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Exact relation between density-matrix and density-functional theory
for K plus L closed shells in a bare Coulomb field
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The explicit form of the first-order density matrix p(r&, r&) for independent electrons moving in a
bare Coulomb field is first set up for the case of K plus L closed shells. The density matrix has a
simple separable form in terms of the variables r, +r2 and

I r, —r2 I, a property exclusive to the
Coulomb potential. Also, the off-diagonal dependence is simply quadratic in

I
r, —r2 I

. These two

properties allow p(r&, r2) to be written solely in terms of electron and kinetic energy densities. Other
implications for density-functional theory are briefly referred to.

I. INTRODUCTION

The Thomas-Fermi method, the forerunner of modern
density-functional theory, ' works for independent elec-
trons moving in a common potential energy V(r) when
this quantity varies by but a small fraction of itself over a
characteristic electron wavelength. That this restriction
could be removed, and a formally exact relation estab-
lished between electron density p(r) and potential energy
V(r} for arbitrary spatial variations of V, was clearly es-
tablished by March and Murray' by plane-wave perturba-
tion theory to all orders in V. Their procedure was to
calculate first the density matrix

P(r1, r2) = g f;(r1)g;(r2), (1.1)
occupied

states

where f; (r } are the normalized eigenfunctions generated

by V(r), and then to go on to the diagonal r, =r2=r to
find the p(r}—V(r) relation, to all orders in V. The sub-

sequent work of Stoddart and March demonstrated that
this p- V relation could be inverted to give V in terms of
the charge displaced by V(r). Hence, substituting back
into the perturbation series in V for the density matrix
p(r„r2) yields this as a functional of its diagonal element

p(r). Unfortunately, to date, these infinite-order pertur-
bation expansions have not been summed exactly for ar-
bitrary V.

Nevertheless, the problem of expressing the density
matrix p(r„r2) defined in Eq. (1.1) in terms of the elec-
tron density p(r) reinains of considerable theoretical in-
terest. The present work lies in this area, and whereas
the plane-wave perturbation theory referred to above is
most directly relevant to perturbations in simple extend-
ed systems like nearly-free-electron metals, the theory
given in the present paper has been constructed with
closed-shell atoms specifically in mind. To make analytic
progress in relating p(ri, r2} to its diagonal electron densi-

ty p(r), we consider here solely the case when the wave
functions t/i;(r) in Eq. (1.1) are generated by the bare
Coulomb potential energy V = Ze /r (see, for exa—mple,
Ref. 5}. This limit is, in fact, the leading term in the im-

portant 1/Z expansion of atomic theory.

II. GENERATION OF p(r
FROM ITS s-STATE COMPONENT

For this case of a bare Coulomb field, a spatial general-
ization of Kato's theorem has been established for an ar-
bitrary number of closed shells:

Bp 2Z
p, (r), a11 ——

Br ao
7

me
(2.1)

where p, is the s-state density component of the total
density p. Theophilou and March have shown that the
diagonal relation (2.1}between total and s densities has a
counterpart with density matrices, the relation being

8
p(r„r2) = —(x —y)

t)x By

x y
~IPS 2 2

where

x =ri +12+ I r1 —r2 I y =ri +r2 I r1 r2 I

(2.2)

(2.3)

To make Eq. (2.2) explicit, we consider the form of
p(r„r2) below for (a) the K shell only and (b) the E+L
shells.

A. K shell

This almost trivial example follows from
' 1/2

Z ZF
exp41o(r) =

mao3
Qp

(3.1)

Hence, for singly occupied states considered throughout,

p (rl r2) Plo( 1)l 10( 2)

Thus Eq. (2.2) yields

(3.2}

Again, Eq. (2.2) is valid for an arbitrary number of closed
shells generated by the bare Coulomb potential energy
—Ze /r.

III. EXPLICIT DENSITY MAT+IX
FOR K PLUS L CLOSED SEgELLS
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p(r) r2 ) = —(x —y}
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(3.3)

Clearly the xy terms cancel and we are left with the ele-

mentary result,
1~ 2) 010(rl }Plo(r2)

as required for the E shell alone.

x
p(ri r2) = tt io

—Pio2

Z
exp

map

2

—Z (x+y)
Qp 2

(3.4)

8. K+L shells

Using the formula for the 2s wave function,
' 3/2

1 Z Zr —Zr
420(r) = 2 — exp

4&2m ~0 ap 2Qp
'(3.5)

