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Envelope-function approach for the electrodynamics of nonlinear periodic structures
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An envelope-function approach is used to give a theoretical description of the electromagnetic
properties of nonlinear periodic structures. This method, in which the electric field is separated into
slow and fast spatial components, shows that the slow field component satisfies the nonlinear
Schrodinger equation. The well-known soliton solutions of this equation provide a theoretical
description of the gap solitons found by Chen and Mills [Phys. Rev. Lett. 58, 160 (1987)] in their nu-

merical studies of these structures. The more general solutions of the nonlinear Schrodinger equa-
tion provide a framework for understanding the properties of finite nonlinear periodic stacks. Our
method allows us to find these solutions analytically.

I. INTRODUCTION

The dispersion relations provide the key to understand-
ing the electromagnetic properties of linear dielectric
periodic thin-film stacks. ' The solutions of the disper-
sion relations exhibit different branches, which are
separated by stop gaps. No running wave solutions are
allowed for radiation with a frequency falling within one
of the stop gaps and, consequently, such radiation is
strongly reflected. ' This behavior is very similar to the
energy bands and gaps for the electronic wave function in
the theory of crystalline solids (see, e.g. , Ref. 3). Recent
work has shown that the introduction of an intensity-
dependent refractive index in the dielectric stacks can
change these properties dramatically. The possibility
of solitonlike behavior in such systems was mentioned by
Winful in 1985. Dispersion, which is necessary for the
existence of solitons, is provided by the curvature of the
branches of the dispersion relation. The constituent ma-
terials themselves need thus not be dispersive. An
analysis of such a structure was published by Chen and
Mills in 1987. ' Their work, which is numerical in na-
ture, shows that at certain intensities the transmissivity
of the nonlinear stack can approach unity at frequencies
in the stop gap, in sharp contrast to the properties of the
highly reflective linear stack. The electric field profiles
which Chen and Mills present indicate that the field has
two components. The first of these varies on the scale of
the individual layers of the stacks and is similar to the
Bloch functions in solid-state physics. The second com-
ponent varies on a much larger scale and acts as an en-
velope for the fast Bloch-like component. The numerical
results of Chen and Mills seem to show that this slowly
varying envelope can attain a solitonlike hyperbolic
secant shape if the periodic structure is infinitely extend-
ed. To refer to such field profiles, which are associated
with one of the stop gaps of the stack, Chen and Mills
have introduced the term gap so1iton.

An approximate analytic description of this
phenomenon was first given by Mills and Trullinger.
These authors only considered the special case of a

sinusoidally varying dielectric function, in the limit in
which the amplitude of that variation is small, and re-
stricted themselves to harmonic fields. Essentially fol-
lowing the approach of Winful, they derived equations
for the slowly varying amplitudes of the two counterpro-
pagating waves that are scattered into each other by the
periodic inhomogeneity. Within their approximation, an
envelope function of the total electric field is shown to
satisfy the double-sine-Gordon equation, which allows
solitary-wave solutions. To lowest order, these have a hy-
perbolic secant shape, in agreement with the numerical
work on these systems. ' Mills and Trullinger only con-
sider systems of infinite length, so that a matching pro-
cedure to the surrounding media is avoided.

Another analytic way of analyzing the previously men-
tioned structures was recently introduced by Sipe and
Winful. This approach, which is very general and is not
confined to small index differences between the constitu-
ents, or even a particular form of the periodic dielectric
function, leads to a differential equation for a slowly vary-
ing field amplitude as well. Here, however, the slowly
varying amplitude modulates a Bloch function of the un-

derlying periodic structure. Furthermore, the restriction
to harmonic fields is not necessary. Sipe and Winful
show that, within their approximation, the slow com-
ponent satisfies the nonlinear Schrodinger equation.
With appropriate boundary conditions, this equation al-
lows soliton solutions.

The major advantage of the analytic approaches ' is
that they focus on a slowly-varying envelope function,
which is of primary physical interest. Compared to the
method of Mills and Trullinger, that of Sipe and Winful
is the more general, and it is the latter which is used in
the present work. It allows us to characterize the period-
ic nonlinear stack by only a few parameters, avoiding the
conventional description of the stack in terms of a piece-
wise continuous dielectric function completely. Further-
more, any periodic nonlinear structure can be treated
with this approach. Restricting ourseh es to electric
fields with an harmonic time dependence, we show that
the equation for the slow component of the field is identi-

38 5149 1988 The American Physical Society



5150 C. MARTIJN de STERKE AND J. E. SIPE 38

cal to that for the electric field of a homogeneous non-
linear slab. In our approach, therefore, the nonlinear
periodic stack is equivalent to an homogeneous slab of
material. The fast Bloch-like, electric field component
only enters the discussion in determining the parameters
of the effective homogeneous stack and in making
the connection with electric fields in the surrounding
medium.

The method of Sipe and Winful is based upon an
asymptotic series expansion of the electric field. In the
present paper we show that inclusion of only the leading
term in this expansion will give rise to serious errors in
calculating the energy flow of the system. For this
reason, the first two terms in the series have to be includ-
ed. To determine the transmissivity of a finite system,
boundary conditions, of course, will have to be applied at
the two boundaries of the stack. We show that, for all
practical situations, the envelope function is essentially
independent of the nonlinearity, close to the rear of the
stack. This surprising result implies that in applying the
boundary conditions at the rear surface of the stack, the
nonlinearity may be neglected altogether. This allows us
to find analytic expressions for the matching conditions,
even for general nonlinear structures. As a result, the en-
tire problem of the finite, nonlinear, periodic stack is
solved, within the approximation, in analytic terms.

It should be mentioned that the procedure of Sipe and
Winful is quite similar to the effective-mass approxima-
tion (EMA) in solid-state physics, ' in which the electron-
ic wave function is separated into slow and fast com-
ponents as well. To carry the analogy further, the solid-
state structure which is most similar to the linear period-
ic stack is a semiconductor superlattice. " Application of
the boundary conditions at the two end faces of the
periodic stack is then equivalent to the application of the
interface connection rules in the theory of superlattices.
It should be noted that these boundary conditions can be
applied exactly in the present problem, in sharp contrast
to the situation in solid-state physics. ' The envelope-
function approach which we use presently differs in two
important aspects from application of the EMA to super-
lattices. First, our approach must be based upon
Maxwell's equations, whereas the EMA follows from the
Schrodinger equation. Secondly, whereas the EMA has,
as far as we know, only been applied to linear phenome-
na, our envelope approach is used to describe nonlinear
effects as well.

In the present paper the name stack will refer to the
periodic structure. This does not imply, however, that
such structures can only be manufactured using vacuum-
deposition techniques. At least in fiber geometries, it is
possible to obtain periodic structures with a considerable
number of periods by the interference of two counterpro-
pagating laser beams. ' Such a general periodic, effective
one-dimensional structure is also amenable to the kind of
analysis we present here. Another such structure would
be a grated waveguide, where the variation in the thick-
ness of the waveguide behaves, in leading to scattering of
waveguide modes, such as a modulation in an effective
dielectric constant.

The organization of this paper is as follows. Section II

gives a derivation of the envelope-function equation. The
formalism is then applied to infinite periodic structures in
Sec. III. In Sec. IV we consider finite stacks but disre-
gard the nonlinearity. The emphasis in this section is on
the boundary conditions at the front and rear end of the
stack. In Sec. V the full problem of the finite, nonlinear
stack wi11 be tackled. In Secs. IV and V the results of our
approximation will be compared to numerical results. In
Sec. VI we discuss some of the properties of the nonlinear
stack and of our method of calculation. Finally, in the
two appendixes we present some details of the calcula-
tions.

D(x, t) =e(x)E(x, t), (2.1)

lead to the result that E must lie in the (y, z) plane. We
denote its amplitude by E(x, t) and, for simplicity, treat
the case of linear polarization. In adopting Eq. (2.1),
where e(x) is of course real, we neglect both absorption
and intrinsic dispersion in the materials; these restrictions
can easily be lifted if necessary. At this same level of ap-
proximation, the inclusion of an isotropic Kerr non-
linearity leads to an extra, nonlinear polarization in the
same direction as E, which is of the form'

PNL(x, t)=X' '(x)[E(x, t)] (2.2)

where X' '(x) is the nonlinear susceptibility. The in-
clusion of this nonlinear polarization in Maxwell s equa-
tions leads, in our geometry and using the "cgs system, "
to the wave equation'

8 8 B—c E (x, t)+e(x) E (x, t) = —4~ PNL(x, t),
Bx Bt Bt

(2.3)

where c is the speed of light in vacuum. In this work we
assume that e(x) and X' '(x) are both (real) periodic func-
tions with the same period d. Except for satisfying this
restriction, they are completely arbitrary.

Before considering the fully nonlinear problem, we first
derive a key property of the electromagnetic modes of the
linear periodic stack. We thus consider Eq. (2.3) with

PNL =0 and look for stationary solutions. Setting

F. (x, t)=g (x)e +c.c. , (2.4)

where c.c. designates complex conjugation, we find that
the y must satisfy the eigenvalue equation

02—c gm(x)= (x)eco +~~( )x
Bx

(2.5)

This equation is of the general Sturm-Liouville type and
its eigenfunctions, therefore, must satisfy orthogonality

II. DERIVATION OF SLOWLY VARYING
ENVELOPE EQUATIONS

The starting point of the derivation of the expressions
for the slowly varying envelope function is the wave
equation for the electric field. For a field, assumed to
vary only as a function of the distance x along the stack,
Maxwell's equations and the assumption of an isotropic
dielectric function e(x),
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relations. ' By applying periodic boundary conditions in
the usual way, ' these are found to be

(m ~e~m')= f p*(x)e(x)q (x)dx=5, (2.6}
0

where L is the length over which the functions must be
periodic. Note that the normalization conditions them-
selves, as well as the eigenfunctions y, depend on the
dielectric function e(x) A. lthough derived for the linear
problem, Eq. (2.4) will be of primary iinportance in deriv-
ing the equations for the nonlinear periodic stack. Equa-
tion (2.5) has a different structure than the time-
independent Schrodinger equation with a periodic poten-
tial, since the periodic "potential-like" function e(x) mul-
tiplies the eigenvalue co . One consequence of this is the
form of the orthogonality relations, Eq. (2.6), which differ
from the form familiar from quantum mechanics. Sirni-
larly, techniques based on the Schrodinger equation are
not necessarily directly applicable to the present problem.
An example of this is mentioned in Appendix A, where
we derive expressions for the slope and for the curvature
of the dispersion curves, for use later in this section.

