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Within the Trotter-Suzuki approximations on e eH, the extended projector method [Phys. Rev. A
36, 4612 (1987)] previously introduced by us is shown to be a valuable technique in investigating the
general class of few-level systems coupled both linearly and quadratically to a selected number of
harmonic oscillators. As an illustration we compare eigenvalues and Ham-reduction factors with
the literature for the cubic linear Jahn-Teller systems Tier and T ~& as well as for the system E e
for which a quadratic warping interaction is included. For the latter system a symmetry projector is
additionally developed, dealing with the transformation properties of nonlinear combinations of
representational basis functions. As another illustration, the low-energy eigenstates of a two-level

system quadratically coupled to a single harmonic oscillator are investigated. Within the ground
state, the system becomes unstable at high coupling strengths and through the evaluation of time-
and frequency-dependent correlation functions we found substantially different ground-state dynam-
ic properties compared with those of a linearly coupled system.

I. INTRODUCTION

We propose a numerical treatment of a general
quantum-mechanical few-level system coupled to a finite
set of harmonic oscillators. Such a model is frequently
applied as a nontrivial description of complex physical
systems. The few-level approximation is generally based
on the idea that only a selected set of states of the system
is to be considered as relevant for the physical process
under study. Well-known examples are spin-resonance
theory and optical transition models in which some exter-
nal resonance conditions (e.g., tnicrowaves, incident
laserlight) and general level-occupation considerations
(e.g., thermal equilibrium distribution or nonequilibrium
init'ial-state preparation) justify the simplification of the
few-level approximation for the complex electronic struc-
tures. Another class of systems in which one is naturally
led to employ the few-level description is the Jahn-Teller
(JT) and pseudo-Jahn-Teller (PJT) systems in molecular
and solid-state physics, the few-level system being defined
by degenerate (JT) or nearly degenerate (PJT) electronic
multiplets. Of a nonelectronic nature are problems in-
volving tunneling and reorientation between a finite num-
ber of spatially distinct states which are most adequately
described with a few-level model, associating each "level"
with a possible spatial configuration. In solid-state phys-
ics the coupling to harmonic oscillators often describes
the interaction of the few-level system, embedded in a
crystalline host, with the lattice vibrations. We already
mentioned the JT systems, but other examples include
spin-lattice relaxation theory, ' the molecular polaron,
phonon-assisted tunneling, ' and the theory of radia-
tionless transitions. ' '" It should immediately be noted
that we will not treat a continuous bath of phonons, but
only allow for a finite number of oscillators. They are as-
sociated with the "effective" lattice deformations and are
often expressed in terms of the normal modes of a cluster
consisting of the few-level system surrounded by a small

II. GENERAL THEORY

The general Hamiltonian that we will consider reads as
follows (A'= 1):

&=&L+%oo+ g%'L"o(i)+ g %'t"oo(i,j ), (2.1a)

with

&L =hL, (2.1b)

oo=nya, a, , (2.1c)

'(i)=(AC, )' L'"'(a, +a;), (2.1d)
I

~'Lao(t,j)=&C2 g Lk'" 'fk '(t, j)(a; +a;)(a, +a, ) .
k=&

(2.1e)

number of lattice ions. ' We finally mention quantum op-
tics in which this kind of coupling to harmonic oscillators
is used to model the interaction of the few-level system
with a radiation field. '

The plan of the paper is as follows. In Sec. II we
present the generic Harniltonian and propose a way in
which it can be suited for an application of the extended
projector method (EPM). As a first example, a two-level
system with quadratic coupling to a single harmonic os-
cillator is treated in Sec. III. This system can be con-
sidered as a simple PJT system. A similar treatment of
the corresponding linearly coupled model has been given
earlier. ' Section IV is devoted to the cubic JT systems
Te and T ~z for which only a linear interaction term is
considered, as well as to the system Ee, which is treat-
ed with the inclusion of a quadratic JT warping term.
Whereas the bare EPM is applied for the systems Te
and T~2, a further refinement, exploiting the symmetry
properties at maximum, is worked out for E e.
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AL represents the Hamiltonian of the few-level system,
henceforth assumed to be of dimension I and is described
in terms of an (I &(I) matrix L, transforming in a totally
symmetric way under the elements of the system's sym-
metry group Q. By definition, the oscillator coordinates
can be chosen as to transform according to an irreducible
representation I (dimension y) of 9 and are labeled with
respect to the different rows of this representation (in-
dices i,j). Woo models the free oscillators, all assumed to
have the same frequency 0, in terms of the creation (an-
nihilation) operator a; (a;) for oscillator i By. applica-
tion of Unsold's theorem, ' the linear coupling term %'Lo)

(sum over all i) is totally symmetric if the (I Xl) matrix
L,'"' transforms, just as the ith oscillator coordinate
(a,. +a; ), according to the ith row of I . C, describes the
linear coupling strength which is, in the absence of quad-
ratic coupling, proportional to the binding energy of the
displaced oscillators, the proportionality depending on
the normalization-convention of L "'. The quadratic
coupling term &'L(2o(i,j ) is somewhat more subtle, as one
now has to combine an (1 XI ) matrix L), ', transforming
according to the kth row of a representation I" (dimen-
sion y' and I" not necessarily equal to y and I ), with a
suitable linear combination of quadratic forms of the
oscillator-coordinates belonging to I . Knowing, by
definition, the transformation properties of these oscilla-
tor coordinates the proper coefficients fk )(i,j) can be
found from group theory by constructing a quadratic
form, transforming as the kth row of representation I"'.
In this way, %'loI3 (sum over i,j) is again assured to
transform in a totally symmetric way. C2 is the quadra-
tic coupling strength which, in contrast with C1, will not
displace the oscillators, but rather modulate their fre-
quency. As the frequency is to remain positive, the
modulation depth is limited and C2 is bounded from
above, the exact limits depending on the normalization
conventions applied for L)(, ' and fi( '. An example of
this limit will be studied in Sec. III A. Note that we have
implicitly assumed to couple quadratically twice to oscil-
lators of the same representation I, which necessarily im-
plies I 'EI )&I. This of course is not strictly required
and one can equally well couple quadratically to two
kinds of oscillators belonging to different representations.
As this only makes the notation more cumbersome this
case has not been incorporated in (2.1).

