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Calculation of frequency-dependent polarixabilities with application
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M. Kutzner, H. P. Kelly, D. J. Larson, and Z. Altun'
Jesse W. Beams Laboratory of Physics, Department of Physics, University of Virginia, Charlottesville, Virginia 22901

(Received 7 June 1988)

Calculations of the frequency-dependent electric dipole polarizabilities have been carried out for
atomic Cl and Cl using many-body perturbation theory. Higher-order diagrams have been evalu-

ated to include the effects of electron correlation. These results are used to interpret a recent experi-
mental observation of shifts in the photodetachment threshold of Cl in the presence of a strong
laser field.

I. INTRODUCTION II. THEORY

The frequency-dependent electric dipole polarizability
is an important parameter in the description of atomic
processes including the ac Stark shift, ' photoionization,
and the London dispersion forces between two atoms.
Very accurate calculations and precise measurements for
the static polarizability and hyperpolarizability are now
available for many atomic systems. These are discussed
in the excellent review article by Miller and Bederson.
Dynamic polarizabilities, however, have been published
for only a few neutral atoms and negative ions.

A recent experiment by Trainham et al. " measured

approximately a 2-cm ' increase in the Cl photode-
tgchrnent threshold in the presence of a 1064-nm wave-
length, 10' Wlcm laser field. Dynamic threshold shifts
for negative ions have been anticipat=d theoretically by a
number of authors' and shifts in photoionization thresh-
olds have been extensively discussed in relation to the
electron energy distribution observed in above-threshold
ionization (ATI) experiments in neutral atoms. '

However, the experimen& of Trainham et al. provides the
first direct observation of such a shift. This shift in the
threshold is presumably due to a combination of dynamic
Stark shifts for the negative ion and neutral atom, and
the ponderomotive energy of free electron. ' ' Calcula-
tion of the shift requires a knowledge of the ac Stark
shifts for both the Cl ion and the neutral atom Cl.
Evaluation of these shifts and comparison to the pon-
deromotive energy provides a quantitative prediction for
the Cl threshold shift and a qualitative picture of what
can be expected for similar measurements in other atomic
systems.

The present paper presents many-body perturbation
theory (MBPT) calculations of the dynamic polarizabili-
ties of Cl and neutral Cl. Section II contains a brief re-
view of the theory. In Sec. III details of the calculations
are given and the results are presented. Applications of
the olarizability results to the experiment of Trainham
et a." and the implications for other experiments are
discussed in the final section.

E=Fzcos(tot) =Fz(e' '+e '"')/2 . (2)

An atom in this field may be described in the nonrela-
tivistic approximation by the Hamiltonian

V2 z N——+ g v,"+Fcos(cot) g z, ,
i i&j=1 i=1

where the first term represents the kinetic energy of each
of the N electrons, the second term represents the in-
teraction of each electron with the nucleus, the third term
represents the Coulomb interaction between electron
pairs, and the last term represents the interaction be-
tween each electron and the perturbing electric field
Fz cos(tot) This Ha. miltonian is manifestly gauge invari-
ant since we have represented the interaction between
electrons and the field in terms of E.r as opposed to the
minimal substitution procedure. ' Atomic units are ern-

ployed throughout this paper unless otherwise indicated.
The dynamic polarizability of the atom is

N 2

a(ra) —z (gf z=z,
f(~n) i=1

1 1
X +E„—Ef —co E„—Ef +co

(4)

where gf~~„, represents both a sum over bound excited
states and an integral over continuum states. In Eq. (4)
the wave functions g„and Pf are exact eigenstates of the

The dynamic polarizability a(co) describes the linear
response of an atom to an externally applied electric field
and is defined by the equation

p=a(to)E,

where p is the electric dipole moment and E is the ap-
plied field given by
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4m.
o(co)= colma(co) .

