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Vacuum polarization in the field of a high-Z finite-size nucleus is examined, and the polarization

charge density in coordinate space of order a(Za)" with n )3 is calculated. Energy-level shifts of
K- and L-shell electrons in hydrogenlike systems are given.

I. INTRODUCTION

Vacuum polarization corrections to energy eigenvalues
of bound leptons have been examined extensively in the
past. ' For bound electrons, the dominant contribu-
tion of the quantum electrodynamic (QED) effects is the
self-energy correction. Modern calculations of this
correction include Feynman diagrams to all orders
in the coupling constant of the external field. However,
the corresponding inhuence of vacuum polarization
effects on electron levels in atoms has not been complete-

ly calculated. The purpose of the present work is to carry
out a complete calculation of the vacuum polarization of
order a in order to provide improved electron binding-

energy values and to investigate more closely radiative
corrections for strongly bound electrons in superheavy
systems. In view of the current level of interest ' (see
also Refs. 22 and 23, and references therein) in experi-
mental tests of QED on K- and L-shell electrons in high-
Z hydrogenlike ions, more accurate theoretical predic-
tions are desirable. In addition, we consider the vacuum
polarization charge density in a superheavy system with a
critical nuclear charge number Z„=170, at which the
energy eigenvalue of the strongest bound Is, i2 state near-

ly reaches the lower continuum, i.e., E„=—mc .
The dominant vacuum polarization correction arises

from the Uehling potential (Refs. 1, 2, 4, 5, 11, 12, and
21-23) which is linear in the external field and of order
a(Za). The Uehling potential and the associated energy
shift of bound electrons in the field of a finite-size nucleus
can easily be calculated. We restrict the following discus-
sion to the vacuum polarization potential of order
a(Za)" with n &3.

An evaluation of the higher-order, a(Za)" with n )3,
vacuum polarization charge density induced by a high-Z
nucleus of finite extent has been made by Gyulassy.
In that work, the Wichmann-Kroll nonperturbative for-
malism, based on explicit solutions of the Dirac equation
in the external potential, was applied. Energy shifts for
muonic lead and superheavy electronic atoms were com-
puted. As a major approximation, only the terms with

i
tt

i
=1 in the partial wave decomposition of the Green

function were taken into account, where a denotes the
Dirac angular-momentum quantum number.

The calculations of Gyulassy were repeated by Negha-

bian who employed the same truncation of the partial-
wave decomposition of the Green function. With the aid
of the Poisson equation for the vacuum polarization
charge density, he derived the momentum-space expres-
sion for the vacuum polarization potential. The comput-
ed energy shifts are in excellent agreement with those of
Gyulassy.

Higher-order vacuum polarization corrections have
also been evaluated for the heavy muonic atom spec-
trum ' "' ' that provides an ideal testing ground for
the short-range aspect of this correction. In this case, ex-
perimental data are in good agreement with theoretical
results. Various approximations were made in some of
these calculations, e.g. , (a) the assumption of a pointlike
nucleus, (b) the neglect of the electron rest mass in the
determination of the Green function, (c) the restriction to
radial distances much less than the electron Compton
wavelength in the evaluation of the vacuum polarization
potential.

For pointlike nuclei, an explicit expression for the vac-
uum polarization potential of order a(Za) was derived
by Blomqvist. For low-Z atoms the present calculation
should reproduce the results of Blomqvist.

This paper is organized as follows. In Sec. II we briefly
review the theoretical basis for the vacuum polarization
charge density in a strong external potential. Section III
provides an analytic evaluation of the Uehling contribu-
tion. For the external potential of a homogeneously
charged spherical shell, the integrand of the Uehling term
can be expressed completely in analytical form for arbi-
trary angular momentum in the partial-wave decomposi-
tion of the free Green function. The evaluation of the
Dirac Green function for the potential of a spherical shell
is described in Sec. IV. Numerical results for the vacuum
polarization charge density and the corresponding energy
shifts of bound electrons in hydrogenlike systems with
various values of Z in the range 30—100, and in the su-
perheavy system with Z = 170 are summarized in Sec. V.