Taking as basis states a truncated set of oscillator
eigenstates ~0;),

~
1;), . . . ,

~
N;) (i.e., a;a;

~
n, )

=n;
~

n; ), 0&n; &N;) for each oscillator i =1,2, . . . , y,
Hamiltonian (2.1) will be represented in the direct prod-
uct space of all such oscillator states with the I few-level
states. In general, the total dimension 1 p~r )N can easi-
ly exceed the limit up to which matrices can be handled
with numerical diagonalization techniques. It has, how-
ever, been shown' that low-energy eigenstates as well as
their dynamics can still be evaluated numerically for such
systems within the formalism of the Trotter-Suzuki'
approximation. The operator e ~ can be considered as
a projector onto the low-energy eigenstates of & for p
sufficiently large. A combination of the projector on a
finite collection of states, say, d in number, with the vari-

ational principle, has beep ~orked out such that the set
of projected states can be shown to span the subspace of
the d lowest-energy eigenstates of &, no matter the
(quasi)degeneracies within this subspace. The general
technique, from now on to be referred to as extended pro-
jector method, is explained in detail in Ref. 14, where it is
applied to a two-level system linearly coupled to a single
harmonic oscillator. Whereas approximations on e
are important in order to find a low-energy eigenstate

~

(Ii) of &, similar approximations on e " allow the
calculation of its time dependence (

~

0'(t})=e "
~

qi) ),
as well as of time-dependent correlation functions such as
(O(t)O(0)) —= ()p

~

e" Oe " 0
~

)p) for any operator
O. ' Following Ref. 14 this work will exclusively deal
with the following symmetrized approximation on
e (P=n2b ) (Refs. 16 and 17):

bH ( b )
—bH ~ l2 —bHB —bH ~ /2

e =e " e e (2.2a)

for an arbitrary separation of H =H~+Hz and correct
to second order in b

—mbH
(

bH(b)
)tn~~

— 6( b 3) (2.2b)

—b&~g~(i)/2
X e

bu(Lroo) (, ' j)
e

i=1 i j =1

—bi+~i)(i)/2 b(%'L %+gg)—2/

i=(
(2.3)

where we have factorized commuting oscillators. To
treat the remaining coupling Hamiltonians &2o(i) and
%(roo)(i,j } we will, for notational convenience, reformu-
late them in a fermion formalism ' which is fully
equivalent with the matrix representation in the N' '-

dimensional basis. Considering oscillator i, we introduce
the creation operator c„of the occupational state

l

~
n; )—:c„~0, ). Within the previously made truncation

I

approximation of a finite oscillator representation

g; ',
~

n; )(n,
~

= 1 =+; ',c„c„, one can easily check
l l

equally valid for b=i~. A detailed analysis of second-
order product formulas such as (2.2), as well as of
fourth-order extensions, is given elsemhere. ' Formula
(2.2) is readily generalized to a separation of H in any
number of parts. One typically keeps splitting the Hamil-
tonian into smaller pieces until the final parts can be ex-
ponentiated easily. In the remainder of this section, we
mill discuss in some detail the splitting-scheme that we
employed on Hamiltonian (2.1).

Since the few-level system is essentially assumed to be
of a relatively low dimension, all (l Xl) matrices will be
treated numerically exact through the use of diagonaliza-
tion procedures. The block-diagonal matrices &L and

Woo can be exponentiated by numerically exact calcula-
tions. The further discussion of (2.1) is therefore essen-
tially a discussion of the oscillator problem of dimension
N' ':g~~ )N/, kee—ping in mind that each entity in this
problem is in fact an (I X I ) matrix. We propose

—b%(b) L +~oo 'e:—e
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that

'(i) =(QC, )' (a; +a, },
(2.4a}

(2.4b) and

N,. —1

&'la=(QC, }'~ g (n, +1}'~(ctc„+,+c„+,c„},
i=0

(2.4c)

I

Loo(' J)= X I.k ~i.oo(i,j;k),
k=1

~Lao(i j;k)=QC2f„' '(i j )(a; +a;)(a~+a, ),

(2.5a)

(2.5b)

I

~'L".oo(&*j'k }=

N, —1

QC, f„' '(i j ) g (n, +1}'~'(c„c„+,+c„+,c„)
n. =0

I

N —1

g (n, +1)' (c„c„+,+c„+,c„), i@j
j (2.5c)

N, —2 N,

QC2f~" '(i, i) g [(n, +2)(n, +1)]' (c„c„+z+c„+2c„),+ g (2n, +1)c &c„, i =j .
i=0 i=0

—bA Lo(i) —b% I.o(i)/2 —b% L.o(i) —b% s.o(i)/2
(2 6)

The linear coupling (2.4c) is interpreted as a nearest-
neighbor interaction on the one-dimensional chain of os-
cillator states. For the quadratic coupling (2.5c) one dis-
tinguishes the cases of nearest-neighbor hopping on a
two-dimensional lattice for the coupling with two distinct
oscillators (i') and the next-nearest-neighbor hopping,
complemented with a self-interaction for the quadratic
coupling with only one oscillator (i =j). The different
coupling schemes are visualized in Fig. 1, together with
the ultimate breakups that we now discuss.

For the linear coupling &Lo(i) we use a splitup, based
on the even and odd sublattices, as depicted in Fig. 1(a)
(Ref. 22)

tation index (I ). Since each interaction in the right-hand
side of Eq. (2.6) consists of a set of commuting two-site
interactions [see Fig. 1(a)], the exponentiations in (2.6)
break up into a lot of (2 &(2) problems, one corresponding
to each such pair of sites. Recalling that the (2 X 2) prob-
lem is built from matrices, proportional to L "', each ex-
ponentiation involves a (2l &(21) matrix and has to be
solved numerically. The quadratic couPling %zoo(i,j)
[Fig. 1(b)] is the two-dimensional analog of ALo(i) and is
broken up as follows:

-bLOO( J) -b~Loo(.J) 2 -bLoo('J)/2(1) ~ ~ (2)

e
' =e e

Loo( 'g)/2 bgf Loo
(3) . - (4)

Xe e

—b'Lop(i P/2 —b~'Loo( J)/2
Xe

denoting the even and odd interactions with the indices 1

and 2, respectively, and having suppressed the represen-
—b& Lop(i J)/2(1)

Xe (2.7)

~ ~
~ ~

2

r/
/

~ ~~ ~
~ ~

~ ~ ~~g
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FIG. 1. Visualization of the splitting schemes applied in the symmetrized product approximations on the various parts of the
Hamiltonian. Part (a) shows the even-odd separation for a simple one-dimensional lattice as it appears in the treatment of the linear
interaction term &Lp(i), with (b) an equivalent extension to two dimensions for the analysis of its quadratic counterpart &Lop(i, j).
Finally, the three next-nearest-neighbor interactions and the self-interaction of &Lop(i, i ) are shown in part (c).
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Finally, %roo(i, i) is split into three commuting pair in-
teractions (1,2,3) and one self-interaction term (4) [Fig.
1(c)], leading to

—bNLoo & &
—b.&Loo &i)/2 —b.A Loo «)/2

e ' '=e e

b Loo{i,i)/2 —bi% Loo(i
(3) . c (4)

Xe e

b&(LO)o{i,i) /2 -bury(L'o)o(l, i) /2
Xe e

exact thermodynamic properties which can be computed
numerically to any precision. Especially the derivative of
the free energy F with respect to Cz is of interest as a
discontinuity in BF/BC2 or 8 F/BC& as a function of Cz
reveals a transition in the ground state.