C
(6)

The real and imaginary parts of a(co) are related through
the Kramers-Kronig relation

Rea(co) =—P f dc@' .
2 ~ ~'Ima(co')

CO —CO

(7)

For a complex atom, it is generally impossible to evalu-
ate the many-body wave functions g„and gf exactly.
Here, we employ the many-body perturbation theory of
Brueckner ' and Goldstone as applied to atoms. The
Hamiltonian of Eq. (3) is divided into a time-independent
and a time-independent part. By applying time-
dependent perturbation theory, we obtain Eq. (4). The
time-independent part of the Hamiltonian is then further
separated into a part Hp consisting of only one electron
operators and a correlation term H, treated as a pertur-
bation. Then

H =Ho+H, +Fcos(cot) g z, ,

nonrelativistic Hamiltonian with F =0. When co is
greater than the ionization threshold, the second denomi-
nator of Eq. (4) may vanish. In this case the denominator
is treated in the usual way, ' ' by adding a small imagi-
nary contribution i g to the denominator and taking the
limit as g~0. We then have

lim (E„E/—+co+i rt) ' =P(E„Ef—+co)
0+

t'n5—(E„Ef—+a)),
where P indicates a principal-value integration. The
imaginary part of a(co) obtained from this expression
leads to photodetachment or photoionization and is relat-
ed to the cross section by the equation

two interactions with the dipole perturbation g,. z, and
any number of interactions with H, . For the time-
dependent case a similar diagrammatic expansion may
be developed for a(co) where energy denominators be-
tween the two dipole interactions have additional terms
+co. When electron correlations are neglected, we get the
result of Eq. (4) where Pf and g„are unperturbed states.
The lowest-order diagrams contributing to a(co) are given
in Fig. 1. In these diagrams, time proceeds from bottom
to top. Particles are represented by arrows pointing up-
ward. Hole states are represented by arrows pointing
downward. The dashed line terminated by a dot
represents an interaction with the electromagnetic field.
If the bottom interaction is with e+'"'g,. z;, then the top
interaction is with e '"'g,.z; and vice versa. Energy
denominators at times preceding or following both in-
teractions with the field are Ep —Hp, while energy
denominators occurring between the two interactions are
Ep —Hp kQ) when the initial interaction is with
e '"'g,.z, . Dashed lines indicate interactions through
the perturbation H, . Exchange diagrams are also includ-
ed but are not pictured in Fig. 1. The lowest-order dia-
gram is pictured in Fig. 1(a). This diagram is evaluated
by substituting the eigenfunctions of Ho into Eq. (4).
When the interaction between electron pairs occurs be-
fore or after all interactions with the photon field, as in
Figs. 1(b)—1(d), the diagram is an initial-state correlation
diagram. When correlations occur between interactions
with the photon field as in Fig. 1(e), the diagram is an
intermediate-state correlation diagram.

The dipole matrix elements of Eq. (4) may be evaluated
using two different operators: the length operator
Z =g,. ,z;, or the velocity operator P, =g, ,p, . The

I

two forms of the matrix element are related through the
commutation relation

where

2
Z——+V(r;)

2 p;
(9)

P, = . [Z,H]}, —
l

and

N N

H, = g vj —g V(r) . (10)

p //

(b)

Q——4 )(
k'

(c)
There is freedom in the choice of the single-particle po-
tential V (r, ), and important correlations may be included
by selecting the potential judiciously. Experience has led
us to choose either a term-dependent Hartree-Fock po-
tential, or in the case of many open-shell systems, the
effective potential of Qian et al.

In the Brueckner-Goldstone expansion, the correlat-
ed wave function P„(or l/if) is given by the sum of all
linked diagrams starting from an unperturbed state

(or @&), with the perturbation H„but with no
interactions with the time-dependent perturbation
(F/2)e —'"'g,.z, . Here the @„(and Nf) are eigenfunc-
tions of the unperturbed Hamiltonian of Eq. (9). In the
static case, one may start from the perturbation g,.z,. and
derive a diagrammatic expansion for a(co) involving

k"

/4 k

k

(e)

FIG. 1. Diagrams contributing to a(co): The heavy dot indi-
cates an interaction with the external field. The bottom interac-
tion is with (F/2)e —' 'g z„and the top interaction is with
(F/2)e+' 'g, z, . (a) is the lowest-order diagram. (b), (c), and

(d) are initial-state correlation diagrams. (e) is an intermediate-
state correlation diagram.