Now return to the full nonlinear wave equation given
by Eqs. (2.2) and (2.3). To find the solution for the slowly
varying component of the field, we use the method of
multiple scales. This general technique calls in the
present problem for the introduction of different length
scales, x =}u x (p« l, a=0, 1,2, . . . ), and time scales,
t =p t. It is important that in the subsequent discussion
these new variables are considered to be independent.
Under this condition, the first spatial and temporal
derivatives can be written as

In this equation, a(x„x2, . . . ;t„tz, . . . )=a(x;;t;),
where the subscript i runs over all positive integers, is an
arbitrary function of the slow variables. This freedom
will be limited by the subsequent analysis involving terms
with higher orders in p. Because a (x, ;t;) is a function of
the slow variables only, we refer to it and to functions
with this same property as enue1ope functions

Next, we consider all terms proportional to p and find

2
a' a2—c +e(xo) ez

BX0 Btp

=2 a a
2c

axo ax i

—2e(xo) e, . (2.12)
a a

ato ati

In order to solve this equation we make the following an-
satz for e2.

—I CO Epe2= gb, (x, ,x2, . . . , t„t2, . . . )y (tx)oe +c.c. ,
I

(2.13)

shows that the nonlinearity plays no role on the fastest
spatial and temporal time scales. From the analysis ear-
lier in this section we know that the functions in Eq. (2.4)
are solutions to this equation. Notice, however, that Eq.
(2.10) only contains the variables xo and to, so that e, can
be written as

tp
e, =a(x„x2, . . . , t, , t~, . . . )p (xo)e '+c.c.

(2.11)

and

a a a 2 a
+P

~
+P

a a a, a+"a

(2.7)

(2.8)

where the b, (x, ;t, ) are a new set of envelope functions.
Substituting Eq. (2.13) into Eq. (2.12), we find

tom )eplbI 2i c(——Ay~ ) +co~eq&~
2 2 . aa aa

I ax i ati

(2.14)
from which expressions for higher derivatives follow
straightforwardly. Similarly, the electric field E is writ-
ten in a series

where the arguments are not written explicitly and where
the operator 0 is defined as

E=Pe&+P e2+P e3+2 3 (2.9) A= —ic
BXp

(2.15)

a' a2—c 2+e(xo) e, =0.
Btp

(2.10)

This equation, which is just the linear wave equation,

The e, are functions of all x and all t, but these argu-
ments will not be written explicitly. In taking e and P' '

to be strictly periodic, we assume that they show varia-
tion only on the smallest length scale e= (ex)o,
X' '=X' '(xo). Equations (2.7), (2.8), and (2.9) are now
substituted into Eqs. (2.2) and (2.3) and terms with equal
powers of p are collected. This substitution results in
equations for the e,- in the asymptotic expansion of Eq.
(2.9). In the present paper, terms containing at most cu-
bic terms in p will be considered.

As a first step we gather all terms proportional to p
and find

c(m ~n~m) +co =0,Ba Ba

BX& Bt&
(2.16)

where the orthogonality relations in Eq. (2.6) were used.
From Eq. (A9) of Appendix A, we see that the multiply-
ing factors in Eq. (2.16) can be rewritten in terms of the
group velocity ~' at the point on the dispersion curve as-
sociated with the state cp . It then follows that, in order
to satisfy Eq. (2.16), the slowly varying function a (x, ;t, }
cannot depend on x, and t& independently but only on
the linear combination

The quite complicated expression in Eq. (2.14) will be
analyzed in two stages. In the first of these we project
onto the subspace spanned by the eigenfunction cp . The
left-hand side of Eq. (2.14) then vanishes and the follow-
ing condition for envelope function a (x;;t; ) is found:
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I
z& =—x] —co t& . (2.17)

This brings us to the important conclusion that, to this
level of approximation, the envelope travels with the
group velocity. This conclusion reflects the fact that nei-
ther the nonlinearity nor the dispersion of the stationary
states [Eq. (2.4)] have entered the discussion yet. Equa-
tion (2.16) [and (2.22), to be derived later] is known as an
asymptotic solvability condition. If it were not satisfied, it
is easy to see that e2 would diverge asymptotically as
t ~~, contrasting the assumption that succeeding terms
in Eq. (2.9) are smaller for all times.

In the next stage of analyzing Eq. (2.14) we project
onto the space spanned by the remaining eigenfunctions
y& (l&m). Using the orthogonality relations [Eq. (2.6)]
again, we now find an expression for the b&(x;; t; ) in terms
of the envelope function a (x;; t; ). It reads

Ba
bt(xi, x2, . . . ', ti, t2, . . . )= At d,

z]
(2.18)

2
a' a2—C

2 +E(xp)
2 e3 =7,

BX0 Btp
(2.20)

where V is defined as

a2y= —4~X"', (", )

cl 8 8+ c +2
Bxp BX2

a2 a a—E(xp)
2

+2
(jt 2i Btp Btp

e]

8 8+2 c
axo Bxl

a c}—E(xp ) e2
ato at

(2.21)

It is thus only at this level that the nonlinearity explicitly
enters the discussion. Like the analysis of Eq. (2.12), that
of Eq. (2.20) should also take place in two stages. How-
ever, for the current purposes it is sufficient to project
onto the subspace spanned by y only. Using a similar
ansatz as Eq. (2.13) it can be shown that the left-hand
side of Eq. (2.20) is orthogonal to qr . The right-hand
side of Eq. (2.20) will then provide another asymptotic
solvability condition for the envelope function a(x;;t, )

We thus left multiply V by g* and integrate. After some
algebraic manipulations, the result is then

where d is the period of the stack and the coupling
coefficient Al is defined as

2ic (1~0~m)
l, m 2 2d -,--

The definition in Eq. (2.19) assures that the coupling
coefficient is dimensionless. It follows from these expres-
sions that the envelopes bt(x;; t; ) travel with the group ve-

locity as well.
Now we finally collect all the terms proportional to p .

The rather lengthy result can be written as

Ba, Ba „82a0=2™m +m +~m ~m
Bt2 Bx2 9z,

+a*a 12' f g' '(xp)
~ p (xp)

~
dxp, (2.22)

0

where we have used Eq. (A10) from Appendix A for the
group-velocity dispersion co" at the point on the disper-
sion curve associated with the state y

In the remainder of this section we rewrite Eq. (2.22) in
a more practical form. To do so, we note that ultimately
we want to let p~1. Then if we interpret z, as our
(slow) spatial coordinate (in the frame moving with the
group velocity) we look for solutions for which
8/BX2=0. As @~1 then t2 can be identified as "the"
(slow) time.

Defining

a (x;;t, )=&L a(x;;t; ), (2.23)

and using the definition of the spatial and temporal coor-
dinates from the previous paragraph, Eq. (2.22) can be
rewritten as

2—

Bz i

(2.24)

where

a =6mto L f g' '(xp)
~ p (xp)

~
dxp .

0
(2.25)

This coefficient represents the effective nonlinearity seen
by the envelope function, and it depends on the way the
fast Bloch-like component samples the optical nonlineari-
ty. The definition in Eq. (2.25) assures that a is in-
dependent of the normalization length L.

From Eq. (2.24) we see that a(z~, t2) satisfies the non-
linear Schrodinger equation. Since it plays an important
role in many nonlinear phenomena, this equation and its
solutions have been widely studied, and that body of
knowledge can now be brought to bear in understanding
the propagation of light through a nonlinear periodic
medium. One of the best known properties of the non-
linear Schrodinger equation is the existence of soliton
solutions; we encounter these in Sec. III.

Knowledge of the slowly varying envelope a(z, ;t2), to-
gether with Eqs. (2.11), (2.13), (2.17), (2.18), (2.19), and
(2.23), completely determines the first two terms in the
asymptotic expansion, Eq. (2.9). In the subsequent dis-
cussion, the total electric field will be approximated by
the sum of these two terms; e3 and higher-order terms
will thus be neglected. Consequently, e, and e2 play a
very prominent role, and to reflect this we refer to these
terms as the principal term and the companion term, re-
spectively. From the definitions [Eqs. (2.11) and (2.13)],
both consist of products of envelope functions and Bloch
functions. For the remainder of the present paper we fur-
ther drop the subscripts of z, and t2 and we suppress all
coordinates x„and t„ for n )3, so that a =a (z, t ).
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III. STATIONARY SOLUTIONS
IN AN INFINITE STACK

a(x, t) =P(x}e (3.1)

Equations (2.11), (2.13), and (3.1) show that the resulting

crystal momentum

FIG. l. Schematic of dispersion curve of a periodic dielectric
stack in the reduced zone scheme.

Although the derivation in Sec. II applies to fields of
rather arbitrary space and time dependence, in this paper
we hereafter restrict ourselves to strictly monochromatic
electromagnetic fields with envelope functions that are at
rest in space. We refer to such solutions as stationary.
These form the simplest nontrivial class of solutions to
Eq. (2.24), and, as we will see in Sec. IV, are important in
understanding the transmission of a finite stack at fre-
quencies in the (linear) stop gap. In particular, we can
make a connection with the work of Chen and Mills: '

we show below that the stationary solitons of the present
theory form an analytic description of the gap solitons
found numerically by those authors.