II. VACUUM POLARIZATION CHARGE DENSITY

From bound-state QED (Ref. 42) the energy shift cor-
responding to the vacuum polarization is given by
(fi=c =m =1)
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bE=4nia f d(t2 —t, )fdx2f dx)p„(x2)y"$„(x2)DF(x2 —x) )Tr[y„SF(x),x, )],

where the photon propagator is
—ik(x2 —x I )

DF(x2 —x, )= f d k
(2n. } k +is

and the Feynman propagator for the electrons is

(2)

negative-energy (n —) states separately. The electron
propagator may be represented by the alternative expres-
sion

1 P„(x2)P„(x));,(.. ., )

SF(x2,x) )= . dz g2mt &F
n nE —z

g 4n(+2)0 (+( } t2 & t)
n+

SF(x2,x, ) = '

(X2)( (+) ) t2 &t)
n—

(3)

In Eq. (3) the sum runs over positive-energy (n + ) and
I

1 —iz(, t2 —t& )
dz Q(x2, x„z}y e

2m CF
(4)

Only the term with p, =0 contributes in (1), so we have
for the energy shift

bE =4rria f d(t2 t) )fd—x2f dx)p„(x2)(()„(x2)Dp«2 —&) )Tr[yoS~(~), ~) )]

The level shift can be written in terms of an effective potential as

b,E=f dx2$„(x2)(()„(x2)U(x2),

where

U(x2)=4@i a fd(t2 t) )f—dx, DF(x2 —x) )Tr[yoSF(x), x) )]

fd(t2 t )f—dx fd k
2 2

e ' ' 'e ' ' f dzTrQ(x)x)z).

Integration over the four-vector k yields

ia 1
U(x2) = dx, z Tr x1,xl, z

27K
I x2 x( I

CF

The corresponding vacuum polarization charge density p
is identified by writing

I

polarization charge density is thus to subtract the Uehl-
ing contribution which can be renormalized separately
and subtract the spurious piece of the third-order term.

The Uehling term is

p'"(x) = f dz TrQ'"(x, x,z),
2m CF

p(x, )
U(x, )=—e fdx,

X2—X

where

9("(x,x,z) = —f dy P(x, y, z) V(y)V(y, x,z) . (12}

so that we have

p(x)= . dz TrQ(x, x,z)
2m' &F

(10)

for the charge density
This is a formal expression that contains the infinite

unrenormalized charge. Expansion of the total vacuum
polarization in powers of the coupling constant Za of the
external field isolates the divergences in the Uehling
term that is of order a(Za). Terms with an even number
of interactions with the external field vanish. The
higher-order terms [a(Za)" with n &3] are finite, but
there is a spurious contribution from the term of order
a(Za) . A regularization procedure for the total vacuum

I

p' '(x}= f dz TrQ' '(x, x,z},
2mr CF

where

(13)

7 is the free Green function, which is the limit of 0 as
Za~0. The charge density that is third order in the
external potential corresponds to a Feynman diagram
with a free electron-positron loop with four vertices. It is
well known that this diagram contains a spurious gauge
noninvariant piece that must be removed in order to ob-
tain a correct physical result. This term has been dis-
cussed by Wichmann and Kroll, by Gyulassy, and by
Boric and Rinker" in the context of vacuum polariza-
tion. The third-order charge density is given by

0' '(x, x,z) = —fdy, f dy2 f dy39(x, y„z)V(y, )P(y„y2,z) V(y2)V(y2, y3, z) V(y3)9'(y3, x,z) . (14)

The gauge-invariant physical result for the vacuum polarization charge density is obtained by subtracting from the
third-order term the same expression with the electron mass replaced with a large mass M, denoted pl'(x), and taking
the limit as M becomes infinite. The limit is independent of M and is given by
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p' '(x)= lim pM'(x}= f dz TrQ' '(x, x,z),
M ~ oo 27Tl CF

where

0' '(x, x,z)= —V (x)fdy, f dy& f dy37(x, y„z)9(y'„y&,z)V(yz, y3, z)V(y3 x z) (16)

for an arbitrary potential V. We have

0 ' '(x, x,z) = ——,
' V (x) lim

3
9'(x, x', z) .