In this section we extend the results of Ref. 23 by cal-
culating zero-temperature properties without relying on
the adiabatic-limit assumption. From (3.1) one finds in
the zero-temperature limit

b JV Loo( i,i')/2c (I)
Xe (2.g) =—{4o

~

cr"(a +a )
~
%0),

BC~ 4
(3.2)

Summarizing, we have indicated in this section how,
within the context of the Trotter-Suzuki approximation,
exponents of the most general Hamiltonian of a few-level
system, coupled both linearly and quadratically to a finite
collection of harmonic oscillators can be split into com-
muting pair interactions. In this scheme the operation
therefore reduces to an exponentiation of (21X2l) ma-
trices, whereby I denotes the dimension of the few-level
system.

III. PSEUDO- JAHN-TELLER SYSTEMS

The Hamiltonians to be studied in this section model
two-level systems, quadratically coupled to a single har-
monic oscillator. Such a second-order coupling is not
very common and, indeed, similar systems with linear
coupling are more frequently applied in, e.g. , solid-state
physics. As we did, however, already treat the linear-
coupling problem with the EPM previously' the case of
quadratic coupling is presented here as an evident exten-
sion. It will be shown that the physics of the latter differ
substantially from that of the former case. First we will
study some of the static ground-state properties of these
systems in connection with a possible transition as a func-
tion of the coupling strength. Then, the ground-state dy-
namics will be investigated through the evaluation of
some representative time-correlation functions.

BE
BC2

0
4(1—C, )'" (3.3)

Obviously BE/BC2 diverges at Cz ——1. Notice also that
BE/BC2&0 if C2 ——0. In Fig. 2, the numerical truncation
of the system causes the divergency to be cut off. A
better approximation (i.e., steeper and closer to C2 ——1) is

where the ground state of & is denoted by
~
40). We

have performed a numerical diagonalization of the trun-
cated matrix considering oscillator states

~

0) .
~

N }
with N =30 and 60, rather than apply the EPM to deter-
mine

~

%0). The values of BE/B—Cz are presented in

Fig. 2 for various values of h (units of 0= 1) and in the
neighborhood of C2 ——1.

It is instructive to start the discussion with the special
case h =0, for this considerable simplification allows an
analytic solution of the problem. As the two eigenstates
of 0 are now uncoupled, the problem is block diagonal
with respect to the spin coordinates, each block
representing a harmonic oscillator with modulated fre-
quency Q(1+C2)' (+ for the respective blocks). Using
the known ground state it is easily shown that

A. Statics

The Hamiltonian (Pi= 1) under consideration reads

with

~L +oo +Loo (3.1a)

&~ = —ho',

oo =f1«
C20

(a +a) o" .
4

(3.1b)

(3.1c)

(3.ld)

o and o' are Pauli spin- —,
' operators describing a two-

level system with frequency 2h. It is quadratically cou-
pled through &L~z to a harmonic-oscillator mode with
frequency 0, C2 determining the coupling-strength. Re-
cently, model (3.1) has been studied in the adiabatic limit
(neglect of the kinetic energy in Moo) at finite tempera-
tures for this approximation allowed a comparison of
the authors' numerical results based on a discrete path-
integral representation of the partition function with the

40-

30-
C4

LLJ V
I

20-

10-

h)-
h)=

I

05~o~
~h) -0

——
h) =05

0"
09 095 1

C2

Qp
I I I

105

FIG. 2. Behavior of —BE/BC, as a function of the coupling
constant C2 for a two-level system quadratically coupled to a
harmonic oscillator. The oscillator's mass M and frequency 0
are taken as unity. The system s instability at C2 ——1 is rejected
by the finite jump near C2-1. The expected divergent behavior
is recovered if the number of states N used to represent the os-
cillator tends to infinity. The finite-N effect is only important in
the direct neighborhood of the critic coupling C2 =1, as can be
seen from the collapsing of all lines for C2 &0.99. Also notice
that for increasing tunneling frequency 2h the value of
—BE/BC2 decreases.
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obtained for increasing N. Notice, however, that this is

only critical near Cz ——1. For smaller values of Cz, the
two approximations (N =30,60) are undistinguishable
and even in perfect agreement with (3.3), as can be seen
from Table I. For h &0 it is seen that —BE/BC2 shows
an overall decrease. The transition gets sharper but
occurs at too high a value for C2, shifting, however,
closer to C2 ——1 for increasing dimension N.

What should be retained from this section is that the
number of oscillator states taken into account is only of
critical importance in the neighborhood of the transition
point Cz ——1. As long as one stays away from this point,
there is no need in making N large.

a finite-dimensional matrix representation considering the
oscillator states

~
0&. . .

~
N & with N =30 which, we have

checked, yields sufficiently accurate results for
0&Cz &0.95. With the knowledge of

~
%o& and using

the Trotter-Suzuki approximations proposed in Sec. II
for b =i ~, imaginary, one can determine the zero-
temperature time-correlation function of an operator 0
from

& O(r)O(0) &

&q'o
I

e""oe ""o
I

q'o& —
I

&q'o
I
o I'4& I'

to(r) .
&q', O'

I

q'o& —
I

&q'o
I

o
I

'po&
I

'

(3.6}
B. Dynamics

Here we will deal with Hamiltonian (fr= 1}

JP =JVL +JVoo +JVLoo

with

(3.4a}

Notice that we have normalized to the t =0 function
value and subtracted the constant part

~
& %o

~

0
~

%o &
~

For numerical convenience (3.6} is multiplied by a
window-function [w(t)] before calculating the structure
factor Zoo(co), defined as the Fourier transform of the
real part (Re) of the correlation function & O(t)O(0) &

&L =ho",

&oo=Qa a,
C20

&L,oo = (a +a )'o",
4

(3.4b)

(3.4c)

(3.4d)

which is very similar to (3.1) except for &L which is now

of the same nature as the tunneling part in &Loo. This
additional simplification makes the model extremely sim-

ple as one now has, in much the same way as with the
h =0 case discussed in connection with (3.1}, a problem
which is block diagonal in the spin coordinates. The ei-
genvalues of (3.4) are given by

E+(n+ ) =(n+ + I/2)Q+I+Czkh —1/2Q, (3.5)

where the + sign corresponds to the eigenvalues of 0. .
Within each subspace (+) one finds the spectrum of a
modulated harmonic oscillator [frequency Q(1+C2)' ]
with the additional correction term —1/20 to account
for the zero-point motion interaction. As the corre-
sponding eigenstates

~

n++ & of (3.5) can be expressed in

terms of the modulated harmonic eigenfunctions, Hamil-
tonian (3.4}is exactly solvable.