Since, as we saw in Sec. II, the envelope travels with
the group velocity, our stationary solutions must be built
on Bloch functions for which the group velocity vanishes.
This implies that q is either in the middle or at the edge
of the Brillouin zone of the periodic stack (see Fig. 1). In
the present paper we chose the latter, which allows us to
make a direct comparison with the work of Chen and
Mills. ' Moreover, it assures us access to the lowest and,
in general, widest stop gap. The conservation law of
crystal momentum tells us that, in the summation over I
in Eq. (2.13), we only have to include eigenstates which
are positioned at the Brillouin zone edge as well. Such
eigenfunctions have some rather special properties: the
vanishing of the group velocity implies that no energy is
being transported, and the eigenfunctions are thus stand-
ing waves and can be chosen to be real. Also, as seen
from Fig. 1, the eigenfunctions will border a stop gap; y
and each of the q& will thus make up either the lower
edge, or the upper edge of a stop gap. Finally, all eigen-
functions will have a definite parity. Because the group
velocity co' vanishes, we can put z =x in Eq. (2.24).

Furthermore, since we wish to treat monochromatic
electric fields, we seek envelope functions of the form

electric field indeed has harmonic time dependence with
angular frequency co +5. Since, in the linear limit, the
Bloch function be&ng modulated has an eigenfrequency
to, we refer to 5 as the detuning Substituting Eq. (3.1)
into the nonlinear Schrodinger equation leads to an equa-
tion for P,

d2
, +50+~

GX
(3.2)

To cast Eq. (3.2) in its final form, we define the two pa-
rameters A and B by

A =Q —25/a

B=Q —25lco"

(3.3a)

(3.3b)

We comment below on the sign under the radicals in Eqs.
(3.3}. Expressed in these two parameters we then find
that

d2 B2
B'0+—2 (3.4)

This equation for the envelope function is a significant
simplification compared to the equation for the entire
field. The necessary information regarding the refractive
indices and the thicknesses of the constituent layers are
"hidden" in the parameters A and B. To get an idea of
the nature of this simplification, we return to Eqs. (2.2)
and (2.3) for the total electric field. Let us rewrite this
equation for the special case of an homogeneous medium,
and, just as in deriving Eq. (3.4), only consider stationary
solutions in time. Under these restrictions, Eqs. (2.2) and
(2.3) take the form

d'Eo
2 12~X" 2 2+k Eo+ k

I
Eo I

Eo=O
8x

(3.5)

where k is the wave vector of the radiation inside the
medium, and third harmonic generation was neglected.
We thus see that the equation for the envelope function
of the electric field associated with the nonlinear stack
[Eq. (3.4}], is equivalent to that for the total field of a
nonlinear homogeneous medium [Eq. (3.5)]. As far as the
envelope is concerned, therefore, the nonlinear stack
behaves as a homogeneous slab, characterized by A and
B only.

We now return to the choice of the signs under the
radicals in Eqs. (3.3). These signs have been chosen in
such a way that A and B are real for the situations of
main interest. Let us first consider the limit in which
A ~ ~, which, according to Eqs. (3.4) and (3.3a) corre-
sponds to the case in which the nonlinearity vanishes.
For the parameter B to be real, Eq. (3.3b) prescribes that
5 and co" should have opposite signs. Figure 1 shows
that, because y is at the edge of the Brillouin zone, the
radiation is at a frequency which lies in the stop gap of
the stack. This is consistent with Eq. (3.4) since, in the
linear limit, the envelope function consists of an exponen-
tially growing and decaying part. This is exactly the kind
of behavior to be expected for radiation tuned to a stop
gap. The inverse of 8 can be interpreted as the associated
decay length [Eq. (3.4)]. The envelope function is thus
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slowly varying if this decay length is much larger than
the period d of the constituents of the stack, or when

1/(Bd)»1 . (3.6)

E (x, t }=Eo(x )e ' '+ c.c. ,

where

Eo(x)=p(x)[v L y (x)]

(3.7)

In the linear limit, the stack thus behaves as a homogene-
ous medium with an imaginary wave vector, e.g. , as a
conductor without dissipation.

Now consider finite values for the parameter A. From
Eq. (3.4), we only expect significant changes compared to
the behavior in the linear limit when the second and the
third terms have opposite signs. Thus, when A is imagi-
nary, the only effect of the nonlinearity will be to make
the decay length even shorter. For real A, on the other
hand, we see that if g ~

= A, the second derivative of
the envelope function will change sign, so that, locally,
the stack behaves as a medium with real refractive index.
The reason for this behavior can be seen from Eq. (3.3a).
For A to be real, a and 5 should have opposite signs,
which, by Eq. (2.25), means that 1' ' and 5 should have
opposite sign. A negative value of 7' ' will tend to de-
crease the refractive indices, and, consequently, will tend
to shift the stop gap to higher energies for large intensi-
ties for negative g' '. Since X' ' and 5 have opposite
signs, this means that at high intensities the incoming
light is shifted towards the nearest band edge. For
suSciently high intensities this shift can exceed the de-
tuning so that the radiation "leaves" the stop gap. At
these high intensities running wave solutions of the en-
velope function will thgs be allowed.

Before discussing solutions of Eq. (3.4) it is useful to
have a general expression for the electric field in terms of
the envelope function g. Using Eqs. (3.1), (2.23), (2.11),
(2.13), and (2.18) we find that

that the companion term can be neglected altogether,
however, as becomes clear if we calculate the energy flow
associated with the electric field in Eq. (3.7). From the
definition and from Maxwell's equations we find, for the
time- and space-averaged Poynting vector,

(S ), , = Im(EO )
(3.9)

&(Im g"P'(m
~

m )

dA
1 (@m)

—g'P'(m
~

0
~

l )+c.c.
C

+y'1("(m
~

I )

(3.10)

with the operator 0 defined in Eq. (2.15). Furthermore,
use was made of the fact that the Bloch functions at the
Brillouin zone edge can be chosen to be real, and that
they vary on a much faster scale than the envelope func-
tion. Note that the contribution to (S) from the term
containing the product 1("gy" g' vanishes. We would

normally have expected this term, with the derivative of
the Bloch function, to dominate in Eq. (3.10), since the
Bloch functions vary on a length scale d, while the en-
velope functions vary on a scale 1/B, and thus

where the subscripts indicate to the average being taken,
and the spatial average refers to a period of the stack.
The subscripts will henceforth be dropped. Substituting
Eq. (3.8) into this equation and neglecting terms propor-
tional to AI, the result is

c2(S)=
27TCO

(Bd)A, — [v'L q)1(x)],™B dx
(3.8)

d 0'm
=O(Bd) ((1 (3.1 1)

where the distinction between the slow and the fast vari-
ables was dropped. According to the nomenclature intro-
duced at the end of Sec. II, the first term on the right-
hand side is the principal term, whereas the second is the
companion term. We now compare the sizes of these two
contributions. To do this, we estimate the size of the
multiplying factors of the Bloch functions in this equa-
tion. Since the envelope function 1(j varies over a length
scale of about 1/B, the third multiplying factor in the
second term in Eq. (3.8) is thus in general of the same or-
der as 1(j. But because of Eq. (3.6) the product of the cou-
pling parameter AI and (Bd) is much smaller than uni-
ty. This is true even when co =cot [see Eq. (2.19)]; the
demonstration follows straightforwardly from the
definitions of the parameters involved and relies on the
fact that the envelope function approach is only valid
when 5«

~
co, —co ~. This result is shown to be true in

Sec. VI. We thus conclude that the principal term dom-
inates the electric field, as expected. This does not mean

[see Eq. (3.6)]. But because we have chosen a Bloch func-
tion at a point on the dispersion curve where the group
velocity vanishes, the Bloch function can be chosen real
and Im(g'Py' p' )=0. Physically, such a Bloch func-
tion corresponds to a standing wave and cannot i.tself
contribute to the energy flow; such a flow must appear
from the envelope functions, and thus the largest nonvan-
ishing contributions to the energy flow are the terms in
Eq. (3.10).

The first of the terms in Eq. (3.10) contains the deriva-
tive of the envelope function in the principal term in Eq.
(3.8}, whereas the second contains the derivative of the
Bloch function in the companion term in this equation.
We thus have the somewhat surprising result that the en-
ergy flow involving the companion term in Eq. (3.8) can
be as large as, and will often be larger than, the energy
flow associated with the principal term in this equation
only. In fact, in some practical situations, the second
term in Eq. (3.10) is larger than the first term and has op-
posite sign; if one only included the principal term in the
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expression for the electric field, one would predict an en-

ergy flow in the wrong direction. It is clear that the
second term in Eq. (3.8) is thus crucial for a correct
description of the electric field.

The last term in Eq. (3.10) will be neglected, as it con-
tains a derivative of an envelope function rather than that
of a Bloch function: this, by Eq. (3.11), is equivalent to
an extra factor (Bd). Using Eq. (A10), the leading term
in the expression for the energy flow can thus be written
as

method straightforwardly to the present problem. For
this reason, only the results of this derivation will be
given; the reader is referred to the literature' for details.
First, the envelope function is written as

(3.16)

where N(x) and P(x) are real functions. Instead of work-
ing with A' it is more convenient to introduce the function
I(x),

I(x)=C (x),
in terms of which the phase factor P(x) is given by

(3.17)

The occurrence of the group-velocity dispersion in this
equation might at first seem surprising. It is somewhat
similar to the occurrence of the effective mass in elemen-
tary expressions for the electrical conductivity of solids.
These prescribe that the conductivity is inversely propor-
tional to the effective mass, and thus proportional to the
curvature of the energy bands (be it positive or negative).
Furthermore, in order to transfer energy, the slowly vary-
ing envelope function gives access to the immediate
neighborhood of the band edge. The information regard-
ing the group velocity in this region is, to lowest order,
provided for by co" .

