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The propagation of optical pulses in single-mode nonlinear dispersive 6bers in the vicinity of the
zero-dispersion wavelength has to take into account the third-order dispersion term. We show that,
for short dispersion, the broadening of the pulses, described by the rms and full width at half max-

imurn pulse width evolution, is reduced by a red shift from the zero-dispersion wavelength. Numer-

ical resolution of the associated propagation equation, for initially 1.2-ps Gaussian pulses, shows
that this spreading reduction remains valid to a few tenths of kilometers of propagation. Wave-

length shift evaluations are obtained in a very simple way, by use of a moment expansion near the
origin of propagation. A simple (nonexhaustive) explanation of the time-domain and Fourier-
domain pulse evolution, based on the comparison of the phase velocities with the group and pulse
mass-center velocities is proposed.

I. INTRODUCTION

Long-range propagation of short pulses in single-mode
optical fibers has received considerable attention in the
telecommunication domain. Enhancing both the range
and bit rate is of particular interest. A long-range propa-
gation involves high peak powers of the pulses, inducing
self-phase modulation' (SPM) and dispersion effects. A
balance between anomalous dispersion and SPM can be
found, giving rise to the elegant soliton solution, " pro-
vided the loss term can be neglected. But this assumption
is unrealistic for long-range links (50 km). Another way
to lower the pulse spread is to make the carrier wave-
length equal to the zero-dispersion wavelength (ZDWL).
Some authors have recently shown ' that, in this case,
the third-order dispersion term cannot be neglected since
the resulting spreading effects of this term increase witht, where t is the full width at half maximum (FWHM)
of the pulse. In this article, we point out that a small red
shift from the ZDWL to a so-called optimized wave-
length (OW) reduces significantly the pulse spread. It
turns out that, even in the presence of an important
third-order dispersion term, the second-order dispersion
term partially balances the SPM effect. The OW is ob-
tained by minimizing the increase of a second-order Tay-
lor expansion of the rms pulse width around the origin of
the propagation. Surprisingly, comparison of numerical
resolutions of the propagation equation including the loss
term, for the ZDWL and the 0%', show that pulse spread
minimization is valid even for distances over 50 km.

The existence of two successive propagation regimes
may in both cases be deduced from the observation of the
spectrum evolution: as mentioned recently, " an initially
Gaussian spectrum splits into two bands; then after some
distance of saturation, it remains stable. In the temporal
domain, however, our numerical simulations show a split-

ting of the pulse into a stable leading peak and a trailing
dispersive subpulse including multiple peaks. We show
how these features are enhanced in the optimized propa-
gation case. An interpretation based on the comparison
of group velocity and mass-center velocity is proposed.

II. PULSE PROPAGATION EQUATIGN
AND rms PULSE-WIDTH EVOLUTION

A. Envelope equation

A derivation of the pulse-envelope equation of the
transverse electric field, using the slow-varying envelope
approximation, has been proposed by previous au-
thors ' this equation can be written in the form

ko' gz; ko" koko'
l + A

Bz 2 Qt 2 3 ko

(2.1)

where k'"'= (8"k /Bc@")„and t is the reduced time.

The so-called nonlinear dispersive term (8/
Bt)(

~

A
~

A ) (or shock term) is significant for subpi-
cosecond pulses of a po~er level above 1 T%'/cm . Such
is the case of the optical pulse compression technique via
the optical fiber compressor, ' ' where the presence of
this additional term in the nonlinear Schrodinger equa-
tion induces shock forming, ' and a cubic term in the
phase spectrum of the pulse. ' ' Since we restrict our
study to picosecond pulses, this shock term will not be
taken into account. The propagation equation may be
expressed in a nondimensional form. We denote by L, T;
and P, the fiber length, the timewidth, and the peak
power of the initial pulse, respectively. P is related to the
peak amplitude E by
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IE I'. (2.2)
the ZDWL, such that the second- and third-order disper-
sion terms cancel out at least partially the nonlinear
term. That can be done by a derivation of the pulse rms
near the origin of propagation.