But from Eqs. (2.3) it follows that (x+y)/2=r, +r2,
yielding

J

one has the explicit form p, (x/2, y/2) required in Eq.
(2.2) as

x y 1
Ps

Z
'

ap
exp (x+y) + 2—Z 1 Zx

2ap 32 2ap

ZJP Z2— exp
2ap 2ap

x+y
2

(3.6}

Hence it follows readily that

8 8 X

Bx By 2 2
x p xp Z
2' 2 128m ao

~ 5

exp (x +y)
Z

4ao
(3.7}

The desired density matrix for closed E +L shells is then from Eq. (2.2) given by
r 5

p(r„r2) =p, —,—+xy exp
128~ ap

(3.8}

Now we reintroduce variables r& and r2 into the right-hand side of Eq. (3.8) and after some manipulation, in which the
exPlicit form of P, in terms of $,0 and $20 is utilized, one finds

1 Z Z
p(rl r2}= exp — (r&+r2}

ap ap

1

8~ ap

Z
'
exp

2
Z Z 1 Z

(r&+r2) I — (r&+r2)+ (r&+r2)—
2Qp 2Qp 2 2Qp

1 Z
64m. Qp

ri r21 exp (ri+r2)2 Z
2Qp

(3.9)

In Appendix A an alternative derivation of this equation
is given. The new feature apparent from Eq. (3.9} is that
the final contribution of the right-hand side makes no
contribution to the diagonal density p(r„r2} l.

1 2

—:p(r). It does, of course, still contribute to the kinetic
energy density, as will now be discussed further.

IV. KINETIC ENERGY DENSITY

Since the E shell is almost trivial, we turn immediately
to the kinetic energy density derivable from the ofF-

T= J t(r)dr, (4.l)

over the whole of space. The ambiguity arises from the
se of the possible ~pe~ators V, V, or (t, , etc. Below

1 2 1

we consider the symmetric operator in r& and r2, i.e., the
first of the above choices.

I

diagonal density matrix (3.9) for E+L shells. As is well
known, there is some ambiguity in the kinetic energy den-
sity t(r), though none of course in its integral,
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A. K+L shells

From the definition of the diagonal density p(r, ,
r2} ~. . .=—p(r) and returning to the density matrix
(3.9), we emphasize its separability by writing

shells is

f2 Z
m ao

and hence

(4.11)

p( „,)=p
r1+r2 r1+f2

2
+

~
r] —r2~

2
(4.2) 5 $2 ZT —T T ——

8m ao
(4.12)

Evidently

Vr p= r]p
r1+ r2 r1+ r2

2
+ ~r, —r2~ r, F'

2

which also follows from the first term in Eq. (4.7) by in-
serting p(r }for (singly occupied) E+L shells.

r1+r2
+2(r, rz) F—

2
(4.3)

V. OFF-DIAGONAL MATRIX CHARACTERIZED
SOLELY BY ELECTRON AND KINETIC ENERGY

DENSITIES

V, V,p ~. . .=—p"(r) —6F(r) (4.4)

and hence the kinetic energy density t (r) with this choice
of kinetic energy operator has the form

where r, denotes a unit vector along r, . Thus it follows
that

This is the point to return to the objective discussed in
the Introduction; namely, to express the off-diagonal den-
sity matrix p(r, , r2} in Eq. (1.1) in terms solely of its diag-
onal electron density p(r).

To do so for the model density-matrix (3.9) for the
K+L closed shells, let us focus on the structure of
p(r„r2) which is clearly exposed in Eq. (4.2},namely,

fi
t (r) = [—,'p" (r) —6F(r)] . r1+r2 r1+r2

p(ri, r2}=p
2

+
I ri —r2 I

'F (5.1)

The (unambiguous} total kinetic energy T defined by Eq.
(4.1) is given by

$2
p"(r)4n.r dr-

8m o

3A f F(r)4nr dr .
m o

(4.6)

Integrating the first term by parts we then find

vrA 12MT= prdr — F rrdr;
m 0 m o

(4.7)

this can evidently be written in this example of the K +L
shells as

T=T +T (4.8)

T, having earlier been obtained as the first term on the
right-hand side of Eq. (4.7).

The kinetic energy contribution from the p states is evi-
dently

127TA2 f F(r)r dr . (4.9)

From density-functional theory, it is clear that this term,
as well as T, given by the first term in Eq. (4.7), is a func-
tional of the density p,

' '" but presumably the functional
form is somewhat complex for the p states. Explicitly,
one has

z r1+r2
3' (5.2)

Without using the explicit form for F given in Eq. (4.10),
we do not know t in terms of p. But we have, of course,
the first-principles basis ' that t = t [p]. However, this
motivates a brief further discussion of this relation, to
which we now turn.