After these preliminaries we are now in the position to
solve Eq. (3.4) and to interpret the results. We first
neglect the nonlinearity by taking the limit in which
A ~~. Equation (3.4) can then solved by inspection,

P(x) = Wf, dx' . (3.18)

By Eqs. (3.16)—(3.18), the envelope function 1((x) is com-
pletely determined by I(x). The expression for I(x) is

I(x)=I+ (I+ I—)sn —QI+ I —x—k (3.19)

I+ —I
I+ —I (3.20)

Finally, the parameters I+ and I are defined by

where sn(x) is one of the Jacobi elliptic functions. ' '
The modulus k of the elliptic function' is given by the
expression

—Pe»+ Qe
—» (3.13) 4W2+ 2

I+=— A I + (A —I ) +—
where P and Q are constants; this is not unexpected for
radiation corresponding to the stop gap of a periodic
structure, as discussed at the beginning of this section.
Using Eqs. (3.7) and (3.8) the entire electric field can then
be found; this gives

Eo(x)=(Pe "+Qe ")[&L(P (x)]

(3.21)

The free parameters in these equations are I and W.
The latter, however, has a simple interpretation, which
becomes clear if we calculate Im(p'1('). Using Eqs.
(3.16)—(3.18), it follows immediately that

+ Q (Bd)A( (Pe " Qe ")[&Lq—((x)] . Im(1((*g') = W, (3.22}

(3.14)

To finish this survey of the properties of the linear stack,
let us calculate the crucial quantity Im(p'1('), which ap-
pears Eq. (3.12) for the energy flow. Using Eq. (3.13) we
find immediately that

Im(l(('P') =2B Im(PQ*) . (3.15)

This expression will be used extensively in subsequent
sections. It should be stressed at this point that Eq. (3.13)
represents the full formal solution to the linear problem
in its most general form. For a semi-infinite stack, for ex-
ample, the exponentially growing term vanishes, and so,
by Eq. (3.15), does the energy flow.

Now consider solutions of (Eq. 3.14) for finite values of
the parameter A. It was mentioned before that, as far as
the envelope function is concerned, the stack is
equivalent to a homogeneous slab of material [Eqs. (3.4)
and (3.5)]. The properties of a single homogeneous non-
linear slab have been presented, ' and we can apply the

and thus, by Eq. (3.12), that the energy flow is propor-
tional to W. The parameter W is thus fixed by the Poynt-
ing vector. The parameter I does not have such a sim-

ple interpretation and it will have to be chosen in accor-
dance with the boundary conditions.

Since the elliptic function sn(x) varies periodically be-
tween —1 and +1 for real arguments, we conclude that
I (x) varies periodically between I+ and I . Because of
the definition of the function I(x), Eq. (3.17), I must
thus be positive. Now turn to the relative sizes of the pa-
rameters I, I+, and I . It can be seen from Eqs. (3.21)
that I+ is always positive and that I is negative or zero.
Both can be found as a complicated function of I . In all
practical situations, I+ is larger than I, so that
I+ )I )I . The modulus k [Eq. (3.20)] thus lies be-
tween zero and unity. Because sn(0) =0, it is found from
Eq. (3.19} that I(0)=I+. It will be useful in Sec. V to
have an expression for I(x) such that I(0)=I . By us-

ing the properties of the elliptic functions, ' ' we can
shift the origin such that
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I(x)=I+ (—I+ I—)cd QI+ I——x k (3.23)

where cd(x) is another of the Jacobi elliptic functions,
which also varies between —1 and +1. Since cd(0)=1,
Eq. (3.23) has the desired property. In Sec. V we will in-
vestigate the preceding expressions in detail.

We will presently make the connection with the nu-
merical work of Chen and Mills. ' To do this, we con-
sider a limiting case of the foregoing equations. First we
let the energy ffow vanish, which implies that %=0, and
we then take the limit in which I ~0. Equations (3.21)
then yield that I+ ——A and I =0, so that, using Eq.
(3.20), the modulus k =1. The elliptic function sn(x) is
identical to tanh(x) for this special value of the modulus.
The envelope function now attains the standard soliton
shape

g(x)= A sech(8x) . (3.24)

The total electric field can now be found using Eqs. (3.7)
and (3.8). The envelope function in Eq. (3.24) represents
a soliton which has the unique property of being at rest in
space. Since we have set W=0, this soliton does not
transfer energy. In order to do this, it would have to be
perturbed, by changing W and I appropriately. It
should be stressed that such behavior is quite common
for resonances in a cavity. Notice, however, that in the
present situation this behavior occurs in an infinite medi-
um. We return to this matter in Sec. V.

To finish this section we now compare the properties of
the gap solitons found by Chen and Mills ' in their nu-
merical studies, with analytic expressions for the electric
field associated with the envelope function in Eq. (3.24).
For the qualitative comparisons we do here, we need only
consider the principal term in Eq. (3.8). Chen and Mills
mention that their numerical work suggests that gap soli-
tons have the following three characteristic properties.
First, the product of P' ' and the peak intensity is con-
stant. By Eqs. (3.3a) and (2.25), the soliton described by
Eq. (3.24) has this same property. Secondly, Chen and
Mills find that the width is independent of X' '. By Eqs.
(3.3b) and (3.24) we come to the same conclusion. Third-
ly, for positive (negative) values of X' ' they only find
solutions near the upper (lower) edge of a stop gap.
Again, we reach the same conclusion from Eq. (3.3a). We
can thus be conment that our formalism is qualitatively
consistent with numerical results. ' In Secs. IV —VI the
properties of the nonlinear stack will be investigated in
much more detail and the results will be checked in a
quantitative manner.

IV. LINEAR FINITE STACK

We now turn our attention to structures of finite
length. Here, the differential equation governing the elec-
tromagnetic field inside and outside the structure have to
be solved subject to the appropriate boundary conditions
at

~

x
~

~ ~, as well as the Maxwell saltus condition at
the interfaces between the outside medium and the struc-
ture. In the present section we only consider the linear
problem; the more general, nonlinear case will be dis-
cussed in Sec. V. Of course, we are not suggesting that

the envelope-function approach is a useful method for
treating the linear stack. The exact results in this case
are too easily found and are too well understood to merit
the use of an approximate method. Rather, the
envelope-function approach will prove to be far more
useful in treating the nonlinear stack. The difficulty of
the general problem there does justify the use of an ap-
proximate method, which can provide more physical in-
sight than fully numerical calculations. There are, how-
ever, two reasons for first discussing the linear stack in
the envelope-function approach. First, it allows us to use
the simpler case as a benchmark to judge the severity of
our approximations. Further, we show in Sec. V that, in
all situations in which the envelope function approach is
applicable, the interface conditions on the envelope func-
tion for the linear and for the nonlinear stack are identi-
cal. The results from the present section are thus directly
applicable to the nonlinear problem.

We thus now assume that the stack has a finite length
and that the equations from Secs. II and III apply inside.
The surrounding medium is assumed to be homogeneous,
linear, and loss free, and we put the rear of the stack at
x =0. We will match the electric field inside the stack to
a plane wave in the surrounding medium. As in all such
problems, the analysis starts at the rear surface of the
structure, since only an outgoing wave will be present
here, and it is then continued by integrating forward in
the stack. ' At this point, the advantages of the en-
velope approach become clear, since the envelope func-
tion allows us to jump immediately to the front end of the
stack, no matter how long it is. This should be contrast-
ed to the conventional methods where the integration has
to be done layer by layer. Note the different footing of
the front and the back surface of the structure: the elec-
tric field inside the stack is uniquely determined by the
fact that at the rear surface one only has an outgoing
wave (with given wavelength). The position of the front
surface only determines how far one has to integrate for-
ward, and, in this way, influences the transmissivity of
the stack. It does not influence the field within the struc-
ture, however.

To satisfy the boundary conditions we have to know
the electric field as a whole; knowledge of just the en-
velope function will not suffice. For the linear stack we
thus use Eq. (3.14). Once the origin of the x coordinate
has been chosen, this is a linear equation in P and Q. The
coeScients in this equation depend on the details of the
Bloch functions, but can be certainly be calculated. It is
easily verified from Maxwell's equations that matching
the transverse component of the magnetic field across the
interface in the present geometry is equivalent to match-
ing dE/dx. The latter, from Eq. (3.14), will also be a
linear function in P and Q. By equating Eq. (3.14) and its
first derivative to the electric field associated with a plane
wave, therefore, the coefficients P and Q can be found
(once the origin of the x coordinate has been fixed). It
should be mentioned that in this procedure only the
values of the Bloch functions and their first derivatives at
the interface are required. To be more concrete, using
the expressions for the total electric field, Eqs. (3.7) and
(3.14), and its first derivative, we find
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E(0)
E'(0)

mo g (Bd)A, Io
'

P+Q
mO+B g (Bd)AI lo Bmo+ g (Bd)AI 10 P —Q

(4.1)

where we have made use of the following notation:

mo &L——q) (0),
mo =&L y' (0),

(4.2)

and similarly for yI. The summation in this equation, and in subsequent ones, includes all states I&m. Since the origin
in Eq. (4.1) is taken at the rear surface of the stack, the quantities defined in Eq. (4.2) refer to the Bloch functions and
their derivate at that position only. In matching to an outgoing plane wave these will be fixed, apart from an unimpor-
tant overall phase factor, by the wavelength, and by the energy flow [see Eq. (3.9)]. To find P and Q, therefore, we need
the inverse of this matrix, which is easily found to be

P+Q 1
Bmo+ g(Bd)AI 10

P —Q N —rno —B g (Bd)AI 10

—g (Bd)AI ~lo E(0)
mo E'(0) (4.3)

where

N =Bm o+ g (Bd)A& (malo Iom o )—
I (~m)

X g (Bd)'A(, mAp, mIoPo .
l (~m) p (~m)

(4.4)

The last term in this expression contains two additional
factors (Bd) and is thus much smaller than the other
terms. It could thus have been dropped, but it was re-
tained, however, to assure that the matrices in Eqs. (4.1)
and (4.3) are each other's exact inverse. Once P and Q
are known, the envelope function is completely deter-
mined [Eq. (3.13)]. To calculate the transmissivity of the
linear stack now, we calculate the total electric field and
its derivative at the front end of the structure, using Eq.
(3.14), and match to the appropriate linear combination
of a forward and backward traveling plane wave.