First, let us set
A =uE, z=(L, t =rT,

and obtain the nondimensional propagation equation

BQ. BOB'=ia +p +iy
I

u u,
a ar3

(2.3)

(2.4)
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where
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'

+
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Ano eo

LI' .

(2.5)

In the vicinity of the ZDWL, the expression of p is
simplified,

k0"

6 T
(2.6}

Relations (2.5) shows an increasing importance of the
dispersion terms, especially the third-order one, with a
decreasing time duration of the pulse.

for j,k =0, 1,2, and

ko= f '"
I uo(s r) I'dr . (2.9)

Co(g}=Co((=0) . (2.10)

Introducing the reduced meantime, the variance and the
rms pulse width gives, respectively, for a given propaga-
tion distance g

f r
I u(g, r)

I
dr M)(g)

(r(g)) = +™„=,(2.11)
I u(g, r)

I
dr Co

f r'I u(g, r) I'dr M, (g)

I
u(g, r)

I
dr Co

(2.12)

With these notations, the conservation of energy is writ-
ten in the form

B. Pulse spreading over short distances
and optimization of the carrier wavelength

V(g) = & ~(g) )- (r(g) )',
o(g)=V(g)' '.

(2. 13)

(2.14)

As we stated previously, the key point for a pulse-
spread minimization is the choice of a wavelength, near

We have demonstrated (see the Appendix) the following
relations about the moments evolution:

2

f rI u I'dr=3pf dr, (2.15a)

'2
2

f r
I

u
I

dr= 6PyI f u — dr, (2.15b)

and

+ oo

2
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—dr 24iaPf — &dr

2 '2
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+18p f dr 12pyIm f —ru dr .
—00 Q7 —oo a7.

(2.16)

Searching a pulse variance-minimizing scheme, we are
able now to carry out from (2.14) and (2.15) a second-
order Taylor expansion of V(a, () around (=0 for a
given value of a,

8 V 0
V(a, g)=V, +g (a,0)++,' +0(g') . (2.17)

ag'

For a real symmetric pulse, this expansion becomes

M2(a, 0)
V(a, g)= +Pr(a)$ +0(g ),

0

with

(2.18)
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C, ko C2
P (a) =4a —ay +9P

C, C, C,

C2
(2.19)
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C] (COC2 (2.20)

We focus our study on pulse-spreading optimization
around the ZDWL regime, for which no soliton solution
is aimed, and we seek to balance nonlinear self-phase
modulation with second- and third-order dispersion
terms, with the help of (2.18) and (2.19}. It must be
pointed out that second-order dispersion is now the per-
turbative term of the modified NLP equation with an ad-
ditional third-order dispersion term. Taking the rms
pulse width as a measure of the pulse duration may have
some misleading effects, especially when a solitonlike
solution causes the pulse to split into a stationary part,
and a dispersively decaying linear pulse, giving rise to a
linear variation of the associated rms pulse with respect
to distance, giving undue weight to the decaying part.
The study has to be completed by plotting the FWHM
along the distance, in a similar way to previous work on
soliton propagation in presence of chirp, ' and for non-
transform-limited pulses. Moreover, the moments
method summarized by relations (2.15), (2.16), and (2.17)
is valid only near the origin, since conversely to the linear
case, it was not possible for us to derive the expressions
for these quantities for any distance, unless a considerable
amount of cumbersome algebra was used. Despite these
restrictions, we estimate that it is relevant to derive a so-
called optimized wavelength by use of the near-to-the-
origin rms pulse minimization condition

dP (a) =0,
dc'

leading to

(2.21)

The first term in (2.19) represents the second-order
dispersion eff'ect, the second one (negative in case of
anomalous dispersion) the interplay of dispersion with
nonlinear effects in the limit of the classical third-order
expansion of the k approximation, and the third term,
describing the third-order dispersion effect, does not de-

pend on the wavelength and is positive because of
Schwarz's inequality

C. Comparison to previous results

The expression (2.18) can be interestingly compared
with some known results of pulse propagation of solitons,
perturbed solitons, and the ZDWL case.

