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Classical inverse problem for finite scattering region
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It is shown that in classical mechanics for a finite scattering region a spherically symmetric poten-
tial can sometimes be determined from the deflection function for particles of a single energy E.
Calculations for several examples such as a harmonic oscillator, a repulsive-attractive potential, and

a reflection from a spherical mirror have been performed. Nonuniqueness is shown to occur in

some cases.

I. INTRODUCTION

In the customary formulation of the classical scattering
problem, the potential is assumed given and the
deflection function (and the cross section) is calculated.
In the inverse scattering problem, one assumes that the
cross section (and the deflection function) is experimen-
tally determined and the potential to be found (see Ref. 1

and the references therein). The question of how to con-
struct the classical deflection function from the
differential cross section of a fixed energy is not the sub-
ject of our consideration.

The problem of determination of the potential from
scattering data for an infinite scattering region has been
studied in many articles and books. ' For the finite
scattering region Cuer studied the class of transparent
potentials. His examples show that in the inverse prob-
lem of fixed energy ambiguities in the classical limit exist.

In this paper we consider, in a general case, the scatter-
ing of the classical particle of energy E by a finite spheri-
cally symmetric scatterer. We suppose that the deflection
function, as a function of the angle, is given and we calcu-
late the potential inside the scattering region.

convenient to introduce the new variable x =b so that
u = 1 lr regarding f as a function of x and V as function
of u. Then (2.1) becomes

g(x)= J 1/R V(u)
E

1/2 (2.2)

P(b ) = a(b ), —
2

(2.3)

where a(b)=arcsin(b/R ). We now define the functions
u ( u ) and co(u ) by

u(u )=1—,co=V(u)
E

(2.4)

In terms of u and co (2.2) becomes

From Fig. 1 it is easy to find the connection between the
deflection angle 8(b ) and the angle P(b )

II. METHOD OF SOLUTION

Suppose that a free particle of kinetic energy E moves
parallel to the x axis at a distance b (Fig. 1). When it
penetrates in the spherical region of radius R it is subject
to a conservative force field whose potential is V. We
shall assume that Vis rotationally invariant, so that it de-
pends only on the magnitude of the distance r of the force
center in the coordinate origin. After the scattering in
the region of radius R, the particle moves freely again.

From classical mechanics, the deflection angle g is re-
lated to b and V(r ) by the equation

R

2

V(r)
E

' 1/2 7 (2.1)

where r is the largest root of the denominator. It is FIG. 1. General form of trajectory inside the finite region.
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~( y~ g(co)de
1/R 2 (x ~ )1/2

where

1 du

v

(2.5)

(2.6)

Equation (2.5) may be considered to be an integral
equation for the determination of g (co ). Since it is of
Abel type it can be solved explicitly with the result

1 d ~ 1((x )dx
g CO

77 dc' ~1/R ( —x )
(2.7)

Upon integration and differentiation in the expression
(2.7) we obtain the function g(co) explicitly. Then we
determine the potential V(r) from the differential equa-
tion (2.6).

III. HARMONIC OSCILLATOR

Let us now consider the deflection function

g(co) =

FIG. 2. Luneburg lens.

1 1
'1/2 +

1 4'
4

R

(3.8)

Now, substituting (3.8) and (2.4) in (2.5) yields
(3.1)

b
8(b ) = arcsin

R du 1 +
Qd co 4' 1/2

1
4 co co—

R
Then, using the variable x instead of b, from (2.3) we ob-
tain

(3.9)

1
P(x ) =———,

' arcsin
2 2 &/2

and from (2.7) the expression for g(co) becomes

(3.2) The solution of the differential equation (3.9) is
' 1/2

CQ2=co'/2 co'/2+ ~— 1

R
(3.10)

g(a)) =
2 co— 1

R

1 d
I(C0) (3.3} where C is an arbitrary constant. Choosing C = 1 and re-

turning to variable u the expression (3.10) becomes

where
=1—(1—u)