X ~X QZ
(17)

A Wick rotation of the contour CF, together with the ex-
plicit expression for V(x, x', z), yields

p' '(x)= — V (x) .
3

The physical higher-order charge density is thus given by

I

between z = —m and 0 we can rotate the Feynman con-
tour to the imaginary z axis and change the variable of in-

tegration to u, where z =iu, to obtain
+ 00 2

p(x)= z f du g ~

v
~ g Re[9„""(x,x, iu)] . (21)

277 ]c +1 n=1

The Uehling term is

+ 00 2

p '(x)= f du g ~

Ir
~ g Re[g„"'""(xx iu)],

2 0 x=+1 n=1

p' +'(x)=p(x}—p'"(x) —P' '(x) . (19) (22)

2

p(x) = . f dz g Q 9„""(x,x,z)
CF

(20)

for the radial vacuum polarization charge density. In Eq.
(20), x denotes the radial coordinate. If we assume that
there are no bound-state poles on the negative real axis

Expansion of the Green function in (10) in eigenfunc-
tions of angular momentum yields ' '

with

2
9„"'""( xx, iu)= —g f dyy 7„" (x,y, iu)

m=1

X V(y)V„"(y,x, iu), (23)

where 7„" denotes the free radial Green function. This
leads to

+ 00
00p'"(x)= — f"du g ~

a.
~

Re f "dyy g [P„" (x,y, iu)) V(y)
2m' o ~+1 0

n, m =1

The expansion of the spurious piece of the third-order term is given by

d3 2
p'3'(x)= — V3(x)f du g ~

a
~ g Re[i 9„""(x,x, iu')],

12% 0 @au g +1 n

(24)

(25)

where the limit x ~x has been taken in the individual terms in the summation over ~. Substitution of these expressions
into Eq. (19) yields an expression for the higher-order charge density p"+'(x) in terms of summations over the angular
momentum quantum number s.. In this calculation, the sums are truncated after summing terms with

~

a
~

& K in order
to obtain an approximation to the higher-order charge density with the remainder denoted by Rz. If the summation
over a in the expression for p' '(x) is restricted to a finite number of terms, then the contribution from these terms van-
ishes. This is readily seen by explicitly carrying out the integration over u in each term. We thus obtain the complete
expression for the higher-order charge density as

p"+'(x) =p(x) —p'"(x) —p "'(x)
+K

oo 2

f du g ~

x.
~

Re g 0,""(x,x,iu)+ f dyy V(y) g [P™(x,y, iu)]
2m ~=+1 n=1 n, m =1

(26)

This equation includes terms from any bound-state poles
on the negative real z axis in (20). These terms would be
picked up as residues in the rotation of the contour of in-
tegration leading to (26). Such terms only appear for su-
perheavy systems where the binding energy of the elec-

tron exceeds the electron rest mass. In Eq. (26) f, (x) and
fz(x) denote components of the radial Dirac wave func-
tion, normalized according to

X + 2 X =1 (27)
0
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III. EVALUATION OF THE UEHLING TERM

For the simple potential of a homogeneously charged
spherical shell the Uehling contribution can be expressed
analytically for arbitrary angular momentum. The Uehl-
ing contribution to the vacuum polarization charge densi-

ty is given by

p"'(x)= f du g S„'"(x,u) .
k=1

Here we define

(28)

Sk"(x,u)= — g ~

K
~

Re f dy y V(y)(P„"V„"+V„'V„' +9„'9„'+P„P„)
~=kk

(29)

The quantity Sk"(x,u) may be calculated analytically as
indicated in this section. For y & x the components of the
free Green function are

Pz (x&J» lu) = —(ill + 1 )cj
~
~+ ]/2

~

]/2(lcx)

p„(x)= 2
5(R —x),Ze

4mR
(33)

where R denotes the nuclear radius. The corresponding
potential is

with

(1)Xh
~
„+I/21 —]/2(1 y

12 K
J ~+]/2~ —]/2(«x)

K

(1)Xh ~, I/2~ —]/2(Icy)

21 K j~„,
~

„,( )
K

(1)Xh ~„+]/2~ ]/2(tcy),

(x y 'u)= —(lu —1)CJ
~

]/2~ ]/ (lcx)
(1)X h

~

—I/2
~

—I/2(Icy)

(30)
S„"'(x,u)=— Re f /I (y)dy2'

and divide the integration domain into three parts

Sk "(x,u) =— Re f A (y)dy+ f & (y)dy
2m' 1

+f A(y)dy

=T1+T2+ T3,

V(x)= — e(R —x)— e(x —R) .
R x

We let A (y) represent the integrand in (29) such that

(34)

(3&)

(36)

c=(1+u )'

jl(z) and hl "(z) denote the spherical Bessel function and
spherical Hankel function of the first kind, respectively.
For y & x we simply employ

with

a] ——min(x, R), a2 ——max(x, R) .