1. Linear propagation

We want to show that when y goes to zero, formulas
(2.18) and (2.19) are equivalent to relation (34) of Ref. 7,
when the source spectrum is assumed to be infinitely nar-
row (8'=0}. In the linear case, the C functions given
by (2.7) are constant, so that relations (2.15) and (2.16)
can be integrated over any distance. The variance is then
given by

C) C~
V(a, g)=op+ 4u +gp

Co Co

C2

Co
g2 (2.26)

Using Table I and with the help of formulas (2.5) and
(2.6) we get, for an initially Gaussian pulse,

(kp'z) 1 (kp"z)
0 =cT() 1+ +-

(2T g ) 4 (2T g )3
(2.27}

Comparing

All the constants appearing in this section have been
computed for a Gaussian and a hyperbolic secant of
width oo and are given in Table I. For a 1-ps pulsewidth,

y is about 0.1 MW/cm .
Three propagation regimes can be considered. For

small power (y «y) principal dispersion dominates and
(2.22) shows that a, „=0; the optimal propagation is ob-
tained for the ZDWL. Conversely, if y &&y, then

~
R(y)

~
&&1; the third-order dispersion can be neglected

so that Eq. (2.4) reduces to the nonlinear Schrodinger
equation. Classically (2.5) and (2.22) show that dispersion
is anomalous. If y =y both dispersion effects have to be
considered in the study of the optimized propagation,
some features of which are studied in Sec. III, on the
basis of numerical simulations.

ko
pt= gC y

1

(2.22)
~T'

u p(r) =exp
2CT T

(2.28)

4a, ,(C, /Cp) —a,p,y(kp/Cp)

9P [(C2 /Cp ) —(C
& /Cp )]

(2.23)

and to consider the characteristic power y, for which

and to observe afterward the pulse rms and the FWHM
along the distance. This study is mainly centered on the
relative importance on pulse spreading of second- and
third-order dispersion. It is then useful to evaluate the
ratio

with relation (8) of Ref. 7 we see that Marcuse's time unit
is Ta pv 2, so that (2.26) is identical to relation (34) of
Ref. 7 when the source spectrum is assumed to be
infinitely narrow ( W =0).

2. Nonspreading condition for a Gaussian pulse
and a hyperbolic secant when P &&a

It follows from (2.19) that, from A.p and in case of
anomalous dispersion, the nonspreading condition is, for
any pulse, given by

R(y)=1 .

Making use of (2.22) gives

(2.24) 4C)
a ko

(2.29)
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TABLE I. Characteristics constants for a Gaussian and a hyperbolic secant of energy pulsewidth cTp.

Definition

rrns pulsewidth

Cp

C,

Gaussian

—(v /4o'p
up(~) =e

CTp

' 1/2

2cT0
. '1/2

1

2(70 2
1/2

3

( 2a'0 )

Hyperbolic secant

u p ( 7 ) =sech( ~/~0 ),

with %0=2+3CTp/7T

CTp

2 Tp

2

3%0

14 —3
15 0
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2&2
3&3
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7
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16 —4
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=0.880

= 1.097
7r

3

' '=0.9433.
23 ~'

= 1.924
3

—=0.860
12

2

2a gp

1.41

CTp

(2.30)

and for a hyperbolic secant

a
L

1.64
2

Op
(2.31)

Let us note that the fundamental soliton solution of Eq.
(2.4), which is given by

' 1/2
i(a/P&)gu(, r)=- . e

7 0
(2.32)

ch
7p

Referring to the values of C, and ko given in Table I, we

get for a Gaussian pulse
sidered a function of the distance g, is a constant if we

neglect a third-order term,

V(g) = V'+O(g') . (2.35)

C) Cp C2
3 min

—6R
p p

1/2
1

C2
(2.36)

The first-order term is zero because the initial pulse shape
has been assumed to be symmetrical; the second-order
term is zero because of the condition (2.33).

The nonspreading value of the ratio y/a increases
with p, because both dispersion terms have to be compen-
sated. For large values of the ratio p/a, it behaves like
(p/a )'.

It is relevant to consider the carrier wavelength for
which the power given by (2.34) takes its minimal value.
Such a power is given by

and the condition
1/2

1 2a =1
7 p

(2.33)
which leads, for a Gaussian pulse of pulsewidth O.p, to

(2.37)

is equivalent to (2.31).