R 2~
(3.1 1}

I(co)= I
1

arcsin Rx'"
dx

(~—x)'" (3.4)

To evaluate the integral I(cu), we introduce a new vari-
abley= 1/Rx' . Then we have

V(r)
E

r —1, r(R
R

0, ryR . (3.12)

Taking into consideration that u = 1 —V( r ) /E, we obtain
the potential of the harmonic oscillator

T '2

I(co)=— —1 — I(a, —
—,
' ),1 2a

a

where a = 1/R co' and

(3.5)
The above potential (3.12) focuses all incoming parti-

cles into one point. This kind of refractor in optics is
known as a Luneburg lens (see Fig. 2). In fact, it is a
sphere with radial-dependent index of refraction

2 1/2

arccosy dy

y2(y2 & 2}1/2
(3.6)

rn(r)= 2—
R

(3.13}

The integral (3.6) has been calculated in Appendix B [see
formulas (B12)]. Using this result we obtain

IV. REPULSIVE-ATTRACTIVE POTENTIAL

We choose the deflection function in the form

' 1/2
1I(co ) = m. tu—

R
—7TCO +1/2

R
(3.7)

b
8(b ) =sr 4arccos-

R
(4.1)

and
which in the interval [O,R] has negative and positive
values (Fig. 3). From (2.3) one can calculate
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V(r)

FIG. 3. Shape of the deflection function given by expression
(4.1).

FIG. 4. Shape of the repulsive-attractive potential given by
expression (4.6).

g{x ) =arcsin 1

Rx'" (4.2) P(r, b ) =3a(b ) —J I'

bdr

b2
r 1—

r 2

V(r)
E

' 1/2 (4.7)

g(co) =—1
2

1 1 1 2
N

' I/2 g g2 I/2 I(a, —-')

R

Inserting this function in (2.7) and making the integra-
tion, we obtain Inserting the potential (4.6) into (4.7) and making a

simple calculation, we obtain
' 2 1/2

b . b
P( r, b ) =3 arcsin —+arcsin 1—

R R

(4.3)

g(co) =—1
2

1 1

1

' 1/2
CO

R

(4.4)

where I(a, ——,
'

) is given in (3.6). Using the result (Bl 1),
the expression (4.3) becomes

r

or

—arcsin

'2
r b

1 ——
R R

'2 )/2
b1—
R

2 1/2

(4.8)

According to the previous result, the differential equation
(2.6) has the solution

r R b
1 — 1—

R b R
cos[P —2a(b ) ]

(CB —1) =1-
R co

(4.5) (4.9)

Choosing the integrated constant C=R and returning
again to previous variables, we obtain the following po-
tential (see Fig. 4):

For this particular case we can compute the form of caus-
tics. From the relation ay/'ah=0, where P is given by
(4.8), we get

R1—
r

'3
R

2——
r

r&R Sr —2 —[(5r —2} —3r (2r —1 }(5 2r))'/—
37

0, r&R . (4.6)
(4.10)

The trajectory of the particle inside the scattering re-
gion after particle has reached its minima can be found
from the formula

Now (4.10) and (4.8) determine the function P(r) which
describes the forbidden region for the particles (Fig. 5).
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g(b ) =2 arccos
b

R
(5.2)

Inserting this expression into (2.7) and repeating the pro-
cedure used in thus preceding sections we get

(5.3)

A x

and solving the differential equation (2.6) (with the in-
tegrated constant C = I /R ) we obtain the potential

0, r)R . (5.4)

The trajectory of the particle which is a subject of the po-
tential (5.4) can be obtained from the formula

FIG. 5. Trajectories of particle in the repulsive-attractive po-
tential (4.6). The envelope of trajectories is caustics given by
(4.10) and (4.8).