38 CALCULATION OF FREQUENCY-DEPENDENT. . . 5109

which gives

(@. (
ZH I—IZ

I yf )

i(+ +f)(@ [
z

) qf ~ (12)

12

Recall that p„and ff are eigenstates of H in the absence
of the time-dependent electric field. We have evaluated
the dynamic polarizability using both length and velocity
forms of the dipole operator; the two results must agree
when electron correlations have been included to all or-
ders. The calculations were performed with E r as the
time-dependent perturbation added to the time-
independent Hamiltonian Ho+H, of Eqs. (9) and (10).
Velocity results were obtained by substitution of
(f„~P,

~ Qf ) h'(E„Ef ) —for (P„~ Z
~ Pf & in Eq. (4}.

The choice of gauge and its effect on the interpretation of
threshold shifts is discussed in Sec. IV.
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III. CALCULATIONS AND RESULTS
A. The negative chloride ion, Cl

FIG. 2. Real part of a(co) for Cl plotted as a function of
photon energy (frequency in a.u.). Only the lowest-order dia-
grams were included in this calculation. Length result indicated
by , velocity by ———..

Calculation of the Cl po1arizability is simplified by
two considerations: the closed shell properties which
limit the number of LS-coupled states to be considered
and the absence of any bound excited states. We calcu-
lated both the real and imaginary parts of a(co). Calcula-
tions of the photoionization cross section for C1 have al-
ready been performed including interesting higher-order
effects such as the polarization potential and relaxation.
Relativistic random-phase-approximation calculations
have also been reported. Thus, the imaginary part of
a(ro) [which is proportional to the photoionization cross
section through Eq. (6)] is of interest as it is related to the
real part [through Eq. (7)], and since it can be compared
to other calculations, it is a check on our method.

Orbitals representing the ground state were generated
by the multiconfiguration Hartree-Fock (MCHF) code of
Fischer. A set of 46 continuum s orbitals and 46 con-
tinuum d orbitals used in the integrals over excited states
were calculated in the 3p ( P)ks('P) and 3p ( P)kd('P)
V' " potentials, respectively. A projection operator
method was used to ensure orthogonality between the ex-
cited s orbitals and the ground state s orbitals.
Throughout the calculation we used the single particle 3p
hole energy of —0. 1503 a.u. obtained from the single-
configuration ground-state MCHF calculation. The ex-
perimental photodetachment threshold is 0.134 a.u. (Ref.
29) and the difference in the total self-consistent-field en-
ergies of the neutral atom and the ion (b,SCF energy) is
0.0948 a.u.

The lowest-order diagram contributing to the polariza-
bility is shown in Fig. 1(a) and is given by

1 1+
P6 —Ek+N 6 —6k —CO

where gk represents the sum over bound excited states
(if any) and integral over continuum states, and e is the
single-particle energy. In Cl we calculated this diagram

for p =3p, k =ks, kd; p =3s, k =kp; and p =2p,
k =ks, kd. The effects of the 3s and 2p excitations were
found to be quite small because the binding energies are
relatively large (0.73 and 7.70 a.u. , respectively, in the
Hartree-Fock approximation). The results of this
zeroth-order calculation are plotted in Fig. 2. Although
the length and velocity calculations show similar trends
as a function of the frequency of the applied field, they
disagree quantitatively.

The differences between the individual length and ve-

locity calculations indicate the need for the inclusion of
correlations. The higher-order diagrams of Figs.
1(b}—1(e) were evaluated and added to the lowest-order
result. The initial-state correlation diagrams of Figs.
1(b)—1(d) were evaluated for p =3p, k =kd, ks; p =3s,
k =kp; with q =3p, k'=kd, ks; q =3s, k'=kp; q =2p,
k' =ks, kd. The intermediate-state correlation diagrams
of Fig. 1(e) were evaluated for p =q =3p and either
k =ks, k'=kd or k =kd, k'=ks. The case where k and
k' have the same orbital angular momentum is accounted
for by our use of the LS-coupled potential. The results
obtained by summing these diagrams are displayed in
Fig. 3. Here the length and velocity results are in far
better agreement with one another than in Fig. 2.