3. Soli tonlike propagation with higher-order dispersion

(2.34)

For such a value of the ratio y/a, the variance, con-

Making now p&0 and setting P (a)=0 in (2.19), we

get a steady pulse propagation condition in the presence
of non-negligible second-order dispersion,

Co C, p C2 Ct
+9a kp Cp a Cp

(see Table I). We get then from (2.5) the peak power re-
quired from a solitonlike propagation,

3
E'n

p cA,k pP(ooT} =f (2.38)

where the dimensionless coefficient f is equal to —,', =0.06.
This can be compared to formulas (8}—(10} of Ref. 11,
which give f )0.24. These formulas have been obtained
by a very different method, so that we only retain that
these two values of the minimal power have the same or-
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der of magnitude. If we used maximal pulse contraction
as in (2.21) and Ref. 24, our value of f should be multi-
plied by a factor of 2.

III. NUMERICAL RESULTS

The pulse-propagation equation (2.4) is solved numeri-
cally by means of the widely used split-step Fourier algo-
rithm ' the nonlinear step is solved analytically, and
the dispersive step by using the FFT. Convergence has
been checked by increasing the number of samples in the
FFT and the number of steps.

As an example, we consider the propagation over 50
km of a 1.2-ps, 0.2-MW jcm Gaussian pulse. The
coefficients of Eq. (2.4) are then given by

a=0. 52, P=0, 123, y=5. 90 . (3.1)

The value of a corresponds to a wavelength shift

pt ko 5Ar of 1.2 nm. Such a propagation has been
compared to the ZDWL case, for which a=0 in (3.1). In
this section, the results have been given without any loss
term. Figure 1 shows the compared peak power evolu-
tion between the optimized, critical, and linear cases
(curves 1, 2, and 3, respectively). Curve 1 exhibits a
compression near the origin, a consequence of condition
(2.22). Figure 2 shows the pulse rms (curves a, b, and c),
and the FWHM (curve 1, 2, and 3) for the same opti-
mized, critical, and linear cases, respectively. In Fig. 2
two successive regimes can be observed: regime I,
characterized by the interplay of nonlinear and dispersive
effects, inducing a nonlinear variation of the rms
pulsewidth, and regime II, dominated by dispersion for
which the increase of the rms pulse width becomes linear
with propagation distance. This feature has already been
noted. ' Classically, the slopes are higher in nonlinear
propagation because the spectrum broadening occurring
in regime I increases the dispersion effects in regime II.

Figures 3 and 4 show the temporal and spectral profiles
for increasing distances, respectively, for critical and op-
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FIG. 2. Normalized rms (solid line; curves a, b, and e) and
FWHM (dotted line; curves 1, 2, and 3), for the optimized and
critical wavelengths and for the linear case, respectively. The
pulse parameters are the same as in Fig. 1.
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FIG. 1. Normalized peak intensity variations along the dis-
tance of propagation (in km) of an initially 1.2-ps, 0.2-MW/cm
Gaussian pulse in a lossless monomode fiber for the optimized
and critical wavelengths curves 1 and 2, and for the linear case
3.

Tsme (ps) Frequency (THz)

FIG. 3. Normalized temporal and spectral evolution at the
critical wavelength of the pulse defined in Fig. 1.
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timized propagations. Curves related to a 5-km distance
are characteristic of regime I. After 10 km, regime II is
reached, characterized by a quasitable spectrum. For the
critical dispersion propagation case (Fig. 3), the initially
Gaussian pulse splits into two parts; the leading part is a
slowly decreasing peak of stable FWHM that remains al-
most centered at the origin of the reduced time frame.
The trailing part exhibits some ringing and spreads opt
regularly. The spectrum splits gradually into two bands,
a result at least qualitatively consistent with Fig. 5 of Ref.
8, where the same oscillating structure and the same
splitting characteristics are observed.