V. SPHERICAL MIRROR

P(r, b ) =a(b ) —f

Then

Rr
r —1

b2

' 1/2 (5.5)

Let gs consider the following problem. How do we
determine the potential of a finite range which scatters
the particle in a way equivalent to a reflection from a
spherical mirror? We start with the reflection of ray
from the concave side of the sphere. Multiple reflections
are not taken i@to consideration. From Fig. 6 is clear
that

b
P(r, b ) =—+arccos ——2 arccos

2 R

or

2b
R [ I —cos(/+a)]

b
(5.6)

(Rr)'

(5.7)

8(b ) =2 arccos
b

R

Now using (5.1) in (2.3) yields

(5.1)
Several examples of trajectories as illustration of formula
(5.7) are given in Fig. 7.

Let us now consider the reflection of rays from the
convex side of the sphere. The problem is how to deter-

FIG. 6. General form of trajectory for the concave spherical
mirror reflection.

FIG. 7. Trajectories for concave spherical mirror reflection
for different values of the impact parameter; b =0.3, 0.5, 1/&2.
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b
0(b ) =~+2 arcsin

R
(5.8)

and 1(t(x ) =m. Inserting these relations into (2.7) yields

1N-
R

' 1/2 (5.9)

and from (2.6) we obtain

V(r)
E

4R1— r(R
r(R+r }

0, rgR . (5.10}

mine the attractive potential which produces the same
effect? From Fig. 6 it is obvious that

reflection. In this case the particle inside the sphere
makes many loops and it produces many different poten-
tials.

The above case is typical example of ambiguities in the
determination of potential from scattering data using the
fixed energy method. In quantum scattering theory it has
been a subject of investigation by many authors
(Newton, Sabatier, ' and Chadan"' ). This fact is
linked with the interpolation of phase shifts in the semi-
classical inverse method.

The same phenomenon also appears in classical scatter-
ing theory for a class of potentials which gives a classical
deflection function equal to zero (mod2n~) (transparent
potentials) (Cuer ). We might think that ambiguities in
the classical inverse problem at fixed energy exist in all
cases of finite scatterer.

A simple calculation gives the trajectory of the particle
inside the sphere (Fig. 8)

b6(r, b ) =arcsin —+arcsin
R

2R b(R +—r )

2R 2(R 2 b2)1/2

2R r b(R+r—)—ar csin
2rR(R' b2)»2

(5.11)

In the above-mentioned examples we met with the so-
called orbiting scattering. The characteristics of this
kind of motion is that there are nonunique solutions of
the inverse scattering problem. Indeed, if instead of func-
tions (5.1) and (5.8) we use the functions

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from U. S.
Department of Energy and the Self-Managed Community
of Interest for Science of the Socialist Republic of Ma-
cedonia through funds made available to the U.
S.—Yugoslav Joint Board on Scientific and Technological
Cooperation. The authors would like to thank Dr. B.
Veljanoski for his help with the computer calculations.

APPENDIX A

The aim of this appendix is evaluation of the integral

8(b ) =2 arccos —+2n m,
b

R

8(b )=@+2arcsin —+2nrt,b

R

J(a,a) =— (x —a ) arccosx dx .2 2~
7T a

(5.12)
Then

J(a,O)= —[—aarccosa+(1 —a )' ]

(Al)

(A2)

where n = 1,2, . . . , we obtain the same effect of
and

BJ(a,a) = —aJ(a, a —1)
Ba

(A3)

for a g0. From this, using the method of mathematical
induction, we obtain

1 1 1J(a, n )=n!f,f f J(t,O)dt dx„, dx&
g2 x) n —1

=n f,(t —a')" 'J(t, O)dt .

Therefore, we assume that
1J(a,a)=a f,(t —a ) 'J(t, O)dt,

a2

or

(A4)

(A5)

J(a,a)= f (t —a } '[(1 t}'~—
1T 0

—t arccost ]dt . (A6)

FIG. 8. Trajectory for convex spherical mirror reflection
(b = 1/&2).

