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Broadband squeezing via degenerate parametric amplification
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We show that parametric amplification is capable of generating squeezed light over a wide band if
materials with large g' ' nonlinearities can be found, and that the squeezing bandwidth can be
enhanced considerably by phase matching away from degeneracy. We compare our results with
similar results recently found for four-wave mixing in an optical fiber.

Squeezed light has been generated recently using de-
generate parametric amplification in both oscillator' and
traveling-wave configurations. In the experiment of
Slusher et al. , pulsed squeezed light was generated in a
traveling-wave degenerate parametric amplifier (DPA),
using a pulsed pump to increase the effective nonlineari-
ty. If materials with larger 7' ' nonlinearities can be
found, one could generate squeezed light over a wide
band using a continuous pump. Here we present a first-
order analysis of a DPA with a cw (monochromatic)
pump; we ignore losses and pump quantum fluctuations,
which have been studied previously, but we include
dispersion.

The spatial differential equation describing the DPA is
given by
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The quadrature-phase amplitudes a& and a2 contain the
spectral information about the squeezing produced by the
DPA. If z =L, a, (e,L) and a2(e, L) can be detected by a
balanced homodyne detector by changing the phase of
the local oscillator as a function of rf frequency e.

By combining Eqs. (I), (Sa), and (Sb) we can write the
equation of motion for the DPA in terms of the barred
quadrature-phase amplitudes,

d(T)(k, z)

where the parametric gain go is given by
I /2

2m+' '0 8~Pp

~ 3/2 c30

and the phase mistnatch hk (e) by

bk(e) =K (20) k(0+—e) k(0 —e)—

(2)

At phase-matched frequencies, where bk(k)=0, the a,
quadrature is deamplified (squeezed) and the a2 quadra-
ture is amplified. At other frequencies, where b,k(e)&0,
the phase mismatch degrades the squeezing by mixing
part of the amplified quadrature with the squeezed quad-
rature. The solutions to Eqs. (6a) and (6b) are given by

tz)(e, z)=Re [p(e,z)+v(e, z)](T)(e,O)

=—[20n (20)—(0+e)n (0~ e) —(0—e)n (0—e)].
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Here P, is the signal bandwidth, and v (co) the group ve-
locity.

We introduce a set of quadrature-phase amplitudes,
defined by

a, (e z)= '[e '[ ""'— +~ a (0+e,z)

+ i[teak(e)z/2+(()] a t(0 (Sa)

Here (I) =2/ is the pump phase, P the pump power,
0 =20 the pump frequency, n (co) the index of refrac-
tion, J' ' the nonlinear susceptibility (assumed nondisper-
sive over the frequencies of interest), and cr an effective
cross-sectional area used to account crudely for the trans-
verse structure of the waves. The operators a, (co,z) are
Fourier components of the magnetic field operator

' 1/2
' 1/2
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where
+Re [p(e,z) v(e, z)]—a (e2, O), (7b)
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g(e}=iK(e)=[g() —[b,k(e)/2] j'
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Spectral information about the squeezing produced by
the DPA is contained in the spectral-density matrix
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S „(e) of the output quadrature-phase amplitudes

ai(e, L) and az(e, L);

(ba (e', L)ba„(e,L) ),„=irS „(e)5(e—e'),

m, n =1,2 . (11)

Here, for any operator 8, b,8=8—(8), and sym denotes
a symmetrized product. Using the continuum commuta-
tion relation

[a(co,z), a (co',z)]=2n5(co co')—, (12)

one can show that for a vacuum input

(ba (e', 0)ha„(e,0)),„=—5 „5(e—e') .

Although the barred spectral-density matrix S „(e)
contains all the spectral information about squeezing, it
does not give directly the maximum and minimum spec-
tra at each e. This is obtained by diagonalizing the
spectral-density matrix by applying a suitable frequency-
and position-dependent rotation 8(e,L) to the output
quadrature-phase amphtudes ai(e, L) and az(e, L). We
define a, (e,L) and a2(e, L) by

(13)

a, (e,L)=a, (e,L) cos8+a2(e, L) sin8,

a2(e, L)= —a](e,L) sin8+a2(e, L) cos8,

and the new spectral-density matrix S „(e)by

(ha (e', L }ha„(e,L)),„=nS „(e)5(e—e') .