We will now continue with a determination of the
ground state

~
4o& through numerical diagonalization of

C2

0.2
0.4
0.6
0.8
0.9
1.0

1/[4(1 —C, )'"]
0.2795
0.3228
0.3953
0.5590
0.7906

—(BE/BC, )„„
0.2795
0.3228
0.3953
0.5590
0.7906
3.98

TABLE I. Values of —BE/BC2 for system (3.1) with h =0
and 0= 1 as a function of the coupling strength Cz, obtained
from the exact result (3.3) (second column) and through numeri-
cal diagonalization of a 62X62 {i.e., N =30) matrix {third
column). Notice also from Fig. 1 that the N dependency is only
significant near the transition coupling strength C2 ——1.

&oo(~)= ——,
' J dr e' 'Re(&O(t)O(0)&) . (3.7)

Due to the finite-dimensional representation, the spectral
function Zoo(co) consists of 5 functions at the ground-
state transition frequencies of the operator O. As the 5
functions imply, however, an infinite-length record of the
correlation function &O(t)O(0) &, a numerical Fourier
transform at a finite record of length T will result in
overshootings near the transition frequencies (see, e.g.,
our previous linear coupling results' ). It has been point-
ed out by Feit et a1. that this numerical problem can
well be compensated for by choosing a proper window
function w(t) over the determined time interval [O, T].
These authors propose the Hanning window function

1 —cos(2mt/T), 0&t & T
( )= '() (3.8)

but we found even better results (i.e., sharper frequency
peaks) with

I+cos(nt/T), 0& t & T
0 r T (3.9)

as (3.9), in contrast to (3.8), does preserve the short-time
behavior of the correlation function. It should also be
mentioned that equally good results were obtained with
the Gaussian window function

—ete ', 0(t&T
to(t)= '00, t~t (3.10)

—FTprovided its tails are sufficiently small, e.g., e ' =10
In Figs. 3(a) and 3(c) we depict the time-dependent

correlation functions of the operators o' and
x=(2Q) ' (a+a ) for system (3.4) with h =1, Q=8,
and Cz ——0.9, using the window function (3.9). The time
propagator was approximated according to the general
scheme of Sec. II with a value of b=iv=im/960. The
spectral functions S„„and S, shown in Figs. 3(b) and
3(d) have been obtained from the time-dependent data by
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2.0

Ill)III (a)

using a 2048-point fast-Fourier transform. In the oscilla-
tor spectrum $,„[Fig.3(b)] of the operator x the system's
ground state

l
0—) can make a transition to the first ex-

cited vibrational state
l

1 —) corresponding to the energy

checked from Fig. 4 where we plot the resonance fre-
quencies Q and 2h of S„„and 4, respectively, as a
function of Cz, all other parameters (Q, h, r, X) being con-
stant. For o' the state

l
0—) is expected to have

nonzero matrix elements with all states of the form

l
2m+) (m =0, 1,2, 3, . . . ). The change of spin sub-

space is a consequence of the orthogonality relation be-
tween all oscillator states within one subspace (

l
0—) is a

trivial exception contributing, however, at zero frequency
and is therefore left out of consideration). Furthermore,
the spatial inversion symmetry implies

l
0—) to make

transitions only to even states
l

2m + ). From (3.5) it fol-
lows that the resonance frequencies of 1 [cf. Fig. 3(d)]

are given by

2h (m) =2h + (2m + I /2)Q(1+ C )'

—( —,')Q(1 —C~)', m =0, 1,2, 3, . . .

(3.11)

At Cz ——0 one finds 2h(m)=2h+2mQ(Cz)' but since
at zero coupling only the bare tunneling frequency 2h can
occur, one expects the intensities of all m+0 transitions
to become negligibly small near Cz ——0. This has indeed
been observed from plots similar to Fig. 3(d) but made for
smaller values of Cz. Consequently the m&0 lines in

Fig. 4(b) could only be drawn for sufficiently high Cz.
The presented data are in perfect agreement with (3.11).

IV. JAHN-TELLER SYSTEMS

Characteristic for a JT system is the coupling of a de-
generate electronic multiplet with some vibrational
motion of either the embedding crystal or of the molecu-
lar ions constituting the complex. Nell-known examples
are the electronic doublet states (E) in cubic symmetry
which can couple to E phonon modes (i.e., Ee) and the
triplet states (T„Tz) coupled to E or T& modes (i.e., Te
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FIG. 3. R !Rea! part of the time-correlation functions
x(t)x(0)) (a) and (o'(t)o'(0)) (c) for the two-level system

quadratically coupled to a harmonic oscillator as described by
(3.4) (Q=8 h ==1, C& ——0.9, and N =30). The time-correlation
functions have been multiplied by a Banning window as given
by (3.9). The spectral functions S„„(co)(b) and 4 (~) (d), ob-
tained through fast-Fourier transformation, are also shown.
Note that the oscillator spectrum shows only one signal,
whereas the tunneling spectrum consists of at least four visible
peaks.

O.O 0.2 OA
Cg

0.8 1.0

FIG. 4. gebavior of the peak positions Q and 2h in the oscil-
lator and tunneling spectra S„„and 4 as a function of the
coupling constant C& for the model (3.4). Except for C&, all pa-
rameters are the same as for Fig. 3. Tbe curves are seen to fit
with the theoretically expected results Q=Q(1 —C&)' and
2h (m )=2h + (2m + 1/2)Q(1+ Cz )' ——'Q(1 —C )' with m

2 2

=0 (circles), m =1 (squares), m =2 (triangles), and m =3 (dia-
monds) ~
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A. Orbital triplet (T, or Tz ) Evibrational mode—:T e

For an orbital triplet (e.g., T2) in cubic symmetry, the
linear JT coupling to an E vibrational mode is given by
the following Hamiltonian (Pi= 1):

with

Woo +&Lo (4.1a)

and

~oo =a ea e+a,a, ,

Lo =(C, )' [(ae+ae)Be+(a, +a, )C,],
(4.1b)

(4.1c)