The merits of the procedure will now be illustrated by
application to the linear stack under a simplifying ap-
proximation: taking q to be associated with one edge of
the lowest stop gap, we assume that only one coupling
constant AI is significant, namely, that associated with
the other eigenfunction bordering the same stop gap.
This assumption is equivalent to the coupling assumed by
Kogelnik in his analysis of distributed feedback lasers, '

and we refer to it as the Kogelnik approximation. It
means that only two plane waves —one propagating in
the +x direction and one propagating in the —x
direction —combine to form the Bloch states y and yr.
For a simple layer geometry we work out the Bloch func-
tions in Appendix B; they are to be substituted into the
equations in the beginning of this section. The Kogelnik
approximation is known to be valid in the limit of small
index differences between the constituent materials. '

We give the results for linear stacks with two different
sets of parameters. In the first of these, the refractive in-
dices of the constituents are 2.0 and 3.0. The other pa-
rameters of this stack are given in the caption of Fig. 2.
It should be noted that 1/(Bd) = 17.3 here, so Eq. (3.6) is
satisfied. With such a large index difference, we expect
the Kogelnik approximation to be rather unrealistic.

10

10
0 10 20 30

number of periods
40 50

FIG. 2. Transmissivity following from envelope-function ap-
proach (solid line) compared to results from exact calculations
(crosses), for linear stack with varying number of periods. For
this example, n, =2.0, n2 ——3.0, and dl ——d2 ——0.5 pm. The
wave number in the surrounding medium k, = 1.103 33 pm

Figure 2 compares the transmissivity which follows from
the envelope approach to the exact results for a variety of
lengths of the stack. Since the stack contains an integer
number of periods, the exact results are a set of discrete
points. As far as the envelope function is concerned,
however, the stack can have an arbitrary length since, as
we saw before [Eqs. (3.4) and (3.5)], the internal periodic
structure disappears. For this reason the approximate re-
sults are given as a continuous curve. We see that the ap-
proximation is off by about 25% over the entire range of
lengths. In spite of the large index difference, however,
the results are qualitatively correct and even predict the
rather subtle slope variations of the transmissivity.

In the next example, the index difference of the constit-
uents is much smaller (n, =1.9, n2 ——2. 1), and we expect
the Kogelnik approximation to be valid. This second set
of parameters thus represents a fairer test for the intrinsic
properties of the envelope-function approach. We see
from Fig. 3 that the approximate method works very well



5158 C. MARTIJN de STERKE AND J. E. SIPE 38

10'

10

IL(x)=4
~

P
~ ~ Q ~

cos (8p&/2)+4
~

P
~ ~ Q ~

sinh (Bx) .

(4.7)

To make the connection with the solutions of the general
problem from Sec. III, we introduce I, which is here
defined as the minimuin value that IL (x) [Eq. (4.7)] can
attain (this nomenclature refiects the results below),

I =4~P
~ ~Q ~cos(8+&/2),

W/B =2
)
P

[ [ Q )
sin(8~& ),

(4.8)

10
0 10 20 30

number of periods
40 50 where the last line follows from Eqs. (3.15) and (3.22).

We now rewrite Eq. (4.7) in terms of I and of W/B, and
find that

FIG. 3. Transmissivity following from envelope-function ap-
proach (solid line) compared to results from exact calculations
(crosses), for linear stack with varying number of periods. For
this example, nl ——1.9, n&

——2. 1, and dl ——d2 ——0. 1 pm. The
wave number in the surrounding medium k, =7.62000 pm

here, and that the deviations are only a few percent over
the entire range of stack lengths. For this example,
1/(Bd)=28. 5 so that, again, Eq. (3.6) is satisfied. Based
on the results for the linear stacks, therefore, we conclude
that the envelope-function approach gives satisfactory re-
sults in calculating the transmissivity. However, as em-
phasized in the beginning of this section, the real advan-
tage of this method becomes much more clear in Sec. V,
in which nonlinear stacks are investigated.

To finish this section we will rewrite these results for a
linear stack such that a useful comparison to the solu-
tions for the general nonlinear problem will be easiest.
The idea is that, for vanishingly small nonlinearities, the
general solution [Eqs. (3.19}and (3.23)] should be identi-
cal to that in terms of the simple exponential functions
[Eq. (3.13)]. One connection between these two is provid-
ed for by Eqs. (3.15) and (3.22), which link W to P and Q.
It is our aim to find a similar relation which links the pa-
rameter I to P and Q. In order to find such a relation it
is important to notice that the square of the modulus of
the general envelope function I(z) has a maximum [Eq.
(3.19)] or a minimum [Eq. (3.23)] at the origin. For this
reason we will shift the envelope function for the linear
stack in order to obtain a similar property. We thus cal-
culate the square of the modulus of Eq. (3.13), IL, and
search for an extremal point xo. Some algebraic manipu-
lations show that

Bxo = —,'ln (4.5)

This equation shows that the extremal point is, in fact, a
minimuin. Equation (4.6) is thus the linear limit of Eq.
(3.23). We now rewrite this equation by introducing the
angle between the arguments of P and Q, 8P&. The re-
sult is then

We now shift the origin by this amount and find

I (x)=(&PQ*+~ QP')'+4~ P
I I Q ~»nh'(Bx)

(4.6)

8'
IL(z)=I + I + sinh (Bz),

B I (4.9)

(4.10)

where k, is the wave number of the radiation in the sur-
rounding medium. Since, in applying Eq. (4.3), we have
used the electric fields associated with an outgoing plane
wave only, xo measures the distance between the
minimum of the envelope function and the rear surface of
the stack. The right-hand side of this equation is much
smaller than unity. This can be demonstrated using an
identical argument as in Section III, where it was shown
that the principal term dominates the electric field [Eq.
(3.8}, and in following paragraph]. The result

~

Bxo
~

&& 1 will be crucial in Sec. V. It is no coincidence
that we find a special relation between the position of the
minimum and the rear surface, rather than the front sur-
face, of the stack. As was mentioned earlier, the special
footing of the rear surface is a consequence of the bound-
ary condition with only an outgoing plane wave.

V. NONLINEAR FINITE STACK

After the preliminary work in Secs. II—IV, we now set
out to find the properties of the genera1 finite nonlinear
stack. The energy flow will prove to be a significant pa-
rameter, since it determines the importance of the non-

which is the linear equivalent of Eq. (3.23). It should be
mentioned that Eq. (4.9) can also be found by applying
the limit in which A ~ ao to Eq. (3.23) directly.

In Sec. V, Eq. (4.8) will be used extensively to investi-
gate the relation between the boundary conditions for the
linear and for the nonlinear stack. In doing so, it will be
helpful to have a more explicit expression than Eq. (4.5)
for the distance xo between the minimum of the envelope
function and the boundary of the stack. The result can
be written in a power series in Bd [Bd «1, Eq. (3.6)].
For the present purposes, only the leading term of the
series will suffice. Using Eqs. (4.3) and (4.4), it is found
that

modm o+ g ~i, m dm od~o+(kid) g A&, m lomo

(dmo) +(k,d) mo
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linearity. It should be mentioned here that two different
energy flows will enter the discussion. The first of these is
the energy flow through the stack, which we will desig-
nate by S, . The second, which we call So, is the energy
emitted by an external source. This would be the control
parameter in an actual experiment.

At a certain level this problem is quite straightforward.
The functional form of the envelope function is well
known, and, using Eq. (3.12), the entire field can be found
everywhere in the stack for a given set of parameters. In
principle, there are three such parameters: I, W, and
also the relative position of the envelope function with
respect to the stack. These parameters have to be deter-
mined in accordance with the boundary conditions at the
rear surface of the stack, which prescribe the magnitudes
of the electric field and of its first spatial derivative, and
their relative argument. One of the three ensuing equa-
tions is unneccesary, however, since the energy flow, and
thus W, is known, and we are left with two equations and
two unknowns. To solve these, we have to search a two-
dimensional space for a single solution. Actually, this
procedure can be carried out quite easily, since the func-
tion of which we want to find the root [Eqs. (3.16}—(3.23)]
can be calculated quickly. Such a procedure, however,
turns out to be unnecessary, since the matching pro-
cedure for the linear stack can be applied to the nonlinear
stack as well. This will now be shown.

It is clear that the envelope functions for the linear and
for the nonlinear stack have quite different properties:
Eq. (3.23}, for the nonlinear stack, describes a periodic
function, whereas Eq. (4.9), for the linear stack, does not.
We will show, however, that (a) "sufficiently close" to the
minima of these functions, the linear and the nonlinear
envelopes have identical functional forms. This is only
true, however, if the energy flow through the system S, is
much smaller than a certain prescribed value SL. After
that we show, still only for S, «SL, that (b) the rear sur-
face is "sufficiently close" to the minimum. As far as the
matching procedure is concerned, therefore, the linear
and the nonlinear cases are identical. Finally, we show
(c) that SL is so large that the envelope-function ap-
proach itself breaks down long before this matching pro-
cedure does. The similarity between the linear and the
nonlinear boundary conditions thus covers the entire re-
gime in which the envelope function approach is mean-
ingful. The proof of this somewhat surprising result con-
sists thus of three parts, which will be given below.