VI. IDEMPOTENCY RELATION
BETWEEN SINGLE-PARTICLE KINETIC ENERGY

DENSITY t AND p

But now F is related to the electron density itself through
Eq. (4.5), since the single-particle kinetic energy density
t(r) is a unique functional of the electron density p(r).
Hence, substituting for F from Eq. (4.5) into Eq. (5.1), we
obtain the desired relation between p(r, , rz) and its diago-
nal element, the electron density, in the form

r1+r2
2

r1+r2
+

I
ri —r21'

4
p"

Z
'
expF(r)=— 1

64m. ao

Z
ao

Substituting Eq. (4.10) into (4.9) yields

3 $2 Z
8m ao

(4.10) The orthonormality of the wave functions P;(r) in Eq.
(1.1) generated by the (assumed) common potential ener-
gy V(r) leads to the idempotency condition p =p on the
density matrix, i.e.,

p(r), r2)= fp(r), r)p(r, r2)dr . (6.1)

The total kinetic energy T for (singly occupied) K+L
Clearly the insertion of Eq. (5.2) into Eq. (6.1) leads to a
(somewhat complicated) integral equation relating the
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single-particle kinetic energy t to the electron density
p(r). While we are assured, because Eq. (5.2) is exact for
E+L closed shells in a pure Coulomb field, that the ex-
act t and p must satisfy the above equation, it would be of
interest if it could be established that insertion of the ex-
act p(r) would generate the single-particle kinetic energy
density uniquely. This remains an open question at the
time of writing. It is satisfactory though, to realize that
idempotency does link t and p, and that ad hoc construc-
tion of t [p], by modifications of the Thomas-Fermi p

~

term by summing subseries of gradient corrections, will

generally lead to some violation of idempotency and
hence to a loss of a variational bound on the
independent-particle total energy.

Having seen the relevance of the present density-
matrix model for the single-particle kinetic energy func-
tional, we have thought it worthwhile to record in Ap-

pendix B some implications that the present considera-
tions have for exchange energy as a functional ofp(r).
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APPENDIX A: DIRECT CALCULATION
OF DENSITY MATRIX FOR K PLUS I.SHELLS

FROM BARE COULOMB FIELD WAVE FUNCTIONS

Using Eq. (1.1) for the E plus l. shells, with hydrogen-
like wave functions, one obtains almost immediately

1 Zp(r„r, )=-
ap

exp
Z 1 Z(r, +rz) +
ap 8m ap

Z
exp — (r, +r, )

2ap
L

'2
Z Z I')fg

X 1 — (ri+rz)+
2ap ap 4

X ( 1+sin8, cosl(, sin8zcosgz+ sin8, sing, sin8zsingz+ cos8~cos8z )

(A 1)

x;=r;sin8;cosP;, y;=r;sin8;sing;, z;=r;cosP;, i =1,2

then Eq. (Al) becomes

Z
'
expp(r, , r )=—

ap ap

Z Z
(r&+rz) + exp

Sm ap

Z (r(+rz)
2ap

Z 1 Z
X 1 — (ri +rz)+ (r, rz+x, xz+y, yz+z, zz)

2ap 4 ap
(A2)

and using
~

r& —rz
~

=(xi —xz) +(y& —yz) +(z& —zz),
we obtain after a short calculation the desired Eq. (3.9).

APPENDIX B: IMPLICATIONS OF MODEL
DENSITY MATRIX (5.2) FOR THE EXCHANGE

ENERGY OF CLOSED-SHELL ATOMS

In independent electron theory, the exchange energy A
is given in terms of the first-order density matrix p(ri, rz)
by

[p(r„r,)]'
e dr, dr& .

The purpose of this appendix is to note that while the de-
tails of the exact result (3.9) for p(r„rz) depend on the as-
sumption of a bare Coulomb potential, the structure ex-
hibited in Eq. (5.2) might have more general, though now
approximate validity. The main point to be made is that
the insertion of the form (5.2) into Eq. (Bl} leads to
A—:A [p,p", t], and hence in this approximation the ex-

1 2~&= —4e '
p

P] +Tp

2 ~
r, —rz

~

' drtdrz (B2)

with a corresponding contribution to the exchange poten-
tial V„(r) of density functional theory given by

T +Kg

2
V„,(r)= ~ I ' ' drz.5p(r) r —rz

(B3}

The most important conclusion, we reiterate, of this ap-
pendix is that, adopting the approximate structure (5.2)
for the density matrix leads to the exchange energy as a
functional solely of p,p" and kinetic energy density t.

change energy is known as an explicit functional of p,p"
and single-particle kinetic energy density. Though the
detail proliferates and will not be explored here, one obvi-
ous contribution to A that results is

2
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