(14a)

(14b)

(15)

Using Eqs. (7a} and (7b), we find that the elements of the
rotated spectral-density matrix S „(e)are given by

Sii(e)= —,'[
~
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~
+2Re[p(e, L)v(e, L)e 2'e]

(eL)~ j, (16a)

Si2(e) =S2~(e)=Im [p(e, L )v(e, L) e ' ], (16b)
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We diagonalize the spectral-density matrix by choosing 8
to satisfy

p(e, L)v(E, L) e ' ='—
~
p(e, L)

~ ~
v(e, L)

~

. (17)

The matrix element Sii(e} gives the spectrum of the
differenced photocurrent from a balanced homodyne
detector when the phase of the local oscillator is chosen
to yield the maximum squeezing at rf frequency e. The
elements of the spectral-density matrix resulting from
this choice are

(18a)

Si2(e)= —,
' [ i p(e, L)

i + i
v(e, L)

i ] (18b)

Equations (17), (18a},and (18b) are formally equivalent to
results obtained recently by Potasek and Yurke for four-
wave mixing in an optical fiber.

The frequency dependence of the phase mismatch
b,k(e) —and thus the index of refraction —must be
specified before we can study the squeezing spectrum.
Since the index of refraction varies only a small amount

Substituting Eq. (19) into Eq. (20), we find to fourth order
in e/Q,

hk(e) = [b—p(—e/Q)' q(—e/Q) ],
C

(21a)

where the dimensionless parameters 5, p, and q are given
by

b, =2[n (Q+ eo) n(Q—)],
p=2Qn~ ~(Q)+Q n~ ~(Q)

q= ,', [4Q —n' '(Q)+Q n' '(Q)] .

(21b)

(21c)

(21d)

Phase matching occurs at frequency Q+ e where
hk(e )=0; setting Eq. (2la) equal to zero and solving
for e, we find

r

e =2m f =Q — 1+ 1+p 4hq
' 1/2 ' ]/2

(22)

We wish to investigate the case where b, =0 and p =0
simultaneously, so we must find a frequency Qo such that
n (2QO) =n (Qo) and p (Qo) =0; then b k(e) o: (e/Q)
varies from zero only slowly as long as e &&Q. For exam-
ple, using a modified Sellmeier equation for the ordinary
refractive index in lithium niobate and assuming that
phase matching is possible at any frequency, we find that
p =0 at Ao

——2mc /Qo= 1.9025 pm; we also find that p y 0
for A, & A,o, p &0 for A, & A.o, and q &0 for all wavelengths
in the neighborhood of A,o. In the following we will as-
sume go ——1.0m ', and L=1.0m. Figure 1 is a plot of
the squeezed spectral density S (where S=2Si~, so that
S= 1 is the vacuum level) as a function of f=e/2~ for
relatively large values of p. The solid line is for
A, = 1.935 pm, where p = —3.208 & 10 and

q = —4.883 X 10 . The short-dashed line is for
A, = 1.875 pm, where p =2.76)& 10 and q = —4.545
&10 . The bandwidth over which squeezing occurs at
these frequencies can be improved by taking 6 to be
nonzero; the result is a nonzero phase-matching frequen-
cy, as is seen from Eq. (22). The medium-dashed line in
Fig. 1 shows the broadened squeezing band for
A, =1.935 pm obtained by taking f0=co/2m = —1 GHz,
resulting in b = —7.86&(10 and, from Eq. (22), a new
phase-matching frequency f =2.42 THz. The long-
dashed line in Fig. 1 shows the broadened squeezing band
for l(, =1.875 pm obtained by taking f0= 1 GHz, result-
ing in 6=7.38&(10 and a new phase-matching fre-
quency f =2.62 THz.

over the phase-matched bandwidth, we can expand it in a
Taylor series about Q,

n(Q+e) = n (Q)+n "'(Q)e+ —,
' n ' '(Q)e +

e « Q (19)

where n'J'(Q) denotes the jth derivative of n evaluated at
Q. One normally assumes phase matching at degeneracy,
i.e., n(2Q)=n(Q). Here we will not make such an as-
sumption, but will assume n(2Q)=n(Q+eo), where

eo«Q. Equation (3) then becomes

bk(e) =—[2Qn(Q+eo) —(Q+e)n(Q+e)1

C

(Q— e)—n(Q e)—] . (20)
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where