We first show that the functional form of the linear and
the nonlinear envelopes, close to the minima, are very
similar, for an energy flow S] «SL. In order to do so,
we replace the functions appearing in Eq. (3.23) and in
Eq. (4.9) by the first terms in their Taylor series expan-
sions. We can do this by inspection for the hyperbolic
function in Eq. (4.9). The expansion for the elliptic func-
tion in Eq. (3.23) is cd(x

~

k)=1 ——,'(1 —k )x + .
Substituting this into Eq. (3.23), and using the definitions

I

of I+ and of I [Eqs. (3.21)], it is then found that
2

WI(x)=I + I + B x —2 B x (5.1)

where I was used to express the fact that this is an expan-
sion for small arguments. Now compare this to the Tay-
lor series expansion for the linear stack, following from
Eq. (4.9). The first terins in Eq. (5.1) are seen to be identi-
cal to those in the expansion of Eq. (4.9). The final term
in Eq. (5.1), however, does not have a linear counterpart,
and, to lowest order, distinguishes the linear and the non-
linear envelope functions. As required, this term disap-
pears in the linear limit of Eq. (5.1) (A ~ ~ ). Locally,
the linear envelope function is thus a good approximation
for its nonlinear counterpart, if

Im+ 2
)Q2I B A

(5.2)

By Eqs. (4.8), I is proportional to the energy flow
through the system, and, while the left-hand side of Eq.
(5.2) is thus linearly proportional to S„ the right-hand
side is proportional to S,. As expected, therefore, Eq.
(5.2) will be satisfied if the energy flow is below a certain
value SL, the value for which the two sides of Eq. (5.2)
are equal. To find an expression for SL, Eq. (5.2) is
rewritten as in equality in terms of the parameters of the
stack, using Eqs. (4.8) and (4.3). This is quite straightfor-
ward, but very tedious; for this reason, only the final re-
sult is given here,

1 A

4mc Bd

'2 II
~mm

(dmp) +(k, d) mp

mp+ g A& (mpdlp —lpdmp)
(5.3)

It should be mentioned that Eq. (5.3) only gives the lead-
ing terin in the expansion for SL in powers of (Bd). As
this equation depends on the ratio A /(Bd) only, SL is in-
dependent of the detuning [Eqs. (3.3)]. Once y is select-
ed, SL is thus an intrinsic parameter of nonlinear stack.
Also, SL ~ 00 in the linear limit, as expected. This con-
cludes the first part of our proof.

In the second part we assume that indeed S& «SL, so
that, close to the minima, the linear and the nonlinear en-
velope functions are very similar. We now include the
rear surface into the discussion. We want to show that at
a distance xp given by Eq. (4.10) from the minimum, the
expansion leading to Eq. (5.1) is allowed. Since

~
Bxp

~
&&1 [Eq. (4.10)], the expansion is certainly al-

lowed for the linear envelope function in Eq. (4.9). We
now use Eqs. (4.10) for Bxp, and Eq. (3.22) to find an ex-
pression for the argument of the elliptic function in Eq.
(3.23) at the rear surface of the stack. That argument is

3 1 mpdmp+ g Ai dmpdlp+(k d) g Ai lpmp
I+ I —xp —— —

A 2 k, d mp+ g A, (mpdlp lpdm p)— (5.4)
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for S, =Si. The right-hand side of this equation is of or-
der unity. We thus conclude that, for S, &&SL, the field

at the rear surface of the stack can be described accurate-
ly by the first terms of the Taylor series expansion of the
elliptic functions.

We now turn to the third step of the proof in which we
estimate the actual size of SL. Obviously, if SL turns out
to be very small, the entire exercise is quite useless. An
obvious way to estimate SL is to substitute typical values
into Eq. (5.3), but this is not satisfactory, since the depen-
dence of SL on A implies that we can give Sl any value
by adjusting the nonlinear coefficient. A better approach
is to relate SL to the properties of the envelope function
itself. We show that S, ggSI whenever the envelope-
function approach itself may be used. The envelope-
function approach, in fact, is only valid when two distinct
conditions are satisfied. First, as mentioned in Sec. III,
the envelope function should vary slowly compared to
the Bloch function. Also, in Sec. VI, we show that Eqs.
(6.4) and (6.5) specify a second condition for the validity
of our method. In the following paragraphs, we demon-
strate that an energy flow as large as SI implies that at
least one of these two conditions is not satisfied.

As a start, we estimate the period of the nonlinear en-
velope function at SL, to see if it is indeed slowly varying.
The period of the elliptic function depends on the
modulus k and we thus first have to find the value of this
parameter at SL. Using Eqs. (3.20) and (3.21), it is found
that, in fact, the leading term in the expression for the
modulus vanishes, and thus k && 1. Since for k ~0, cd(x)
is identical to cos(x), it is easy to find the period xL of the
envelope function in this limit,

mp+ g AI (mpdlp lpdmp)
(k, d)

(dmp) +(k,d) mp

(5.5}

We thus substitute Eqs. (4.3), (4.8), and (5.3) into Eq.
(6.4), and find that

1

(k, d}

[(dmp) +(k, d) mp]
(5.6)

mpdl p
—lpdm p

for Si ——SL. The right-hand side of this equation is of or-
der unity, so that, in this limit, Eq. (6.5) is violated. We
thus conclude that, when a coupling coefficient is much
larger than unity, the envelope function approach is not
valid at Si ——Sl either.

We thus see that the envelope-function approach is
never valid at S, =SL, and thus, for energy flows for
which the envelope-function approach is valid, the en-
velope functions for the linear and for the nonlinear stack
are very similar close to the rear surface. The matching
procedure for these two cases can thus be taken to be
identical, without introducing significant errors. First,
the parameters P and Q are thus found using Eq. (4.3).
Then Eqs. (4.5) and (4.8} are used to find I and xp.
These parameters are then finally substituted into Eq.
(3.23) to find the envelope function inside the entire non-
linear stack. Using Eq. (3.8), we now can find the electric
field at the front surface of the stack, and thus also the
transmissivity.

We will now first consider the field profiles in the non-
linear stacks. To start, we make a connection with the
stationary soliton, found at the end of Sec. III. It should
be stressed, however, that whereas the soliton only exist-
ed in the limit in which both I ~0 and Si~0, the
present solutions are associated with a nonvanishing en-
ergy flow. This difference is reflected by the fact that the
present solutions are periodic, whereas the stationary sol-
iton is not. However, when the period of the envelope
function x, »1/8, then the distinction between the two
is quite small. This behavior is illustrated in Fig. 4, in
which the amplitude of the envelope functions are com-

This expression does not contain the parameters A and
8; xl is thus independent of the detuning and, more
surprisingly, of the nonlinearity. The magnitude of the
right-hand side of this equation is primarily determined
by the coupling coefficients. Let us initially assume that
none of these is much larger than unity, so that the same
is true for the entire right-hand side of Eq. (5.5). Under
this condition, therefore, the envelope function varies on
the same length scale as the Bloch functions, and the
envelope-function approach is thus invalid. We thus con-
clude that, when none of the coupling coefficients are
much larger than unity, the envelope function approach
is not valid at Si =SL.

We now consider the opposite limit: we assume that
one of the coupling coefficients is actually much larger
than unity and calculate 5„,as defined in Eq. (6.4). This
is an effective local detuning which, according to the ar-
gument we present in Sec. VI, must be small enough to
satisfy Eq. (6.5) for the envelope approach to be valid.
Since this parameter depends on the magnitude of the en-
velope function, it varies throughout the stack. To show
how large SJ actually is, we underestimate 51, by basing
its calculation upon the lowest intensity in the stack I

10
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u 08
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FIG. 4. Profiles of the envelope functions associated with the
principal term (dashed line) and companion term (dotted line),

compared to that of the soliton solution {solid line). For this ex-
ample, the nonlinear stack has a uniform g' '= —10 e.s.u.
Furthermore, n, = 1.9, n2 ——2. 1, d 1

——d2 ——0. 1 pm, and
k, =7.62000 pm '. The Poynting vector is chosen such that
the envelope function has a period of 150 stack periods.
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pared to the soliton solution for a periodic stack with the
same linear properties as the stack from in Fig. 3. Figure
4 was obtained using the Kogelnik assumptions which
were discussed in Sec. IV and in Appendix B, with the
details of the system specified in the figure caption. The
energy flow was chosen such that the period of the en-
velope equals 150 stack periods. In this example
1/8 =27 periods, so that the stack is much longer than
the characteristic width of the soliton. It is seen from the
figure that envelope function associated with the princi-
pal term (dashed line) follows the soliton envelope (solid
line) quite closely, except at the edges. This is to be ex-
pected, since the minima of the actual envelope function
at these positions do not occur for the envelope of the sol-
iton. Furthermore, we know that the rear surface of the
stack is close to one of these minima [Eq. (4.10)]. Conse-
quently, the deviations from the solitonlike shape are
largest at the rear surface of the stack, and at equivalent
positions.