I/&2

0

0 0
—1/&Z 0

0 0

0
0

2/&6
(4.1d)

which is clearly of the general form proposed in Sec. II.
We have taken the oscillators' mass M =1 and set the

and Tr2, respectively}. These systems have been dis-

cussed extensively in the reviews and texts of Sturge,
Ham, Abragam and Bleaney, Englman, and more re-

cently Bates. ' All except for the last reference treat the
JT ion and its immediate neighbors as an almost isolated
cluster, vibrating with an effective frequency. Within the
same cluster approximation we will employ the approach
presented in Sec. II as a unified method, valid in all cou-
pling regimes, to solve the vibronic problem of these JT
systems. Indeed, the presence of orbital degeneracy,
which invalidates the assumption that the vibrational and
electronic problems can be solved separately, requires the
entire "vibronic" problem to be solved as a whole, evi-
dently within the few-level approximation for the orbital
multiplet. As such, the electronic degeneracy is re-
placed by a vibronic degeneracy of the same symmetry
type but for which the electronic properties differ quanti-
tatively from those of the uncoupled system. These
differences are expressed through the matrix elements of
electronic operators between the vibronic states and are
commonly referred to as the Ham reduction factors.
Another quantity of physical importance is the energy
spectrum of the coupled system, especially the low-

energy differences, as they govern the transition from dy-
namic to static JT effects in the limit of strong coupling.
In what follows, we will evaluate the energy differences as
well as some Ham factors for the cubic JT systems Te,
T~2, and Ee. Although most of the results presented
here are already known through other methods, we
choose to treat these systems, as they illustrate in a non-
trivial way the method's applicability. A short synopsis
of, and comparison with, the literature will be given. For
the system Eee, in addition to the EPM, an extra sym-
metry projector has to be introduced, as will be discussed
in detail in Sec. IV C and in the Appendix.

frequency Q=1. The conventional indexation (H, e) is
used for the components of the doublet, transforming as
(3z —r ) and &3(x —y ), respectively. The matrices
are given in the electronic representation

~
g), ~

vi),
~
g),

transforming under the cubic symmetry operations as yz,
zx, and xy (for T2). Some notational differences with the
literature due to the use of Euclidean-normalized
matrices and to the second-quantization formalism
are resolved by the following substitutions:
V=!,= —2(C, /3)' . ' Since &Lo does not mix the
electronic states, the vibronic problem simplifies tremen-
dously and can be solved analytically, the eigenfunc-
tions being given as a Born-Oppenheimer product of one
of the electronic eigenfunctions

~ g ),
~

ri ),
~ g ) with two

displaced harmonic oscillator vibrational wave functions.
The spectrum is that of a two-dimensional harmonic os-
cillator shifted by the JT-stabilization energy and there-
fore shows a partly spurious degeneracy. The ground-
state vibronic triPlet, denoted by

~

'Pz. ),
~
4r ),

~

'Pr )

is, however, only triply degenerate and the following
reduction factors have been calculated from the vibra-
tional overlap integrals:

K(E)=(47
~

&3/2@e ~%'7- ) =1, (4.2a)

K(T, )=i(+ r~ &2X,
~
%r ) =exp( —C&), (42b)

7/

K ( Tz ) = ( 4
r~ &2T&

~
%r ) =exp( —C, ), (4.2c)

with

0
i w'z

0

0
I/&2

0

i /&2—0
0
0 0

I/&2 0

0 0
0 0

(4.2d)

B. Orbital triplet (T& or T2 )—T& vibrational mode: T~2

If an orbital triplet (e.g. , Tz) in cubic symmetry is cou-
pled to a set of three vibrational modes belonging to Tz

where the electronic operators X„T& can be shown to
belong to T& and T2, respectively.

We treated (4.1) as described in Sec. II, performing the
EPM with three vibronic states, and found numerical ex-
pressions for

~
%r ),

~
4r ), and

~
%r ). The resulting

Ham factors (4.2} are presented in Table II for two
different values for the number of states N ——N, =N in-
cluded in the oscillator representation. This finite dimen-
sion, together with the value of b in the approximation on
e P determine the quality of the numerical approxima-
tion. All our data are presented for b sufficiently small
such that the numbers can be considered as having con-
verged as a function of b. Typically b =0.01 was used.
From comparison with the exact values also listed in
Table II, one notices that higher values of N are required
for increasing coupling strength C, , as can be understood
from the fact that C& determines the degree up to which
the oscillators are displaced.
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TABLE II. The Ham reduction factors K(T& ) =K(T2) within the vibronic triplet ground state for
the system of an orbital triplet T~, linearly coupled to an E vibrational mode (Te). N denotes the
number of states used to approximate the 8 and e oscillator. From comparison with the analytic result

exp( —C, ), it can be seen that higher values of N are required for increasing linear coupling strength
CI.

0.5
1.0
1.5
2.0
2.4
3.0

exp( —C& )

0.6065
0.3679
0.2231
0.1353
0.0821
0.0498

N=5

0.6067
0.3705
0.2308
0.1483
0.0986
0.0678

K(T, )

N =10

0.6065
0.3679
0.2231
0.1353
0.0821
0.0498

N=5

0.6066
0.3693
0.2267
0.1435
0.0930
0.0622

K(T, )

N =10

0.6065
0.3679
0.2231
0.1353
0.0821
0.0498

and labeled with the indices (g, rl, g), the vibronic Hamil-
tonian reads

JV —JVoo +&1Q

with

(4.3a)

oo= Pg+ g g+ Pg

~Lo =(C, )' [(aI+a&)T&+(a„+a„)'T„

+(at(+a()7'g],

(4.3b)

(4.3c)

0 0 0
I /&2

0

0 0 1/&2
0 0 0

I/&2 0 0

1/&2 0

0
0

0 0
0 1/&2

r

0
1/&2

0
0
0

(4.3d)

again in units of M =0=A = 1. The matrices are relative
to the previously introduced set

~
g), i

rl), g), and the
relation with equivalent notations in the literature is
given by —V=l„=k=(C, )' . ' ' As the electronic
operators do not commute, a separation of vibrational
and electronic coordinates is not possible and a general
solution to the problem can only be found by numerical

determination of a linear combination of symmetry-
adapted products of three-dimensional oscillator wave
functions with a set of electronic functions. ' For the
two limiting cases of strong and weak coupling, analytic
expressions for the eigenvalues have also been derived.