It is useful to define the functions

(37)

7„"(x,y, iu) =9'„"(y,x, iu),
2„' (x,y, iu)=7„'(y, x, iu),

V, '(x,y, iu)=V„' (y, x,iu),

7, (x,y, iu) =V„(y,x, iu) .

(32)

J, „(a)=f 'yj„(icy)dy,

92 „(a)=f 'y'j„'(icy)dy,
0

~] „(a)= f yh„'" (icy)dy,
a

2 „(a)=f y h„"' (icy)dy .
a

(38)

In this paper we consider the spherical-shell distribution
as a model for the nuclear charge density With I = ~K~, we have

T, =
2

l t(1 —u )c [hl"' (icx)221(a, )+h'" (icx)22 (a, )] c[h"' (icx—)22](a, )+hl"' (icx)J2 (a, )]I, (39)

with

m =l —1.
For T3 we have

(40)

T3 — Zlzl I (1—u')c [j](icx%'],](a2)+j (icx %'] (a2)]—c [j](icx WI (a2)+j (icx &],](a2)]I (41)

For the determination of T2 we have to distinguish the two cases x & R and x &R. In the first case (x & R) the expres-
sion reads
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T2= Zal((1 —u )c [h&" (icx)[2, &(az}—2&1(a& }]+h "(icx)[J,~(a2) —2& (a, )]]

—c Ih"' (icx)[2& &(az) —2& &(a&)]+hi'" (icx)[S& (az) —2& ~(a&)])),
while in the second case (x (R ) it yields

(42)

T2 —— l((1—u )c [j,(icx)ply, (a, )—%z,(a~)]+j (icx)ply (a, ) —%z (az)])

—c Iji'(icx)[~q, (a~ }—~2, (a&)]+j'(icx)[~2,I(al } ~2 I(a2)]] ) (43)

The remaining task is to evaluate the integrals 2, „(a),
22 „(a), %, „(a), and &z „(a). For this purpose we em-

ploy the relationships

1
gz 0(a) = [sinh(ca)cosh(ca) —ca] .

2c
(48)

j„'(icy)=( —1)" I„'
+, »( cy),

2cy "+

h„"' (icy) =( —1)" K„+,/2(cy),icy

(44)

(45)

For the computation of &, „(a) we utilize the series rep-
resentation

h„'" (icy)=( —1)"4e ' g (n + —,', k)(2cy)
k=0

where I„(z) and K„(z) denote modified Bessel functions.
The functions 22 „(a) and &z „(a) are readily deter-
mined

S2 „(a)=( —1)" a [I„+,/2(ca)
4c

I„,/2(ca—)I„+3/2(ca)],

&2 „(a)=( —1)"+' a [K„+,/2(ca)

—K„,/2( ca )K„+3/p(ca ) ]

with Hankel's symbol

I ( —,'+n +k)
(n, k)=

k!1 ( —,'+n —k)

With

E„(a)
a n —&

(49)

(50)

(51)

For the special case n =0 we employ K~/2(z)
=K, /2(z) as well as the explicit representation

where E„(z) denotes the exponential integral, H~ „(a) is
easily determined by a termwise integration. The remain-
ing quantity 2& „(a) may be evaluated applying a similar
procedure. Again we start from a series representation

1I„1+2(/c)y=
27Tcy

e'~
0 s!(n —s)!(2cy)', o s!(n —s)!(2cy)'

(52)

Substitution of this series into the expression for 2& „(az)—2~ „(a& ) leads to a finite sum of integrals. For ca& not too
small, the integrals are numerically evaluated by means of the asymptotic expansion generated by repeated integration
by parts

Q~'2 ce'~ e'~ ce'~

(cy)" (cy)" a, 'i (cy)" +'

,y ~' (m —1)! 1=e
„(n —1)! (cy)

+O((ca, )™) (53)

However, for small arguments ca2 and ca, it is more efficient to start from the Taylor expansion" of the modified
Bessel function

2s+n +1/2

, /, (cy) = 1 cy

o s!1(s+n +3/2) 2

which leads to

(54)
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2] „(a,) —J] „(a,)=( —1)" I
1

2n +1
1 cy

o s!1(s+n +3/2) 2

2$2
dy (55)

A termwise integration completes the determination of
the Uehling term.