As the energy flow is increased, the envelope function
grows taller and its period decreases. For this reason, the
similarity between the actual envelope function and that
of the soliton will grow worse with increasing Poynting
vector. Qualitatively, however, the profile will not
change much from that of Fig. 4, and, for this reason, no
more field profiles will be presented. The decreasing simi-
larity between the actual envelope function and that of
the soliton, with increasing ent:rgy flow, is consistent with

20the general behavior of a resonance in a cavity. The
present situation of a nonvanishing energy flow is then
analogous to that of a cavity with losses. It is well known
that such losses introduce changes in the field profile,
especially close to the cavity walls, and a shift and
broadening of the resonance condition. The present
equivalent of the shifting resonance condition is the in-
crease of I+ with Si (Fig. 4). The increasing broadening
with energy flow can be seen directly from Figs. 5-7,
which we will discuss in detail below. Figure 4 also
shows the magnitude of the envelope associated with the
companion term (dotted line). As expected, its magni-
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FIG. 6. Transmissivity vs incoming power So, for nonlinear
(3)stack with n& ——1.9, n2 ——2. 1, d& ——dz ——0. 1 pm, X = —10

e.s.u. uniformly, and a length of 200 stack periods. Further-
more, k, =7.62500 pm

tude is much smaller than that of the principal term, ex-
cept at the edges of the figure, or near the rear surface of
the structure.

We now turn to the calculation of the transmissivity of
the nonlinear stack. To interpret the results of such cal-
culations, let us first consider the transmissivity 7 as a
function of the energy fiow S, through the stack. The
main features can be understood by the periodicity of the
envelope function [Eq. (3.23)]. We expect some reso-
nance effect when the period of the envelope function fits
an integer number of times in the stack. Under this con-
dition, the envelope function and its first derivative, and
thus the entire electric field, attain identical values at the
front and back surfaces of the stack. This implies that
field at x =0 and x = Lmust be —the same, and thus
that the transmissivity then equals unity. This remark-
able effect was found by Chen and Mills ' in their nu-
merical studies of nonlinear stacks. The transmissivity
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FIG. 5. Transmissivity vs incoming power So, for nonlinear
(3) —4stack with nl =2.0, n2 ——3.0, d& ——d2 ——0.5 pm, g = —10

e.s.u. uniformly, and a length of 80 stack periods. Furthermore,
k, = 1.103 33 pm FIG. 7. Same as Fig. 6, but with expanded horizontal scale.
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drops in between these resonances, but never to the level
of the linear stack (except when S~ ~0).

Until now, we have only considered the properties of
the nonlinear stack as a function of the energy flow
through the stack S&, which is the natural independent
variable-in the present problem. The control parameter
in experiments, however, is the energy emitted by the
source of radiation Sp. These two quantities are related
by,

Si ——
p (5.7)

where T is the transmissivity. Now consider T as a func-
tion of So. At the resonances, where T equals unity,
Sp =S& . In between the resonances, however, Sp is larger
than S, , the more so when 7' is small. To illustrate this
behavior, and to judge the merits of the envelope-
function approach, we refer to the Figures 5 —7. These
give the transmissivity as a function of the incoming
power Sp for two different nonlinear stacks. The linear
properties of the stacks are identical to those of the ex-
amples of Sec. IV. The figure captions give the pertinent
data. The results in Figs. 5-7 were obtained using the
Kogelnik approximation mentioned in Sec. IV and in Ap-
pendix B. The approximate envelope results, found by
the methods described in this section, are given by the
solid lines in these figures; the exact results, from a nu-
merical solution of the original equation [Eq. (2.3)] are in-
dicated by the crosses. Indeed, Sp grows rapidly in be-
tween the resonances; this behavior is so pronounced that
we observe a markedly multivalued behavior of the
transmissivity as a function of the incoming power. Such
behavior was previously observed by Chen and Mills us-

ing numerical methods. '

Figure 5 shows the results for the stack in which the
refractive indices of the constituents are quite different.
It is clear that the envelope approach is qualitatively
correct for this stack, but that the position of the reso-
nances is not quite right. The deviation of the second res-
onance is much larger than that of the first one, which is
not unexpected, since the energy flow for the two cases
differs by about a factor of 10. Furthermore, because of
the large index difference of the constituents, we expect
our Kogelnik approximation to be quite unrealistic, ' and
the deviations are thus not surprising. Remember that
the linear results for this stack exhibited deviations of
about 25%.

The envelope-function approach is more stringently
checked in Figs. 6 and 7, in which the index difference be-
tween the constituent materials is much smaller. Figure
7 has an expanded horizontal scale, to show the details of
the first resonance. We saw in Sec. IV that the results for
the linear stack were off by only a few percent. The first
two resonances are seen to be quite well reproduced by
the envelope-function approach. It should be mentioned,
however, that the stack is rather long in this case (200
periods) and, in fact, is much larger than the width of the
soliton (I /B -24 periods). For the higher resonances the
agreement between approximate and the exact results
deteriorates quickly. This is not due to the Kogelnik ap-
proximation (see Sec. IV and Appendix B), but to intrin-

sic limitations of the envelope function method. A dis-
cussion of these limitations will be given in Sec. VI.

VI. DISCUSSION AND CONCLUSIONS

The approximations which were necessary to obtain
the analytic results in Secs. II—V can be grouped into
three different categories. The first of these is the appli-
cation of the linear boundary conditions to the nonlinear
stack. Secondly, we have made the Kogelnik assump-
tions (see Sec. IV and Appendix B), to simplify our calcu-
lations. Finally, we have intrinsic approximations associ-
ated with the use of the envelope method itself. In the
current section, we will discuss these three sources of er-
rors separately.

The first type of approximation is the use of the linear
boundary conditions. A comparison with envelope func-
tion solutions based on the exact boundary conditions,
mentioned in the second paragraph in Sec. V, shows that
this approximation is excellent, and that the associated
errors are negligible. This conclusion holds as long as the
envelope-function approach itself is applicable. To un-
derstand this result, which was not initially expected, we
should realize that the essence of the difference between
the linear and the nonlinear stacks is that the nonlineari-
ty provides a means to tune the radiation locally out of
the stop gap of the structure. This behavior was dis-
cussed in the beginning of Sec. III, and will be quantified
later in the present section. On the scale of the entire
Brillouin zone, however, the detuning remains small, and
thus k =a/d, throughout the stack, for our particular
choice of q . Since, moreover, the field and its first
derivative at the rear surface are fully determined by the
boundary conditions, we are led to conclude that in the
region close to the rear surface, the electric field is virtu-
ally completely fixed by the boundary conditions and by
our choice of y, quite independent of the nonlinearity.
We saw that, while S, &&SL, the minimum of the en-
velope function lies within this region, which implies that
the linear boundary conditions can be used. Only at a
certain distance from the rear surface, therefore, do the
deviation from the value k =m/d become relevant.

We now consider errors associated with the use of the
Kogelnik approximation (see Sec. IV and Appendix B).
Under this approximation only a single eigenstate gI was
retained in the calculations. As discussed in Sec. IV, it is
this assumption which is mostly responsible for the 25%
error in Fig. 2. It is thus not surprising to find similar er-
rors when a nonlinearity is introduced in the stack. Since
the Kogelnik approximation is well understood, ' and is
not essential to our method, we will not discuss it further.

Finally, we thus consider the intrinsic approximations
of the envelope-function approach. In a sense, these are
quite obvious since the method is based upon an asymp-
totic series in which third and higher order terms, each
made up of several contributions, were disregarded. To
find among this myriad of neglected contributions the
(few) relevant ones is more difficult. We have been able to
identify two of these, which are discussed below.

The first relevant source of intrinsic error is Eq. (2.23)
for the effective nonlinear coefticient of the stack. We see
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This relation was satisfied in all our examples, and ex-
plains the good results for the linear stack with the small
index difference. We conclude from Eq. (6.1) that the
condition on 5 becomes more restrictive when the stop
gap shrinks, or, equivalently, when the index difference
between the constituents of the stack decreases. To un-
derstand this in more detail, we turn to Eq. (Al 1), which
gives the general expression for an element in the matrix
representation of Eq. (Al). For a small index difference
between the constituent, the stop gaps shrink and only
the 2 X 2 part with the states

~

m ) and
~

1 ) of the infinite
matrix is relevant. We further take into account that
these states have opposite parity, and find then

(co' a)')+c'q'(m —
~

m )

2cq(l
~

0
~
m)

2cq(m
~

II ~1)

~')+c'q'(I
~

I )

(6.2)

The definition of 0 in Eq. (2.15) assures that this matrix
is Hermitian. The lowest-order corrections in q to the ei-
genvalues of this matrix are proportional to q, and this
is the origin of our parabolic approximation. This per-
turbation expansion is only valid when the off-diagonal
matrix elements are small compared to the difference be-
tween the diagonal elements. When the index difference
of the constituents decreases, the stop gap shrinks, and so
does the difference of the diagonal elements, restricting
the validity of the parabolic approximation to smaller
and smaller values of q.

As mentioned before, in our examples of linear stacks 5
is chosen as to satisfy Eq. (6.1). Although this relation is
well satisfied for the nonlinear stacks in Sec. V as well,

that it only depends on the Bloch function y and not on

any of the other Bloch functions. Figure 4, however,
shows that the companion term, which involves other
Bloch functions than q, can be comparable in size to
the principal term. It would thus seem naive to expect
that the effect of the nonlinearity could be described by a
single coefficient cz, depending on the Bloch function

only. An obvious way in which this deficiency can be
taken into account is to include the next highest term in
the asymptotic expansion, Eq. (2.9). A discussion as in
Sec. II shows that a term proportional to 7' 'e, e2, which
would have the desired properties, is proportional to IM .
Obviously, this source of error is absent in linear stacks.