Figure 4 represents the optimized propagation
features. The temporal profile fits the general charac-
teristics mentioned above; we note, however, a higher,
narrower, and more stable main peak than in the critical
case, while the trailing edge spreads faster and is under
1% of the main peak power after 10 km. In the spectral
domain, the two bands are no longer symmetric, and the
red side band is close to the central frequency. As clearly
shown by comparison of temporal profiles in Figs. 3 and
4, the widening of the pulses is significantly reduced,
especially for the distance of 20 km, the subpulses are
flattened by a larger amount, and the peak power remains
higher for the optimized propagation.

A. Interpretation of the observed
pulse distortion

The splitting of the spectrum suggests an interpreta-
tion of the numerical results, involving the mass center
velocity.

C1
&(k) —r(ko) =3~ (4—Co)

Cp

where go is the reaching distance of regime II.
The mean time is then given by

(3.2)

r(z) —r(zo) = Z —ZP Ci Z —Zp
+3P T.

Ug 0
(3.3)

The mass-center velocity, defined as

Z Zp
Ucg =

F(z) —t(zo)

is then bound to the group velocity U by

(3.4)

1. Simple model

Figure 5 shows a linear increasing of the mean reduced
time in regime II. We get from (2.35a)

1.3 2.2

Ucg

C1 Ug T
=1+3P

0
(3.5)

0.975-

0.65

2 * Skm 1.65 Let us study (Fig. 6) the intersection points of the re-
duced phase velocities curve

0. 325- 0.55 ~

N —Np

k —k 0
(3.6)

0.8 4.0

with U, in both cases of critical and optimized regimes
(curves A and B).

The abscissa values cop+5'+ of these points are the
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FIG. 4. Normalized temporal and spectral evolution at the
optimized wavelength of a pulse defined in Fig. 1.

FIG. 5. Mean for the critical and optimized propagation
(curves A and 8); the corresponding linear case is shown in

curve C.
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FIG. 6. Phase velocity curves U for critical and optimized
values of the group velocity dispersion parameter. Curve A,
A, =Q (ZDWL); curve B, A, =A.0+5k, (OW) linear case (curve C).

0.008

0.004
C

0.3

0.15 .

two spectral peak frequencies, provided the other spec-
trum components can be neglected. Their algebraic ex-
pressions can be obtained by expanding k(rv) around coo

up to the third order, so that

v (cv)=
5CO

2

vg

k()'

k()

g~2 ko"

6 ko

(3.7)

5co+ and 5~ are then the roots of the equation,

(T5ro) —(T5rv—) —3 =0 .
P Cc

Expressing these roots gives
1 '2 1/2

2P Cc

(3.8)

(3.9)

The asymptotic value of the coefficient C& /Co is given by
the slope of the reduced mean time [see (3.2) and Fig. 5].

These values have been compared to those obtained by
numerical integration (Figs. 3 and 4) (see Table II). The
discrepancy between two couples of values can be ex-
plained by the fact that the simple model involves only
two spectral lines and not a continuum of frequencies.

We may note that if p is zero, then u =u,s. Then the
only intersection point of v~(rv} with v,s (Fig. 6} is given
by co=~0. It &s known that, in this case, the spectrum ex-
hibits a single peak. As a result, this simple model shows
the role of the mass center velocity and permits us to ex-
plain the structure of the spectrum in various cases of
nonlinear dispersive propagation.

-20 -10 0 10 20 30 40 50

Time (ps)

2 - ] 0 ] 2

Frequency (THz)

FIG. 7. Comparison of critical and optimized propagations
at z =50 km, for a loss coefficient of 0.2 db/km.

B. Loss eft'ects

For a better understanding of the interplay between
dispersion and nonlinearity, we have, in a first step,
neglected the loss term effects. ' The results presented
above have to be reviewed by introducing in the
propagation-evolution equation (2.1) a 0.2 dB/km loss

2. Optimized dispersion physical interpretation

The main features of optimized propagation can be un-
derstood through the previous simple model. Figure 6
shows curve A to be tangent to vg, while curve B exhibits
a wider range of frequencies approximately moving at the
group velocity. The main subpulse, moving at the group
velocity (Fig. 4) is then more intense and stable.

Moreover, looking at the left-hand side of Fig. 6, we
see that in the domain of frequencies moving more slowly
thorn the mass center, curve B has a steeper slope than
curve A. This explains the faster spreading of the trail-
ing edge, in the optimized propagation case.