Our value for the static polarizability, a(~=0), is 4.37
A (length) and 4.29 A (velocity). This is to be com-
pared with the coupled Hartree-Fock result by
McEachran et al. of 4.675 A and the early estimate by
Dalgarno ' of =3 A . The polarizability for Cl was
first measured by Fajans and Bauer in an aqueous elec-
trolyte solution and later corrected by Coker for the
perturbing effects of the aqueous solvent to a value of
4.11(6) A . Our result differs from this value by 5%. For
static polarizabilities, we do not claim the high degree of
accuracy obtained by Werner and Meyer and Reinsch
and Meyer using pseudonatura1 orbital configuration in-
teraction. Their calculation produces polarizabilities
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FIG. 3. Real part of a(co) for Cl including higher-order
MBPT diagrams shown in Figs. 1(b)-1(e);,length result;
———., velocity result.

FIG. 5. Imaginary part of a(cu) for Cl including higher-
order MBPT diagrams shown in Figs. 1(b)—1(e);,length
result; —-—"—,velocity result.

which they state are accurate to 2% for many neutral
atoms. We have left out many higher-order diagrams
which could conceivably alter our value for the static po-
larizability by as much as 10%%uo. Examples of such dia-
grams are shown in Fig. 4. However, we believe that our
level of accuracy is appropriate for purposes of compar-
ison to threshold shift measurements in laser fields.

An essential element of the present calculation is the
determination of the frequency-dependence of the polari-
zability. The increase in polarizability as co increases
from zero can be seen by expanding the denominators in
Eq. (13) in powers of co. The peak occurring at the photo-
detachment threshold results from the cancellation be-
tween E'p and co in the denominator of this term. This is
consistent with the below threshold behavior of the ana-
lytic expression for a(co) derived by Aldelman for H
and with the quasiclassical description for negative
alkali-metal ions given by Delone et al. The analytic ex-
pressions derived by Dalidchik and Slonim' for negative
ions with a valence p electron do not have the correct be-
havior for a(co) as co~0.

Our calculations of a(co) increase to a finite peak at the
photodetachment threshold (we have used the Hartree-
Fock eigenvalue energy of 0.1503 a.u. ). A finite max-

imum for this peak is expected for the following reason.
The excited-state single-particle orbitals, Pki for Cl (or
any negative ion) are calculated in a potential where
Coulomb forces are neutralized by screening and can be
approximated by spherical Bessel functions j&(kr ). In the
k-normalization scheme in which

Pki(r ) —sin(kr In /—2+BI), (14)

the spherical Bessel functions are multiplied by kr. For
small kr, these functions are proportional to (kr)'+',
hence the dipole matrix elements scale as k for s waves
and k for d waves. The integrand in Eq. (13) thus
remains finite as k approaches zero, even when e and co

cancel.
When the frequency of the applied field greatly exceeds

the orbital frequency of the 3p electrons, we see a nega-
tive result consistent with the —1/co result expected for
free electrons. This point is discussed further in Sec. IV.

As a check on our calculation of the real part of a(co),
we used the result for the imaginary part obtained using
the second term in Eq. (5) and shown in Fig. 5 as input to
the right-hand side of Eq. (7). The real part of a(co) ob-
tained in this way agrees with the independent calcula-
tion of Re[a(co)] to within 5%%uo at most frequencies.

B. Neutral chlorine

(a) (c)

(e)

FIG. 4. Higher-order diagrams contributing to a(co). These
are not included in the present calculation.

The neutral chlorine calculation is complicated by the
presence of bound excited states in addition to the contin-
uum, as well as nine di6'erent multiplet terms which are
accessible from the ground state through the dipole
operator. This is to be compared with Cl which has
only two continuum channels corresonding to 3p kd('P)
and 3p ks('P) originating from the 3p valence shell. We
have used the Russell-Saunders L,SML Mz coupling
scheme throughout this calculation. A detailed MBPT
calculation of the photoionization cross section for neu-
tral chlorine which includes couplings between the many
final-state channels has been performed by Brown et al.
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It was shown, however, by Qian et al. that by a suitable
choice of an effective potential, many of the effects of the
final-state correlations may be included. We have chosen
to simplify the present calculation by using this latter po-
tential.