IV. DETERMINATION OF THE DIRAC
GREEN FUNCTION

0„"(xy, z)=g, (x)g, (y)/W,

0„' (x,y, z)=g, (x)f, (y)/W,

0„'(x,v, z) =f, (x)g, (y)/W,

0, (x,y, z)=f, (x)f, (y)/W,

(C7}

0,"( xy, z) =g, (x)g;(y)/W,

0,' (x,y, z)=g, (x)f, (y)/W,

0„'(x,y;z)= f, (x)g, (y)/W,

Q„(,xy, z) =f, (x)f, (y)/W,

(56)

and for x &y

According to Wichmann and Kroll the radial Green
function may be represented by solutions of the radial
Dirac equation. Fory &x we have

W= [f,(r)g, (r) g, (r)f, (r—)]r (5&)

For the potential of a homogeneously charged spheri-
cal shell, the Green function may also be expressed
analytically. For the sake of completeness we summa-
rize here the essential results. First we define the func-
tions

where f and g are the components of the solutions of the
radial Dirac equation with the spherically symmetric
Coulomb potential, and the subscripts o and i label the
solutions regular at the origin and infinity, respectively.
8' denotes the Wronskian, which is independent of the
radial coordinate r

1+z
JN, =

3/2 (s —v)M, /2 (2cr)—
V 0$ e M„+]/2, (2cr)

(s —v)M„]/2, (2cr)+ a. ——M„+]/2, (2cr)C r
r

1+z
„2/2 W, ]/2, (2cr)+ W„+]/2, (2cr)

c

c
3/2r

K+
c

W ]/2 (2cr) W +]/2 (2cr)

( 1 +z )j ! + ] /2
~

—] /2 ( ic ' r )

u2 —]C J ~ „]/2 ]/2(lc r ) )

(1) ~ (

+ ]/2! —]/2(

with the abbreviations

p =Zcx

(
2 2)1/2

c=(1—z )', Re(c)&0,

v=yz /c,
z'=2+ r/R
c'=(1—z' )', Re(c') &0 .

(60)

M I](z) and W &(z) denote the Whittaker functions

that are regular at the origin and at infinity, respectively.
They are computed according to the prescriptions in
Refs. 27 and 43. j„(z)and h„]"(z) are the spherical Bessel
function and Hankel function of the first kind, respective-
ly. With these definitions we express the radial functions
in Eqs. (56) and (57) as

g, (r) =6(R —r)u]+6(r —R)(aA'(]+b%']),

f, (r) =6(R —r)u2+6(r —R)(aAf2+bl]&2),

g, (r) =6(R —r)(cu, +dv, )+6(r —R)%', ,

f, (r) =6(R —r)(cu2+dv2)+6(r —R)%'2 .
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r (A'c)
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r (3rc)

FIG. 1. Higher-order vacuum polarization density r'p" +'(r) and the individual radial components r'pl, (r) for the system with
Z =30 and a nuclear radius of R =3.955 fm plotted as a function of the radial coordinate r. The total density is shown as a solid line,
and the individual components are shown as dashed lines where the largest magnitude contribution corresponds to k =1 and the suc-
cessively smaller magnitude contributions correspond to increasing values of k. In (a) the charge density is negative and a linear scale
is employed. In (b) the charge density is positive and a 1ogarithmic scale is employed.

u =(u2%', —u, 'N, )/w,

b =(Atzu, —At&uz)/w,

C = ( 1V2U i
—% iVz )/W

d =(u2'N, —u )%'2)/w',

(62)

c f'(2s + 1 )
w =At, 'N, —At, 'N, =4( l+z) I (s —v)

(63)

The coeScients a, b, c, and d follow from the condition of
continuity at r =R:

I —2
W =Q2V) —Q )V2 =R (64)

The functions in (62) are evaluated at r =R. The Wron-
skian (58) is given at r =R by

W(z)=R (u2'N, —u, 'N2) . (65)

We checked the Green-function components (56)-(57) for
x =y =r. A comparison of the Green function deter-
mined by the above equations to the Green function
determined numerically by solving the radial Dirac equa-
tion gives an agreement to at least ten decimal places. In
the numerical evaluation of the analytic expressions for
the Green function it is convenient to isolate all exponen-

c I c I c I c I c

-0.002

-0.004- ) Q-5

-0.006-
+ l

I

-0.008-

O.oio ' I ' I ' I ' I ' I ' I ' I

0.00 0.02 0.04 0.06 0.08 O. IO 0. )2 O. IC

r (Wc)

