pt ——27.5 and (b) p&
——34.25.

In this paper we have extended previous work on the
driven Morse oscillator' to include bichromatic driving.
We have found that, in general, bichromatic driving
enhances excitation and dissociation when compared to
monochromatic driving, and that there are optimal fre-
quency combinations for the bichromatic driving. An ex-
planation has been presented based on an extension of
lowest-order classical resonance overlap.

In addition, we have compared the results of classical
and quantum calculations of the threshold field intensity
for S%%uo dissociation for both monochromatic and bi-
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chromatic driving and found good agreement over most
of the frequency range studied. There are, however, fre-
quencies for which the classical and quantum calcula-
tions clearly differ. As dissociation of classical trajec-
tories is a consequence of resonance overlap resulting in
diffusive energy growth, it would appear that this system
offers an alternative to the microwave ionization of hy-
drogen for testing the existence of quantum chaos. Un-
fortunately, the intensities required for dissociation are so
great (y 100 TW/cm ) that a more sophisticated model,
which takes into account the ionization as well as dissoci-
ation of the diatomic molecule, is required.

Of interest in comparing theoretical predictions with
experimental results is the effect of adiabatic versus sud-
den turn-on of the driving field. We find that sudden
turn-on significantly increases the excitation of a Morse
oscillator when compared to the excitation produced by a
field which turns on over ten or more optical cycles.

Handling dissociation (or ionization) adequately is a
problem when solving the Schrodinger equation numeri-
cally. One way of treating dissociation (or ionization) is

to use an absorbing boundary on the spatial grid and
measure the disappearance of the wave function. We
have tested the accuracy of this method and found that it
provides an excellent means of handling dissociation (or
ionization).

We have also given a simple criterion for when we ex-
pect reasonably good agreement between classical and
quantum mechanics [Eq. (1.1)]. Not surprisingly the pa-
rameters used in our calculations of the threshold field in-
tensity for dissociation satisfy this criterion. We believe
that the good agreement between classical and quantum
mechanics when describing a classically chaotic system
bodes well for the coexistence of quantum mechanics and
chaos, even though quantum chaos may not exist in any
rigorous sense.
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