As it is known that in the strong-coupling regime an
A, singlet

i
4„) approaches the T2 ground triplet

1

i 4z ), i %z ),
~
4z ), we performed an EPM calcula-

tion on (4.3) using four states. Within the triplet we eval-
uated the reduction factors E(E), E(T, ), and E(T2) in
the same way as for the case Te previously described.
The values listed in Table III are in agreement with the
curves of Ref. 32. The knowledge of the singlet state

i
4„)allows the evaluation of yet another reduction

1

factor:

(4.4)

since a T2 electronic operator makes transitions between
the T2 electronic triplet

i g), i rl ), i g) and the electronic
singlet

i A, ) and consequently also from the vibronic
states

~
%z ), i %z ),

~

%z. ) to 4„). Note that T,
and E electronic operators show no such transitions, al-
though for an orbital T, singlet, all indices 1 and 2
should be interchanged. We finally list in Table III the
energy difference b between the first-excited singlet and
ground-state triplet, also in agreement with Ref. 32. The
approach of the singlet to the ground state at high cou-
pling strengths is interpreted as a transition from a dy-
namic to a static JT system, thereby associating the

TABLE III. The Ham reduction factors K(E),K(T, ),K(T2) within the vibronic triplet ground state
for the system of an orbital triplet T2, linearly coupled to a T, vibrational mode (Tr2). As the cou-
pling strength Ci increases, the energy difference 6 between the ground triplet and first-excited singlet
decreases, while the reduction factor P ( T2 ) between these low-energy eigenstates increases. The values
of K(E), K(T, ), K(T2), and 5 are in excellent agreement with the results of Ref. 32. The calculation
was done for N& ——N„=N& ——10, which is sufficiently large for the range of C, covered.

0.5
1.0
1.5
2.0
2.4
3.0

K(E)

0.55
0.37
0.27
0.20
0.16
0.12

K(TI )

0.54
0.34
0.23
0.16
0.11
0.08

K(T )

0.84
0.76
0.72
0.69
0.67
0.66

R (T2)

0.28
0.33
0.36
0.37
0.39
0.40

0.70
0.54
0.43
0.35
0.28
0.22
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quadruplet thus formed with the four equivalent trigonal
distortions found for the static problem. The energy
separation 5 can then be seen as representing a barrier
height through which the low-energy states in each dis-
torted configuration interact. As can be seen from Table
III, R ( T~ ) grows with increasing coupling strength.

C. Orbital doublet (E) Ev—ibrational mode: Ee e

The full vibronic Hamiltonian for a doublet electronic
state E with quadratic JT coupling to an E vibrational
mode in cubic symmetry is given by (fr= 1 ) (Refs. 25 and
34)

JV=JVpp +JVLp +&Lop

with

(4.5a)

~00 =Q g Qg+Q Q

&Lp =(C, )' [(a0+ac)'9&+(a, +a, )Q,]

(4.5b)

(4.5c)

—t[(at|+a&) —(a +a ) ] pe

and

—2(ac+as)(at+a, )'M, ), (4.5d)

1/&2
0

0
—1/v'2

—I /~2 (4.5e)

(4.6b)

(4.6c)

with

with again for the oscillators M =0= 1. The (2 X 2) ma-
trices are given in the electronic representation

~

8),
~
e),

transforming as (3z —r ) and 03(x2—y2) under the cu-
bic group. The system E@e is by far the one on which
most of the experimental work has been done and for
which the theory is most complete. We found it instruc-
tive to give a synopsis of the theoretical results obtained
over the past 15 years by various methods. The presenta-
tion here is of an enumerating nature and the previously
mentioned review literature and references therein should
be consulted for more details. For the ease of compar-
ison, (C& )'~ is related to L /2 of Ref. 29 in w—hich one
can find further connections to other references.

General solutions of the linear problem &pp+&Lp
have been found with vibronic functions whose electronic
parts, conveniently denoted as

~
+ ),

~

—), are the eigen-
solutions of the static problem and therefore diagonalize
the electronic part of &Lp. The vibrational functions are
determined by coupled differential equations which, by
numerical solution, allow the determination of the energy
spectrum and Ham factors defined as follows: '

(4.6a)

0
(4.6d)

p/a =C fC2 /2 . (4.7)

More recently, the warping effects, both of the type
&Lop and &pop, have been treated through numerical
diagonalization procedures by Hoffman and Estle and
Sakamoto ' for a wide range of linear coupling
strengths. It is interesting to discuss these treatments in
some detail as, although they are far from equivalent to
the technique proposed in this work, some common
characteristics can be found. Following Sec. II, we treat
the Hamiltonian (4.5) in the representation

~
non, S),

where n z and n, are the harmonic excitation numbers for
the 8 and e partners of the vibrational mode and

~

S ) =
~
8),

~

e') denotes the electronic state. As already
pointed out, within this representation the Hamiltonian
matrix is fairly dense and does not therefore enable a
"brute force" diagonalization approach. The powerful-
ness of the product-formula approach is due precisely to
the fact that it circumvents the problem of diagonalizing
matrices. In Ref. 38 the authors opted for another repre-
sentation in which the Hamiltonian matrix is more
sparse. They generated the so-called zero-coupling basis
states in which the linear system &go+.&Lp is
represented by a semi-infinite number of blocks of semi-
infinite tridiagonal matrices. For a given value of the
linear coupling constant the representation was truncated

where the electronic operator A2 (relative to
~
0),

~

e) )

belongs to the Az representation of the cubic group. The
vibronic ground doublet

~
%z ),

~
%z ) is indexed in the

8 e

usual way and the first-excited state is temporarily denot-
ed as 4„). In addition to the general numerical treat-
ment, analytic results for p and q are known for the
small-coupling ' and strong-coupling regimes. In the
latter limit, &Lp (diagonal relative to ~+ ),

~

—)) starts
to dominate the off-diagonal kinetic energy part in %pp
(angular momentum), and the system is said to make a
transition from the dynamic to the static regime. The
general vibronic wave functions can be seen to become
dominated by either the part with

~
+ ) or

~

—), de-
pending on the sign of %r p, but clearly become well
represented by an adiabatic Born-Oppenheimer form.

A serious drawback of the linear model, as it stands, is
the accidental degeneracy (

~

4„)as an A-transforming
vibronic function is in fact doubly degenerate) which can
only be lifted through the inclusion of higher-order
"warping" terms in the Hamiltonian. O' Brien treated
an electronically diagonal third-order oscillator anhar-
monicity %pop only within the adiabatic limit of strong
linear coupling. Williams et Ql. performed a first-order
perturbation calculation on the inAuence of the nonadia-
batic quadratic JT interaction &Lop (4.5d) (notational re-
lation: 4Vz ——C2) as well as of the nonadiabatic correc-
tions from the kinetic energy, neglected by 0 Brien. It is
common to present these warping effects as a function of
the barrier-height P/a that they introduce in the other-
wise (accidentally) axial-symmetric angular dependence
of the static potential. Within the notations of our work
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and each tridiagonal matrix was then diagonalized nu-
merically. Within the set of linear-coupling eigenfunc-
tions the warping interactions introduced off-diagonal
matrix elements which were determined through induc-
tion. The resulting matrix could then be diagonalized
numerically. As the linear-coupling basis states could be
classified according to the irreducible representations

Ee E A2 AlI, I ', I ', and I ' of the cubic group, the final ma-
trix could be split into four blocks.