1.0
c I ! I s I c I w t+ c+bC

2.0 3.0 4.0 5.0 B.O 7.6
r (+c)

FIG. 2. The same as in Fig. 1 for Z =82 with a nuclear radius R = 5.5 fm.
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l 0-B

-O. iO
0,00 0.05 0. )5 0.20 2.0

I

k.o
r (A, )

6.0 8.0

FIG. 3. The same as in Fig. 1 for the almost critical system Z = 170 with a nuclear radius R =7. 1 fm.

tial factors and treat them separately. In particular, the
relationship

'n
LZj„(iz)=

is useful for this purpose.

V. NUMERICAL EVALUATION OF THE VACUUM
POLARIZATION CHARGE DENSITY

AND CONCLUSION

We write the higher-order vacuum polarization charge
density as

where

p„(r)=f du S„(r,u) . (68)
0

The function Sk(r, u) is the integrand of the integral over
u in (26) summed over v=+k. For the nuclear charge
number Z =170 the energy eigenvalue of the 1s&i2, as
well as of the 2p&/2 state are below E=0. The corre-
sponding radial bound-state wave functions f&(r) and
f2(r) in (26) are easily determined with the methods de-
scribed in Ref. 47.

The integrand Sk(r, u) was evaluated numerically by
the techniques described in the preceding sections. For
ru )&1 we found numerically that

K
p' + '(r) = g pk (r)+R

k=1
(67) Sk(r, u) =a(r)u (69)

TABI E I. Wichmann-Kroll contributions to the Lamb shift of E- and L-shell electrons in various
hydrogenlike systems. For the nuclear charge distribution we assumed a spherical shell with a radius
R.

H3+ (Za)
System

loZll

36Kr
40Zr

45Rh

,oSn

g4Xe

60Nd

64Gd
70Yb

74W

79Au

82Pb

86Rn

92U

96Cm

lOOFm

Z =170

R (fm)

3.955
4.230
4.273
4.502
4.655
4.826
4.915
5.089
5.237
5.359
5.437
5.500
5.632
5.751
5.816
5.886
7.100

1$1/2

0.0020
0.0027
0.0033
0.0041
0.0051
0.0059
0.0073
0.0084
0.0102
0.0116
0.0136
0.0150
0.0170
0.0207
0.0236
0.0269
0.518

2s I /2

0.0020
0.0028
0.0035
0.0044
0.0054
0.0064
0.0081
0.0094
0.0118
0.0137
0.0166
0.0185
0.0216
0.0272
0.0320
0.0377
0.764

2P &/2

0.0000
0.0001
0.0001
0.0002
0.0003
0.0004
0.0007
0.0010
0.0015
0.0020
0.0028
0.0035
0.0045
0.0068
0.0089
0.0118
3.75

2p 3/2

0.0000
0.0000
0.0000
0.0001
0.0001
0.0001
0.0002
0.0002
0.0003
0.0003
0.0004
0.0005
0.0006
0.0007
0.0009
0.0010
0.017
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with b =5. Thus the integral over u converges rapidly as
a function of an upper cutoff u . This integral was eval-
uated by Gaussian quadrature with two numbers of grid
points, which provides a reliable error control. For k =1
the limit on the error was 10 . The integration over u

was extended to a limit u that was large enough that
Sj,(r, u) approached its asymptotic form for u =u . The
remainder from the region u to infinity was estimated
by evaluating the asymptotic form of Si, (r, u) analytically.
To check the accuracy of the resulting value for pi, (r), we
recalculated the numerical integration with an upper lim-
it 2u . If the two values for p, (r) agreed within a rela-
tive error of 10, we accepted the value; otherwise, the
numerical integration was continued to larger u

An additional accuracy test of the computed vacuum
polarization charge density follows from the requirement
that for each value of k the total induced vacuum po1ar-
ization charge should vanish,

Q& 4nf——dr. r pl, (r)=0 .
0

(70)

As a typical example, for lead (Z =82, R =5.5 fm) we
found by Gaussian quadrature g, = —3)&10 e, which
should be compared with the total induced negative
charge Q, = —4X10 e. Of course, we have Qz +Ql,+
=Ql, . The sum over the angular momentum components
yields the total vacuum polarization charge density of or-
der a(Za)" with n &3. The comparison of the total in-
duced positive and negative charge provides a reliable er-
ror estimate. The relative accuracies 5 that were
achieved amount to 6=4 &( 10, 3 &( 10, and
1.5 && 10 for Z =30, 82, and 170, respectively.