+iye ' '+e'e ' bt(Q e,z),—ib, k (e)z
(23)

48m QX' '
y=

n (Q)c 0
P (24)

bk, (e)=—2E (Q}—k(Q+e) —k(Q —e)

[2Qn—( Q } (Q+ e—}n(Q+ e)
1

C

—(Q —e)n(Q —e}] . (25)

Here 8~ =8 is the pump phase, P~ the pump power, and
Q =Q the pump frequency. Introducing b, (Q+e, z)
=c,(Q+e, z) exp(2iyz), we find

dc (Qs+e~z) i[5k,&(e)z+2$, ]= —ye ' * c, (Q —e,z},
Z

where P, =8 n /4 and—
b,k,tr(e)=b, k, (e) 2y . —

(26)

(27)

Equation (26) has the same form as the equation for the
DPA, Eq. (1};the solution of Eq. (26} follows from Eqs.
(7), (8), and (9) if b,k,fr(e) is substituted for b,k(e), y for

go, and P, for P. The solution so obtained is different
from that of the nonlinear Schrodinger equation only in
the absence of odd-order dispersion terms that have been

Squeezing over much greater bandwidths is obtained
near A,o, where p is small. The solid line in Fig. 2 shows S
as a function of f for A, =Ao, where p =0,
q = —4.7X10, and 6=0. In practice, p can be small
but not identically zero. The short-dashed line in Fig. 2
is for A, = 1.8971 pm, where p =5.39X 10
q= —4.67)(10, and 6=0. Because p and q are of
opposite sign, Eq. (22) yields two phase-matching fre-
quencies: one at f =0 and another at f =16.99 THz.
The long-dashed line in Fig. 2 is for A, =1.8971 pm and

fo 1G——Hz, where 6=7.55X10 . Again we have

phase matching at two frequencies, f =6.39 THz and

f =15.75 THz, resulting in squeezing of roughly 80%%uo

or better over a bandwidth of 17 THz.
Similar results are obtained for four-wave mixing in an

optical fiber. ' The equation of motion (found using the
method of Ref. 3}is

db, (Q+e, z)
=2i yb, (Q+e, z)

dz

shown by Potasek and Yurke to have no effect on the
squeezing. Using Eq. (20},we expand Ak, s(e} in a Taylor
series:

hk, e(e) =—[b,, p—,(e/Q)' q (e/Q)~]
0

(28a)

where

(28b)
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Here p, and q, are given by Eqs. (21c) and (21d), respec-
tively. Equations (26) and (28a) are the four-wave-mixing
analogs of Eqs. (1) and (21a) for parametric amplification;
in this sense, four-wave mixing and parametric
amplification are equivalent processes for generating
squeezed light.

Maximum squeezing occurs not when b, k, (e)=0, but
when b k,e(e) =0; we find the "phase-matching" frequen-
cies f, by substituting p, for p, q, for q, and 5, for b, in

Eq. (22). If q, and b,, are both negative —as they tend to
be for optical fibers —then only one real solution f, will
exist regardless of the sign of p, . If b, could be made
positive —as is possible with the DPA —then for p, )0
one would obtain two real solutions f, &

and f,2. For
p, (0 there are no real solutions when 6, )0. It is the
possibility of obtaining two phase-matching frequencies
that distinguishes parametric arnplification from four-
wave mixing in an optical fiber. As we saw in Fig. 2, two
phase-matching frequencies result in squeezing over a
very wide band. This is not possible with four-wave mix-
ing.

In our example, we have assumed that one could phase
match lithium niobate at or near F0=1.9025 pm, a wave-

length somewhat into the infrared. We are not proposing
lithium niobate as a candidate material for the generation
of broadband squeezed light, but use it merely as an illus-
trative example. Whether or not suitable materials can
be found is a problem we have not addressed; the point
we wish to make is that if one can find a nonlinear ma-
terial in which it is possible to phase match at a frequen-
cy Q at which p(Q)-0, one can then obtain squeezing
over a large bandwidth.
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