It turned out in our calculations that this symmetry
classification was very valuable in the cases where a sing-
let (A, or A2) became nearly degenerate with a doublet
E; for in this situation the EPM did yield three orthogo-
nal states with correct energies but with a symmetry
which became very difficult to pin down. We have inves-
tigated this aspect by evaluating the expectation values of
the following Uibronic operator:

O=(as+ac)'Qs —(a, +a, )Q, , (4.8)

which can be seen to transform as the 8 component of an
E representation under the simultaneous transformation
of vibrational and electronic coordinates. Note the for-
mal analogy between 8 and the vibrational part accom-
panying 'Ms in (4.5d). Group theoretically, the matrix
elements of 0 between the four possible vibronic states

I
+E &, I %s &,

I 4„&,and
I
4„& are seen to be zero

or nonzero (denoted by e) as follows:

(4.9)

The loss of symmetry then manifests itself as nonzero ma-
trix elements. To cope with this problem we have applied
an additional symmetry projector in combination with
the EPM. We refer to the Appendix for a detailed
description of this projector. Let it suffice here to state
that its action on an eigenfunction filters out all parts
which do not belong to a specified irreducible representa-
tion. Therefore, in combination with the EPM working
on d initially random states, we find the d lowest-energy
eigenstates of a predetermined symmetry. In general,
these states are different from the d lowest-energy eigen-
states found with the EPM.

As an illustration, we reproduced some of the results of
Ref. 38. The notations used in Ref. 38 are
Er ——(C, /2)' and K~=Cz/8. Notice that the 3, and
A2 symmetry classification is interchanged due to a
diff'erent sign in both the electronic operators Vls and Vl, .
In Table IV we present the low-energy eigenvalues for a
system with C, =18 (EL —3) and Cz ———,",, and —,",, corre-
sponding to P/a=10 and 30. The runs were made with
b =0.001 and N& ——N, =30. It can be seen that the eigen-
value differences are in perfect agreement with the values
presented in Fig. 3(a) of Ref. 38. It is our general experi-

ence with the EPM that a correct eigenvalue can, howev-
er, be found with a relatively inaccurate eigenstate; see,
e.g., the problem of symmetry mixing previously men-
tioned. We therefore checked the eigenfunctions through
evaluation of some Ham-reduction factors generally
defined as follows:

p„, =&k,e, I~&2W, Ii,e, &,

qkt ——&k, 'PE
I

v'2'Ms
I
I, '@E &,

rkt= &k —eE, I
v'2+el' +~ &

rkt = & k +z, I
&2+.

I
i +~, &

s„,= —&k, +„ Iiv'2At Il, +„& .

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.10e)

TABLE IV. Low-energy eigenvalues (E) together with the
symmetry (1) of the corresponding eigenstates for the Jahn-
Teller system Eee [cf. Eq. (4.5)] with a linear coupling constant
Cl ——18 and for two values of the quadratic warping strength
C2 ——

,'6„,'6, . The data are obtained from different EPM runs,

one for each of the symmetries A l, A2, Ez, and E,. All calcula-
tions are performed with b =0.001 and N =30.

Index

10
C2 ———

162

E(0=1)
C2 ———30

162

E{Q=1)
—9.62
—9.61
—9.35
—9.30
—9.12
—8.92
—8.91
—8.58

A2

Al

A2

Al
E

—10.1
—10.1
—9.55
—9.54
—9.24
—9.23
—8.96
—8.93

E
Aq

Al
E

A~

Aq

The extra subscripts k, 1 label the states, the ground state
corresponding to k =1. As shown in Table IV, we as-
sume the indexation to be made again for each value of
C, and C2. As a consequence, when a level crossing
takes place, the indexation of some Ham factors abruptly
changes. A possible way to overcome this inconvenience
would be to label the states within each of the symmetry
classes separately. However, to allow for a direct com-
parison with previous work, we will adopt the conven-
tions of Ref. 38.

Table V lists some calculated Ham factors. They are
to be compared with Fig. 5 of Ref. 38. Apart from some
internal consistencies, which were respected, the signs of
the reduction factors cannot be compared since

I
4 & and

—
I
4& are indistinguishable eigenstates. We therefore

present absolute values in Table V. It should be pointed
out that the labeling of our r- and r'-reduction factors is
the same as in Ref. 38; this in spite of the interchange of
the A, and A2 labels. We believe this to be due to a no-
tational inconsistency in Ref. 38, as one can easily see
from the symmetry labeling in their Fig. 3(a). The
discrepancy between the r42 and r&2 values of Table V
and the curves labeled as

I
r'z4

I
and —

I
r', 2 I

in Fig. 5 of
Ref. 38 can also be traced back to Ref. 38, assuming an
incorrect notation. Our r42 results are much closer to
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TABLE V. Absolute values of some Ham-reduction factors as defined in Eq. (4.10) for the Jahn-

Teller system E e, using the same parameters as in Table IV. s- and p-type reduction factors are negli-

gibly small and therefore not shown.

I vi41

10
C2 ———

162
30

C2 ———
162

0.49
0.49

0.29
0.47

0.11

0.087
0.67

0.70
0.22

0.12

0.22

0.12

0.65

0.67

their —
I
r ', 2 I

curve as well as are the r ',
2 data to the

I r241 curve, although even then some discrepancies
seem to persist. The value r &z

——0.70 at Cz ———,",, lies con-
siderably above the upper limit

I
r 24 I

of Ref. 38. In fact,
we verified through an intermediate calculation near
P/a =20 that our values of

I
r', 2 I

monotonously increase
with C2', this is contrast to the

I rz4 I
curve of Ref. 38.

We would finally like to comment on the relatively large
discrepancy of the r42 and r» data with the —

I
r', z I

and
—

I
r ]3 I

curves, respectively, while the other Ham fac-
tors, such as the q's and r43 are in much better agree-
ment. It is in fact observed that our data are much closer
to the corresponding dashed lines of Fig. 5, which
represent the authors' data for the case of anharrnonic
warping, in contrast to the quadratic warping (solid
lines). The authors claim both types of warping to be in-
distinguishable for all investigated Ham factors, except
for the —

I
r', z I

and —
I
r» I

curves; henceforth the dis-
tinction in their paper with a solid and a dashed line. As
we did not consider an oooo term in the Hamiltonian we
cannot investigate this question any further.

It should finally be mentioned that we also reproduced
some of the results of Ref. 40. The notational relation is
V, =(C, )'~ and Vz ——C2/4, where the indexation of 2

&

and A2 is again expected to be interchanged due to a
change of sign in the operators '9& and Q,. No results
are presented here for this comparison, as we found good
agreement, both in the eigenvalues as well as in the exam-
ined reduction factors (r43, q,4, and q44).