Using a new variable t =x, from (A6) we obtain the fol-
lowing recursive relation:
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J(a,a}=— J(a,a —1)
20 a
1+2a

2a+ (x —a ) '(1 —x)'/ dx
m(1+2a) a

(A7)

By the replacement t =(x —a )/( I —a ), one can calcu-
late that

2a a 2a(l —a )
+'

J(a,a) = — J(a,a —1)+ B(a, ,')—.
2a+ 1 2a+ 1

(A9)

Using the identity

8(a+ Io 2~ ) 2a+3 2a+5 2a+2k —1=8(agk, —', ) ~ ~ ~

2a+2k+ 1 ' 2a+2 2a+4 2a+2k —2

(x —a ) '(1 —x)' dx=(1 —a )
+' 8(a —'}1

a ~e can calculate the sum

(A10)

(A8)

where 8(a, —,'), is the beta function. Then the expression
(A7) becomes

g J(a,a+k)p(a, a, k),
k=0

(A 1 1)

( —1)"+' 2a+3 2a+5 2a+2k+1
p(a a k ) = g2" 2a+2 2a+4 2a+2k

1, k=0.
(A12)

As result of summation (Al 1), we get where J(a,a }is the integral in (A 1). Therefore

2a+1
J(a,a)= B(a+1,—,')

oo
( 1)k+1

I(a,a)= g 2k J(a,a+k —1) .
k=o

(B3)

oo
( 1 )k+1 —1

, 2a+k+1 g2

a+ k+1/2

a2(2a+1) r(a+ 1) 1/a2 1 ta+1/2
J(a,a)= r(a+-', ) 0

dt1+t

for a & —l. Some particular values of J(a,a) are

J(a, —
—,')= —Ina,

(A14)

J(a,0)= —[(1—a )'/ —a arccosa],

From the last expression it is easy to rewrite J(a,a) in
the simple integral form, suitable for numerical calcula-
tions

Inserting (A13) in (B3) we obtain

2a —2

I(a,a)= g 8(a+k, —,')
4 k=1

oo
( 1)k+j

X
, a —2+k+J

' a —1/2+k+ j
1 —1

Q

or in the integral form

&2a —1

I(a, a) =
4

(B4)

a a 1J(a, —') = lna — +—,
2 4 4

(A15)
1

00
k —1g

o 1+t k

J(a, 1)= 4
3~,

( 1 2)1/2
2 3(1—4a )+a arccosa

3

J(a, —,')= —,', [(1—a )(1—3a ) —4a lna] .

Taking into account that

8(a+k, —,
' }

)& t
—'/2+ "dt . (B5)

APPENDIX B

Let us consider the following integral:

1 (X2 g2)a
I(a,a) = arccosx dx .

a

a+k+1 a+k —2 a
a+ —,'+k —1 a+ ,'+k —2 a+——,'

(B6)

(B1}
and putting (B6) in (B5) we have the following series:

It is obvious that

I(a,a+1)=J(a,a) a I(a, a), — (B2)

I'(t ) = g ( —1)"
k =1 a+ —+k —1

a —1/2+ kta+—
2

(B7)
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The function F(t ) satisfies the differential equation

1
a —1/2

F'(t )+ F(t )—
2 t+1 t+1

which has the solution

(B8)

1I(a,0)=—arccosa —ln
a

I(a, —,')= —(a —1 —lna) .

1+(1 a 2)l/2

(Bl 1)

CX t a —1/2F(t)=,zzf,zzdx, a& ——,
' .(t+1)'" o (x+1}'"

From the above considerations it follows that

(B9}
The other values of the integral I(a,a) can be obtained
from the expressions (A15) and the difference equation
(B2), and are

2a —1

I(a,a) =
2

a —1/2
8(a, —,

'
) f dx

o x+1
1/a —1

Q
1 /2

dX
(x —1)

a& —
—,
' . (B10)

( — )

2 2

I(a, l)= —(1—a )
~ —a —+1 arccosa

2 2 1/2 2

1+(1 a )
~2

+Q ln
Q

Simple calculation of integral (B10) for a=0 and a= —,
'

gives

Q
2

Q KQI(a, ,' )= (—1+n )lna+ (m —2)— + —,
' .

(B12)
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