Neutral chlorine has the open-shell ground-state
configuration 3p ( P). The terms which are accessible
from the ground state by excitation of a 3p electron by
the dipole operator are 3p ('D)kd( D), 3p ( P)kd( D),
3p ('S)kd( D), 3p ('D)kd( P), 3p ( P)kd( P),
3p ('D)kd( S), 3p ('D)ks( D), 3p ( P)ks( P), and
3p ('S)ks( S). Rather than calculate six different sets of
d orbitals and three different sets of s orbitals, we calcu-
lated a single set of d and s orbitals in the appropriate po-
tentials. '4

Having obtained a complete set of excited states in this
fashion, we summed the MBPT diagrams of Fig. 1. The
virtual excited states are LS-coupled wave functions so
that, in general, a different diagrammatic series must be
summed for each LS-coupled intermediate state. For
3p ~kd excitations, six sets of LS-coupled states are used
to evaluate the diagrams of Fig. 1, and for 3p ~ks there
are three sets of LS-coupled states. In addition the polar-
izability was averaged over MI .

It is desirable to include the effects of the various pho-
toionization edges due to the P, 'D, and 'S couplings.
The experimental 3p removal energies 0.4800 ( P), 0.5315
('D), and 0.6055 ('S) a.u. for each of these ionic core cou-
plings were used in calculating the diagrams.

Brown et al. noted in the photoionization calculation
that exciting a 3s electron into the open 3p shell has a
large effect because of the near degeneracy between the 3s
and 3p shells. This excitation was treated by calculating
the 3s3p ( S) state self-consistently, and using the result-
ing 3p orbital to evaluate the diagram of Fig. 1(a) with

p =3s and k =3p. The excitation energy of the 3s3p ( S)
state was taken to be 0.3904 a.u. , the value measured by
Radziemski and Kaufman. No higher-order diagrams
were included for the 3s3p ( S}excitation.

The lowest-order result represented by the diagram of
Fig. 1(a} where p =3p, k =ks, kd and p =3s, k =3p is
shown in Fig. 6 for both length and velocity forms.
Again the length and velocity agreement is only fair.
Resonances corresponding to the excitations 3p~nd and
3p ~ns converging to the P, 'D, and 'S thresholds be-
gin at 0.34 a.u. Only the first of these excitations are
shown due to the complexity of the spectrum in this re-
gion. We have not included the higher-order diagrams
which would contribute to resonance width, so the reso-
nances appear as simple poles. The large peak seen at
0.39 a.u. is due to the 3s3p ( S) excitation and is not a
member of these Rydberg series; we get a contribution to

s ~3p only for ML =0
The real part of the frequency-dependent polarizability

for neutral chlorine calculated with all the diagrams of
Fig. 1 is shown in Fig. 7. For Fig. 1(e) we only included
coupling between 3p ~ks and 3p ~kd channels. These
diagrams are not included by our choice of potential.
The average potential includes the effects of the diagram
of Fig. 1(e) when p =q and k and k' have the same angu-
lar momentum. The agreement between length and ve-

1
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5

FIG. 6. Real part of a(co) for Cl including only the lowest-
order MBPT diagrams. Length result indicated by, veloc-
ity by ———. Resonance widths were not calculated.
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1 5

FIG. 7. Real part of a(co) for Cl including higher-order dia-
grams. is the length result, —- —.— is the velocity re-
sult. Resonance widths have not been calculated.

locity results is now very good. Our calculated static po-
larizability a(co=0) is 2.22 A (length) and 2.16 A (ve-
locity). The geometric mean is 2.19 A and is in close
agreement with the accurate calculations of Reinsch and
Meyer of 2.18(4) A . We do not expect the accuracy of
our calculation to be better than approximately 10% be-
cause of the neglect of additional diagrams. Thus, our
very close agreement with Reinsch and Meyer may be
fortuitous. When the 3s~3p excitation is not included,

o

the static polarizability is 1.95 A, so the contribution of
the 3s3p ( S) state is significant. We are unaware of any
experimental measurements of the polarizability of neu-
tral chlorine.