V. CONCLUSION

A symmetrized Trotter-Suzuki approximation on e
(or on e "

) has been proposed for % representing a
few-level system coupled both linearly and quadratically
to a finite collection of harmonic oscillators. We have il-
lustrated the extended projector method by applying it to
a pseudo-Jahn-Teller system consisting of a two-level sys-
tern quadratically coupled to a single harmonic oscillator.
This system is shown to be unstable as a function of the
coupling strength, and its ground-state dynamic proper-
ties are shown to differ substantially from those of an
analogous system with linear coupling. Furthermore, we
examined the low-energy eigenstates of the cubic Jahn-
Teller systems Te and T@~2 and also of the system
Eg e for which we included a quadratic warping interac-
tion. Apart from some details, the results are in agree-
ment with the existing literature on these systems. In
connection with the study of E e, a symmetry projector
has been introduced.
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APPENDIX

As the projector to be worked out here is based on
some general group-theoretical theorems, we will start
with a short synopsis of some formulas, the proof of
which can be found in any handbook on group theory
(e.g., Ref. 15). The projection operator Pz~' which selects
out of any function F the part belonging to the Xth row of
the jth representation is known to be given by

Pg~'F =(I /h )gl I~g(R ) "PnF,
R

(A 1)

in which I'~'(R) is the lJ-dimensional irreducible matrix
of the jth represenation, corresponding to the symmetry
operation R. The summation over R covers all h symme-
try elements in the group under study. Pz denotes the
action of the symmetry operation R on the function F. A
function P'„' is said to be a basis function belonging to the
ath row of the ith representation (dimension I;) if it trans-
forms among its partners under the symmetry operation
R as prescribed by

I,

(A2)
@=1

For the situation encountered with the Ee JT system,
the symmetry group is 0 with h =24. The occurring irre-
ducible matrices I (I =2) and I ', I '

(1 = 1) are
known to be real and can be found in textbooks. The cor-
responding symmetry projectors are P$, P~, P ', and

A2P, where we suppressed the index k=1 for the one-
dimensional representations and adopted the convention-
al O, e to label the E representation.

A general wave function, as it is obtained from the
EPM calculation, is conveniently written in the basis

I n en, S ) with n e, n, the excitation numbers of the 8 and
e partners of the vibrational motion and

I
S ) =

I
8),

I
e)

denoting the electronic states. Under the assumption
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that the irreducible matrices are known, it can be seen
from Eq. (Al) that the action of any symmetry projector
P is fully determined by the knowledge of

Pz
~

n &n,S ) =Pz
~

n an, )P&
~

S), (A3)

where we used the direct-product property of I'R. The
electronic part P~

~

S ) is simple as by construction the
two possible values of

~

S ) are known to transform as ei-
ther the 8 or e partners of an E representation. There-
fore, following (A2} one can write

P„~ 8) =I (R)
~

8)+I', (R)
~
e&,

P„~ e) =I e,(R)
~
8)+I „(R)

~
e& .

(A4)

For the vibrational part the situation is somewhat more
complex. Knowing the transformation properties of

qe-(a()+ae), q, -(a, +a, ) and thus also of the conju-
gate momenta pz and p„one has again by construction

Pz a s
——1 ()s( R )a () +I,z(R )a, ,

(A5)
Pza, =I (),(R)a()+ I „(R)a, ,

with an analogous formula for the annihilation operators
a() and a, . The difficulty lies in the fact that Eq. (A5)
only prescribes the transformation properties of linear
forms in the creation operators, whereas according to

~

n ) =(n!) ' (a )"
~
0), one needs to know Pa(a )" for

n any excitation number. As a limit of the direct-product
property it can be seen, however, that P„(a )"=(P„a )",
which reduces the problem to a power of the known
transformation properties of a~. Applying the binomial
formula one then finds

m =0
(A6a)

n&, n

P~
~
n()n, &=c) g c2(I e()) '(I (),} '(I ())

' (I „) ' '
~
m()+m, n()+n, m() —m, &—,

m&, m =0
(A6b)

where we have suppressed the R dependences in the
right-hand side and where

c, =1/Qn()!n, !,
c2 ——Q(m +()m)!(n +en, —m() —m, )! .

Expression (A6b) can be programmed rather efficiently in
an inductive way. From (Al) and (A6b) it is seen that the
projection of a complete wave function, involving the ac-
tion of all 24 P„on all possible

~
n()n, ) scales as 24

[N (N + 1)/2], assuming we confine ourselves to a
finite-dimensional representation

~
0), . . . ,

~

N ) for both
the 8 and e oscillator. Related to this number of opera-
tions, one further optimization should be mentioned. As
can be seen from (A6b), the action of Pa consists in a
redistribution of

~
n()n, ) among all possible

~
n'()n,') for

which n&+n,'=n&+n„ i.e., 0- and e excitations are in-
terchanged, provided the total degree of excitation is con-
served. In practice, however, due to the finite-
dimensional representation, the full summation of (A6b)
cannot be carried out for those

~
n()n, ) for which

nz+n, g N because one simply does not have all required
excited states within the representation. This results in a
partial loss of the norm of the wave function. We have
examined this effect in detail and have seen that if N is
chosen sufficiently large, which is of course the appropri-
ate solution to this inherent numerical problem, one finds
that already after very few symmetry projections the
weight of the parts

I nzn, ),n()+n, & N becomes negligi-
ble compared to the rest of the wave function. An evi-

dent optimization of the projector therefore consists in
setting Pa

~ n()n, ) =0 if ns+n, & N instead of evaluating
the laborious summations in (A6b). In this way roughly
half of the elements of the wave function have to be han-
dled, yielding considerable reduction in CPU time. In a
typical case (N =30) the action of a complete symmetry
projection P for the JT system Ee took 1.5 min of CPU
time on a VAX 8200 computer. As one can carry out
many EPM steps for one symmetry projection, this is not
a bottle neck as far as total CPU time is concerned, and
we therefore did not seek further optimizations.

A far larger amount of calculations could be saved by
noticing that only through a very minor modification the
projection P&J' could be transformed into a generator P&J„'

which, by operating on P„'J' can be shown' to result in

P(j)y(j )
( I /h )yP( j)(R )ep y(j) y(j )

R

Applied to a doublet E in the system E e, a considerable
improvement in efficiency resulted through use of this
trick, as only one partner had to be determined with an
EPM run. The other one could then be generated out of
it. As a final remark we would like to mention that the
technique developed here in connection with excited
states of a two-dimensional E representation is more gen-
eral and can easily be extended to any situation in which
one needs to know the transformation properties of non-
linear functions of representational basis functions.
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