The computed vacuum polarization charge density is
shown in Figs. 1 —3 for Z =30, 82, and 170. The nuclear
radii are indicated, and the various contributions for
k =1—5 are shown separately. Part (a) shows r p&(r) on
a linear scale in the range where the charge density is
negative. The large distance behavior of r pI, (r) is shown
in Figs. 1 —3(b) on a logarithmic scale. Here the radial
charge density is positive and decreases rapidly as the ra-
dial coordinate increases. The contribution to the vacu-
um polarization charge density from k =1 dominates by
about an order of magnitude. A rapid convergence in the
summation over k is evident. For large distances
(2 & r &7), r pI, (r) decreases with different rates for the
various k components. In the asymptotic region (r~ ~ )

the high-k components become increasingly important.
Figure 3 shows the results for the almost critical sys-

tem Z =170 with an assumed nuclear radius of R =7. 1

fm. The binding energies of the most strongly bound
electron states are E„=—1020.895 keV and E2
= —569.837 keV, respectively. Again the k =1 contri-
bution dominates completely. In summary, we remark
that the approximation in Refs. 8 and 20, in which only
the term with k = 1 in the calculation of the vacuum po-
larization charge density was considered, is justified.

To determine the vacuum polarization potential from
the charge density, we employ the Poisson equation,
which yields

U(r)= —4ma —f p(r')r' dr'+ f p(r')r'dr' . (71)
r 0 r

In the range 0( r (500R the vacuum polarization charge
density was computed at 152 grid points. Next we per-
formed a 8-spline interpolation of r p' +'(r) using two
different orders of the B spline to monitor the accuracy of
the interpolation. For r )500R the total radial densities
r p' +'(r) were assumed to decrease as an inverse power
of r. In the angular momentum summation, we included
all terms up to k =5. Due to rather strong cancellations
between the various terms in Eq. (26) higher angular
momentum components were not incorporated in the
present treatment. To do so would require a relative ac-
curacy of better than 10 ' in the numerical evaluation
of the Green function and the Uehling term. The energy
shift in bound-state electron follows from

bE= f [f&(r)+fz(r)]U(r)r dr .
0

(72)

The vacuum polarization potential as well as the corre-
sponding energy shifts were computed by Gaussian quad-
rature.

The effect of the higher-order vacuum polarization on
a K-shell electron in lead (Z =82) amounts to b.E„=2.3
eV, whereas for the superheavy system Z = 170, we found
AE„=1.46 keV. The corresponding numbers for the 2s
and the 2p, zz states are bE2, (Z =82)=0.35 eV,
bE~& (Z =82)=0.07 eV and bE2, (Z =170)=0.269

~1/2

keV, b,E2 (Z = 170)= l. 32 keV, respectively. The~ 1/2

numbers for lead are in fair agreement with earlier calcu-
lations in Ref. 23 in which the vacuum polarization of or-
der a(Za) was computed for pointlike nuclei and addi-
tionally the contributions of order a(Za) and a(Za)
were estimated. For fermium we get a noticeable energy
shift of about 9 eV for the K line.

The energy shifts of K- and L-shell electrons in various
hydrogen systems due to the vacuum polarization of or-
der a(Za)" with n ) 3 may be deduced from Table I.
The energy correction hE is expressed in terms of the
function H&+ (Za) with

b E = — H&+ (Za)mca (Za)
7T

(73)

where n denotes the principle quantum number of the
electron state. In Table I we give the dimensionless quan-
tities H~+(Za) corresponding to the level shifts from
p' +'(r). The uncertainty is expected to be smaller than 1

in the last figure quoted.
In conclusion, we have computed the vacuum polariza-

tion charge density of order a(Za)" with n ) 3 for vari-
ous hydrogenlike systems of known elements as well as
for the nearly critical system Z =170. Employing this
computer code, more accurate numbers for the electron
Lamb-shift effects in hydrogenlike atoms can be provid-
ed. In addition, we remark that the higher-order vacuum
polarization correction, which is repulsive, does not ap-
pear to prevent the diving of the 1s&/z state into the
negative-energy continuum for nuclear charge numbers
Z) 170.
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