In Fig. 8 we give the corresponding calculated imagi-
nary part of the polarizability. These results are in close
agreement with the photoionization cross-section result
of Qian et al. without the factor 4n.co/c of Eq. (6).
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FIG. 8. Imaginary part of a(~) for Cl including higher-order
diagrams. is the length result, —"—"—is the velocity re-
sult.

IV. DISCUSSION

EF~(F)—EsA(0) = U (electron) —U (ion)

A principal motivation for the present calculations was
the recent report by Trainham et al. " of an increase in
the photodetachment threshold of Cl in the presence of
1064-nm wavelength laser radiation. The experiment
consisted of producing Cl ions in an ion trap and photo-
detaching the ions with ultraviolet light. This was done
with and without the presence of the infrared laser light.
With an infrared laser field intensity of 10' W/cm they
were able to detect threshold shifts of approximately 2
cm-'.

The contributions to the threshold shift can be
identified using the energy conservation argument of Mit-
tleman. ' Applied to the problem of photodetachment
such an argument gives"

of Eq. (3) does not include terms involving motion of the
center of mass. It is for this reason that the term U (ion)
is included in the energy-balance equation [Eq. (15)].

The issue of choice of gauge can, at first, appear partic-
ularly troublesome for calculation of threshold shifts.
Since the ponderomotive energy of the free electron is
often viewed as arising from the A term in the Coulomb
gauge, and since this term contains no electron coordi-
nates and therefore has the same value for the bound
electron as the free electron, it may appear incorrect to
find a threshold shift which depends upon the free-
electron ponderomotive energy. Mittleman has stated
that any interpretation of a shift in the ionization poten-
tial due to the A term is erroneous. This statement is
literally correct. However, the ionization or photode-
tachment energy is dependent upon the strength of the
applied field, and whether or not part of this dependence
comes from the ponderomotive energy can be considered
a matter of interpretation. In the case where the zero of
energy is taken to be that of the free electron at rest out-
side the laser field, the threshold-energy shift is most nat-
urally written in terms of the ponderomotive potential
and Stark shifts as in Eq. (15).

The energy-level diagram of Fig. 9 serves to illustrate
the shift in terms of the gauge which includes both a p A
and an A term. The left side illustrates the energy sepa-
ration between the valence level 6 in the ground state of
the ion and the zero kinetic energy threshold state T of
the photoelectron when no laser field is present. The
electron affinity Es~(0) when F =0 is the difference be-
tween these two levels when relaxation effects are neglect-
ed. Introducing the laser field has different effects on the
valence level 6 and the threshold state T. The valence
level is reduced in energy by the p A term in the Hamil-
tonian which is partly canceled, however, by the A term
(the ponderomotive potential). ' The remaining down-
ward shift in level 6 is the shift obtained directly from
E r the quantity theoretically calculated in this paper.
The threshold level T is shifted upward by the pondero-
motive term alone since the average shift due to p A on a

—EW(ion)+b, W(atom), (15)

where Ez„(F) and Ez~(0) are the electron affinities of
the ion with and without the applied field, U~ (electron) is

the ponderomotive energy' ' of a free electron
(e F /4m', where F is the field amplitude), U (ion) is
the ponderomotive energy of the ion, and AW(ion) and
EW(atom) are the ac Stark shifts of the ion and the neu-
tral atom.

There exist a number of discussions in the literature
about the effects of different choices of gauge on the cal-
culation of transition probabilities and about the role of
the ponderomotive potential' ' in threshold shifts. '

The present calculations have been carried out using the
manifestly gauge-invariant Hamiltonian which represents
the interaction between particles and fields as E.r. The
agreement between our computed length and velocity re-
sults should therefore be regarded as an indication of how
well the commutation relation of Eq. (12) holds, i.e., to
what extent correlations have made tP„and tPf exact
eigenstates of H with F =0. Notice that our Hamiltonian

2
A

EEA{0 ) EEA(F )