The subpulse preceding the main pulse (Fig. 4) is relat-
ed to the presence in curve B (Fig. 5) of a spectral band
moving faster than v ~

TABLE II. Spectrum peak abscissa values in asymptotical configuration.

Critical case (THz)
5CO p

Optimized case (THz)

5'+
Two-spectral-line approx.
Numerical integration

—0.8
—0.4

0.8
0.6

—0.5
—0.2

1.2
1
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term. The pulse evolution in an absorptive medium is
presented in Figs. 7(a) and 7(b) (critical and optimized
propagations).

We observe that the asymptotical regime is reached
faster because of the weakening of the nonlinear effects.
Comparison of Figs. 7(a) and 7(b), however, shows that
the optimization remains valid.

2 dg
u d7=o. Im u d7

dr 8'r

3f dp Bu

2 d7 37

1 d——f, /u/'dr (A 1)

IV. CONCLUSION

We have considered the problem of minimizing optical
pulse distortion in nonlinear dispersive fibers, in the vi-
cinity of the zero-dispersion wavelength. Derivation of
differential expressions of the mean time and the rms per-
mitted us to study the variations of the rms pulse width
for which an expansion has been given for short dis-
tances. We have then shown that, for a given amount of
secondary dispersion and peak power, a red shift of the
wavelength from the ZDWL permitted to reduce
significantly the pulse spreading both in the rms and
FWHM sense. This wavelength shift introduces a
second-order dispersion effect increasing with the pulse
power. Comparing the two dispersion effects led us to
define a characteristic power P, depending on the third-
order dispersion and the pulse duration. The case P =P
has been investigated here, and it turned out that a shift
of the carrier frequency leads the pulse to propagate with
reduced side lobes and spreading.

Examination of the pulse spectrum suggests a physical
interpretation of this phenomena, based on the mass-
center pulse velocity concept, that accounts for qualita-
tive results related to critical and optimized propagation.

The method, based on the properties of the rms pulse
width for small distances, actually remains valid for
long-range propagation, even in the presence of a loss
term in the propagation equation.

For given values of the timewidth and peak power, an
optimal wavelength, slightly above the ZDWL, has thus
been defined. The peak power is found to be above the
power of the fundamental soliton of same timewidth and
carrier frequency. Moreover, the corresponding pulse
profile splits into two subpulses: a main, leading, stable
pulse, analogous to the fundamental soliton pulse, and a
trailing, dispersive, fast-spreading subpulse. These
features can be found even in the presence of a large
secondary dispersion term.
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Moreover, a second conservation law is available,

+~ Bu
Im u d 7=const,—co Br

which follows from the relations

(A3)

and
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G(u)= — ++
~

u
~

2 Br 4

Applying then formulas (Al) with g(r) =r and (A2) with

P(r) = 1 leads to (2.15a) and (2.]5b).
Proof of (2.16) is obtained by substituting P(r)=r in

(A 1). We obtain

f r ~u
~

dr=2almf ru dr
2 d( —00 ()7

Deriving (2.4) with regard to r and using the same pro-
cedure leads to
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APPENDIX: DIFFERENTIAL EXPRESSIONS
{2.15)—{2.16) OF THE FIRST- AND

SECOND-ORDER MOMENTA

For a given real function P, we multiply the evolution
equation (2.4) by gu, integrate over the time variable r,
and take the real part of the result. We obtain

f r ~u
~

dr=4a Imf ru dr
Br

+6@ f r dr .
—00 7

(A4)
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The first term in (A4), equal to 4aT„with

Ti ——2Im f r dr —Im f u dr,c1Q BQ BQ

ar ag ag

is evaluated by expressing ()u/()g with the help of (2.4),
which leads to

T, =2af dr 3i—Pf dr — f ~u
~

dr.
dr ()7 ()

by means of (A2) with P(~)=r, which gives

2

Tz —— f r dr=2a Im f d~d BQ ()u () u

dT 1 ()

2

+3Pf "
d~

C}

—2y Im wu
BQ

7

2

The second term in (A4), equal to 6y T2, is then evaluated This proves (2.16).
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