The envelope-function approximation has at least one
other relevant source of error, a problem related to the
use of a simplified description of the dispersion curves.
Notice that only co and its first and second derivatives
enter the discussion, whereas higher derivatives are disre-
garded. The dispersion curve in the vicinity of y is thus
approximated by a parabola. This description must fail
for large values of the detuning, since Eq. (3.3b) predicts
that the decay length will decrease monotonically with 5.
We know this cannot be true indefinitely since the other
edge of the stop gap is reached for 5=

~
col —co

~

. Clear-

ly, our description is only adequate close to the band edge
corresponding to y, or when

(6.1)

the situation is now more complicated since, as discussed
in Sec. III, the nonlinearity changes the local value of the
detuning. Although Eq. (6.1) is satisfied, the local detun-
ing in the regions with high intensity can be quite
different than 6. For the subsequent discussion it is con-
venient to introduce the parameter 5„„which designates
this value of the local detuning, as changed under the
influence the nonlinearity. To get a quantitative measure
of the local detuning, we rewrite Eq. (3.4) as

251—2
m

/=0, (6.3)

where Eq. (3.3b) was used. The expression within the
square brackets in this equation can be interpreted as a
local value for B . Comparing Eq. (6.3) with the corre-
sponding linear equation, we are led to define a local de-
tuning 5~„ to be

(6.4)

For the two resonances shown in Eqs. (6) and (7), the en-

ergy flow is so small that I+ is quite close to A . The lo-
cal detuning, therefore, does not grow very much larger
than 5, and, consequently, the parabolic approximation
remains valid everywhere inside the stack. This is con-
sistent with the good agreement of the results of the
envelope-function approach with the exact results. For
the third resonance, however, the deviations are
significantly larger. We can understand this from the fact
that I+ =1.66A for this case, so that

~
5„,

~

=2.3. For
still higher values of the energy flow

~ 5~„~ grows rapid-
ly, rendering the parabolic approximation less and less
useful.

In conclusion, we have presented an envelope function
approach which leads to the nonlinear Schrodinger equa-
tion for the slow field component for an arbitrary non-
linear periodic structure. In investigating the solutions to
this equation we have restricted ourselves to those with a
harmonic time dependence and which are at rest in space,

To estimate the size of 5~„we should remember that the
envelope function has a maximum value of QI+, which
equals A for S, =0 (this was the soliton limit from Sec.
III) and grows monotonically with increasing energy
flow. In the soliton limit, therefore, 5~„———5 at max-
imum intensity, and the magnitude of 5„, thus never
exceeds 5. In this limit we thus expect the parabolic ap-
proxiination to be valid throughout the stack [if 5 was
chosen small enough to satisfy Eq. (6.1)]. With growing
energy flow I+ and the size of the third term in Eq. (3.4)
increase and so, therefore, does the size of the local de-
tuning. In this way, the nonlinearity can give us access to
parts of the dispersion curve where the parabolic approx-
imation is invalid, in spite of the fact that the detuning 5
was chosen to be sufficiently small. Because of this, the
nonlinearity forces us to introduce a more restrictive con-
dition than Eq. (6.1), for the validity of the envelope func-
tion approach,

(6.&)
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and show that these can be expressed in terms of elliptic
functions. We showed that, in applying the boundary
conditions at the surfaces of the stack, the nonlinearity
plays no significant role. This allows to find analytic
solutions to the present problem. Our method gives good
quantitative results for small values of the energy flow
through the system; for higher values, however, the
agreement deteriorates. The origin of this descrepancy,
which we discussed in the present section, is the
simplified description of the dispersion relations implicit
in the method.

In addition to analytically predicting the multivalued
transmissivity previously seen in numerical calculation,
the envelope-function approach has allowed us to qualita-
tively understand the physics of such phenomena, and
predicts the generality of such phenomena in one-
dirnensional nonlinear periodic structures. In this paper
we have only begun to consider the nonlinear optics of
such structures, restricting ourselves to stationary solu-
tions of the equations. We plan to turn to the richer phe-
nomena of pulse propagation in these structures in a fu-
ture publication.
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where the operator Hk is defined by
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X
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To find the slope and the curvature of band n at k, Eq. (4)
is applied to a neighboring point in the Brillouin zone
with crystal momentum k +q. This results in

where u„„(x) is periodic with the same period as dielec-
tric function e(x ). The quantum numbers n and k are, re-
spectively, equivalent to the band index and to the crystal
momentum in solid-state physics. Substituting Eq. (A3)
into Eq. (2.5) gives a differential equation for the func-
tions u„k(x), which reads
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where

(A6)

(.e+xv)
~

y)=e~'~ 1(&, (A 1)

where &=—c (d /dx ) and f is a perturbed eigenstate.
Under the influence of V, an eigenvalue co associated
with an arbitrary unperturbed state

~

m ) will change to

APPENDIX A

In this appendix we derive expressions for the slope
(i.e., group velocity) and the curvature (group-velocity
dispersion), at a prescribed point of the dispersion curves
of the linear stack. The equivalent procedure in solid-
state physics makes use of the so called k.p method. In
the application of the k p method, one makes use of
time-independent perturbation theory. In Sec. II we al-
ready alluded to the difference between the effective-mass
(EM) eigenvalue equation [Eq. (2.5)] and the Schrodinger
equation. It is this distinction that causes a difference in
the application of perturbation theory to these two equa-
tions. This distinction, however, only shows up in the
second- (and higher-) order corrections to the eigenfunc-
tions. Since the present derivation requires only first-
order corrections to the wave function, however, conven-
tional perturbation theory can be applied straightfor-
wardly. It should be stressed, however, that such a pro-
cedure can give rise to serious errors in other applica-
tions.

As is quantum mechanics, a small perturbation V is
added to the eigenvalue equation [presently, Eq. (2.5)], so
that it reads

V = —c 2iq +ik —q
2 d 2

dx
(A7)

To proceed, perturbation theory is applied to Eq. (A6).
Ustng Eq. (A2) leads to the following expression:

co„k+ —co„k ——2cq(m
~

0
~

m )+c q (m
~

m )

2 2+4c q 2 2
m'~m m m'

(A8)

and

dCOm, C—=co' = (m~Q~m)
~m

CO C2 (co' )'
:—co'„'= (m

~

m &-
dk ~m m

4c' [(m'[Qfm) /2

m m' ~m ~m'

(A9)

to second order in q. The operator 0 is defined in Eq.
(2.15). It is important to note that the matrix elements
appearing in Eq. (A8) are those between the eigenfunc-
tions y, rather than those between the periodic func-
tions u„k. The subscript m in this notation thus refers
both to the band index n and to the crystal momentum k.
From Eq. (A8) we can now immediately extract expres-
sions for the group velocity co' and the group velocity
dispersion co" . A straightforward calculation shows that

co =co +(m
~

V
~

m )+
m'&m m ~m'

(A2)

The summation in the last term on the right-hand side of
Eq. (A10) includes, in principle, all states m &m. As in
solid-state physics, however, the periodicity of the struc-
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+c'q'(m'
~

m )a (Al 1)

Applying standard perturbation theory to a matrix with
these elements then immediately yields the perturbation
expansion in Eq. (AS). Equation (All) is used in Sec. VI,
where it is applied to the present problem in which y is
chosen to be at the edge of the Brillouin zone. The
definite parity of the Bloch functions then prescribes that
the second term in Eq. (A 1 1) vanishes if the two states
have the same parity. The third term, on the other hand,
vanishes if the parity of the two states is opposite.

ture imposes a conservation law of crystal momentum
which causes all matrix elements with k&k' to vanish, so
that only a summation over the band index remains.
Equations (A9} and (A10) are the final results of this ap-
pendix. They are used in Sec. II in the application of the
method of multiple scales.

At this point it is important to mention that Eq. (AS)
could have been found as well by applying Eq. (A7) to Eq.
(A 1}directly. To show this we write the perturbed state

~
g) in Eq. (Al) as ga

~

m ), where the summation is
over the band index, ' and project onto each of the eigen-
states

~

m
' ). This gives rise to a square matrix of infinite

order. An arbitrary element M ~ in this matrix can be
written as

M =(to —co )a 5 +2cq(m' 0
~

m )a

&L g =n cos —x ——
m c d 4

&L q =n sin —x ——
d 4

(Bl)

where the coefficients n, and n, are still to be determined.
The origin of the coordinate x is at the rear of the stack
and points to the mediuin behind the stack (cf. Fig. 4).
The phase of tr/4 has been included in Eq. (Bl) to assure
that the Bloch functions will peak at the correct posi-
tions. The eigenfunction associated with the lower edge
of the stop gap q peaks in the middle of the high-index
material, whereas the other eigenfunction yI will do so in
the middle of the layers with the low refractive index.
The parameters n, and n, follow from the normalization
conditions in Eq. (2.5),

and cpI with the upper edge. In addition, the first layer of
the stack is chosen to have the low index of refraction,
whereas the last layer has a high index. Finally, the lay-
ers of the constituent materials are assumed to have equal
thickness. These assumptions fully specify the Bloch
functions of the stack. Since the Bloch functions y and

y& are located at the edge of the Brillouin zone, they have
a period of 2d, where d is the period of the constituent
materials. We thus conclude that

APPENDIX B
n =

C
' 1/2

The general equations in the present paper are illus-
trated by applying them under a set of specific limiting
conditions. Under these conditions, we concentrate on
the lowest stop gap (see Fig. 1) and neglect the influence
of the states associated with the higher gaps. This im-
plies that only two states enter the discussion (the states
at the upper and lower edge of the gap) so that the sum
over l [as in Eq. (2.12)] consists of just a single term. In
this limiting case, our treatment is equivalent to the ap-
proach of Kogelnik for the analysis of distributed feed-
back lasers. In order to work out a concrete example, we
have to make some additional choices. First, we will
identify y with the lower edge of the lowest stop gap

n =
S

(n p+n, —)+ (n2 n i )—] 2 2 1 2 2
4 2'

1/2

—(n2+n i ) — (n2 n, )—2 2 1 2 2
4
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(B2)

where we made the choice that n2 & n, . In Secs. IV and
V we show that the Bloch functions only enter the discus-
sion explicitly when applying the boundary conditions at
the two surfaces of the stack. Consequently, only the
values and the first derivatives of cp and y& at the origin
will be needed in the calculations.
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