/ / ///////' E. r

2
A

F= 0 F & 0

FIG. 9. Schematic of contributions to the threshold shift. G
is the energy of the valence level of the ground state of the ion
outside the applied field (F=0). T is the energy of the lowest-
lying threshold level outside the field and is the zero energy for
this analysis. EF„(F)and EF&(0) are the electron affinities with
and without the field present. Qualitative contributions of the
various terms of the Hamiltonian are shown as level shifts.
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continuum electron is zero, where p is the canonical
momentum. ' The zero energy on this diagram is best
referenced to level T with F =0. Switching on the laser
field thus has two discernable effects: (a) the photo-
detachment threshold is shifted by an amount
EE~(F)—EEA(0) given in Eq. (15) and (b) the photoelec-
trons leave the laser field with kinetic energy greater than
or equal to the pondermotive energy. The second state-
ment is true only in the case of continuous-wave or long-
pulse laser fields, since the pondermotive force becomes
nonconservative in a time-dependent field.

In evaluating the shift predicted by Eq. (15), we ob-
serve that U&(ion) is negligible since the mass of the ion
is about 37000 times that of the free electron. The pon-
deromotive energy of the free electron is 8.55 cm ' at
10' W/cm for 1064 nm (1.16 eV) light. The ac Stark
shifts for the ion and the atom may be obtained from the
respective polarizabilities through the expression

rn 4o~

2I—

0
CQ

2

O

0 ~ 2
I

0 ~ 6 1 ~ 0 1 ~ 4
PHOTON ENERGy (a. u. )

1 ~ 8

FIG. 10. Real a(co) for Cl, length; ———,velocity;
and a~(co) the polarizability equivalent of the free electron pon-
deromotive energy —e /mes .

5 W(co) = —( I /4)a(n) )F2, (16)

where the field amplitude F defined in Eq. (2) is related to
the laser intensity through the time-averaged Poynting
vector

i
S

i
=(c/8m)

i
E&(B

i
=(c/8n)F (17)

At 1064 nm the polarizabilities are seen from Fig. 3 and
Fig. 7 to be 4.42 A for Cl and 2.33 A for the neutral
atom (geometric means of length and velocity). Hence,
the difference between the ionic and atomic ac Stark
shifts at 1064 nm and 10' W/cm is 0.24 cm '. This
contribution to the threshold shift of Eq. (16) is small
compared to the 8.55 cm ' expected from the pondero-
motive energy of the electron. The total predicted shift is
8.79 cm ' at 10' W/cm . Our analysis provides no ex-
planation for the observation of a shift of approximately
2 cm '. The explanation may lie in some aspect of the
experiment, such as the temporal variation of the laser
light, not taken into account here.

While the ac Stark shift of the Cl ground state is dis-
tinctly smaller in magnitude than the ponderomotive en-

ergy of the free electron at 1064 nm, the situation is re-
versed at higher frequencies. This can be easily seen in
Fig. 10 where u = —e /men is plotted along with a(co)
for Cl from Fig. 3. The quantity a is the polarizability
equivalent of the free-electron ponderomotive energy; i.e.,
substituting a into Eq. (16) gives the ponderomotive en-

ergy. As the frequency is increased from zero, a(co) first
exceeds a in magnitude just below the detachment

threshold at 0.1503 a.u. At a wavelength of 248 nm,
where high-intensity laser-ionization experiments have
been carried out, a(co) is approximately 6 A and a is

0 p—4.4 A . At frequencies above about 1.5 a.u. , a(m)
varies as —I/co and the ratio of a(co) to az is approxi-
mately 6.9. This last observation can be understood from
the following argument. At frequencies well above the
orbital frequency of a valence electron in the ion, the
electron jiggles in the laser field essentially as if it were
free. Thus the electron will have an energy shift equal to
the ponderomotive shift of a free electron. Since there
are six equivalent valence electrons in Cl, we expect a
shift of roughly six times the ponderomotive energy.
This interpretation of the high-frequency limit of a(co) is
in agreement with the result for negative alkali-metal ions
obtained by a combination of a quasiclassical approach
and the Hartree-Fock approximation, where the behav-
ior of a(co) averaged over the alkali-metal ions is
—2. 157/aP a.u. Clearly, the relative importance of the
polarizability and the ponderomotive energy depends
upon the frequency at which the experiment is done.
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