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Solution of the Hartree-Fock-Slater equations for diatomic molecules
by the finite-element method
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We present the finite-element method in its application to solving quantum-mechanical problems
for diatomic molecules. Results for Hartree-Fock calculations of Hz and Hartree-Fock-Slater cal-
culations for molecules like N2 and CO are presented. The accuracy achieved with fewer than 5000
grid points for the total energies of these systems is 10 a.u. , which is about two orders of magni-
tude better than the accuracy of any other available method.

I. INTRODUCTION

The finite-element method (FEM) is a welI-known tech-
nique to solve static and dynamical problems in engineer-
ing science. Examples can be found in the textbooks of
Refs. 1 —3. The idea of this method is to split the space
into a number of two or three-dimensional domains and
to describe the properties of interest for each of these ele-
ments separately. The connection between these ele-
ments is done via boundary conditions. The standard ap-
proach in engineering science is to use low-order polyno-
mials in order to specify the interesting quantities on
each element.

We applied the FEM to quantum-mechanical problems
such as the electronic structure of atoms or small diatom-
ic molecules to obtain good wave functions and total en-
ergies. Here the accuracy required is very high. In order
to achieve this accuracy we had to use high-order polyno-
mials on each element and (in order to minimize the total
number of points) a small number of elements.

Section II briefly describes the Hartree-Fock-Slater
equations which we are going to solve, whereas Sec. III
defines the coordinate system for the diatomic molecules
discussed by us. The application of the finite-element
method to this problem is discussed in Sec. IV followed
by description of the necessary boundary conditions and
self-consistency. Finally, we present results for the
Hartree-Fock equations of the ground state of H2, and

I

the Hartree-Fock-Slater equations of N2 and CO as ex-
amples. The last section contains the conclusion and
outlook.

II. HARTRRE-FOCK-SLATER EQUATIONS

Many publications ' describe the Hartree-Fock
method and its derivation in detail. We will, therefore,
merely provide a very brief description to define the phys-
ical approximation and the equations which we are going
to solve with the FEM. Using a single Slater determinant
wave function for the N electrons in a diatomic molecule,

@'t.t«i r2

=(E!)
0n «N)

with the one-electron wave functions P;(r;) and the non-
relativistic Hamiltonian

the total energy of such a system can be calculated:

The variation of this total energy with respect to the
one-electron wave functions P;(r;), subject to the con-
straint of their orthonormality, leads to the Hartree-Fock
equations

The Hartree-Pock operator HHF(r) is defined by

HHF(r)=h(r)+V (r)+V (r),

HHF(r)ip);(r)=&;y;(r), i =i, 2,, . . . , N . (4) with
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and

h(r) = ——,
' V— Z2

N

V (r)= g fp;(r'), p, (r')dr',
f
r —r'

/

to be solved are the Schrodinger-type equations derived
from Eq. (4) with potentials kept fixed, and the Poisson
equation (7} relating the potential V to the electronic
density p. The solution of the Hartree-Fock-Slater equa-
tions (4) has to be achieved iteratively.

V' Vc(r}=—4mp(r), (7)

where p(r) is the total electronic density.
In the case of the Hartree-Fock-Slater equations the

nonlocal exchange potential V (r) of the Hartree-Fock
equations is replaced by the local statistical exchange po-
tential

V (r) = ——,'a[3/op(r)]' (8)

with a a constant. The simplified form of a local ex-
change with a=0.7 is used here because the solution of
the Hartree-Fock-Slater (HFS) equations with the FEM
discussed below depends only on the local form of the ap-
proximation. With this approach the total energy of the
molecular system is calculated as

E„,= g s, ,' fp—(—r)vc(r)dr ,' f p—(—r)VX(r)dr .

The Hartree-Fock-Slater equations (4), with the ex-
change part according to Eq. (8), are a system of coupled
integro-d&fferential equations. The differential equations

l

N
V (r)p (r)= g f p,'(r'), p (r')dr'p, (r) .

[r—r'/

In addition, the interelectronic Coulomb potential
V (r) satisfies the Poisson equation

III. CHOICE OF THE COORDINATE SYSTEM

For a numerical solution of the Hartree-Pock-Slater
differential equations for a diatomic molecule the coordi-
nate system must be chosen with great care. Because of
the axial symmetry of diatomic molecules we use orthog-
onal axial-symmetric coordinate systems as they allow a
two-dimensional treatment of the problem. They can be
written as

x, =f, (s, t) cos(q&),

xz f, (s, t—)—sin(p),

x3 f2(s, t), ——

where the unknown one-electron wave functions are

P;(s, t, qr)=P, (s, t) exp(imp) . (10)

m denotes the projection of the angular momentum onto
the internuclear axis. The interelectronic Coulomb po-
tential can be written as follows:

V (sty)=v (st).
Using the ansatz (10}for the wave functions P;(r) the

Schrodinger-type equation (4) can be rewritten as a two-
dirpensional differential equation in the axial-symmetric
coordinate system

1 a ay,
Ki(s, t)

2 as s
1 a (();

Kz(s, t)
2 at ' at

m2K3(s, t)—$, (s, t)+K4(s, t)V(s, t)P;(s, t) =e,K4(s, t)P;(s, t) . (12)

In the same way we obtain the two-dimensional
differential equation

I a av' 1 a av'
K&(s, t} ———Kz(s, t)

4nK4(s, t)p(s, t—} .(13)

for the Poisson equation (7). The coefficient functions
K„K2, K3, and K4 are calculated from the transforma-
tion functions f, and f2 through

1 =g ~g117 +2 =g ~g22
1/2 1/2

af,
'

g11=
' +

as

af,
'

as

af,
at

af2
atg22 =

g33 f 1
2

We agree with Laaksonen et al. " and Becke' in
finding the prolate-spheroidal coordinates most suitable
for the properties of the self-consistent calculation of dia-
tomic molecules. The transformation equations for this
coordinate system are given by the equations

with

&4=g1/2 1/2
(14) x, =(R /2) sinhs sint cosy,

x2 ——(R /2) sinhs sint sing,

x3 =(R /2) coshs cost .

(15)

and

g g 11g22g33 With these transformation equations we can calculate the
coefficient functions to be
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K, (s, t) =K2(s, t) = (R /2) sinhs sint,

K3(s, t) =(R l2)(sinh s+sin t )/(sinhs sint ),
K4(s, t)=(R /2)(sinh s+sin t) sinhs sint .

Other coordinate systems were also tested. For the
case of H2+ we found the coordinates with the transfor-
mation equations

x, =(R /2)[(1 —c lns ) —1](1 t )—cosy,

x2 ——(R /2)[(1 —c lns ) —1](1 t ) s—in',
x3 ——(R/2)(1 —c lns)t,

(17)

to be most useful. By varying the transformation param-
eter c of the transformation equations (17) very accurate
results could be achieved with a very small number of
points. ' However, for the H2 problem we used the coor-
dinate system defined by the transformation equations

x
&

——(R /2)[(sinhs+ 1) —1](1 t ) co—sq&,

x2 ——(R /2)[(sinhs+ 1) —1](1 t ) siny- ,

x3 ——(R/2)(sinhs+1)t .

The reason for this was that the solution of the Poisson
equation within the coordinate system (17) proved to be
unstable.

IV. FINITE-ELEMENT METHOD (REFS. I—3)

——,'I K3(p, )

Originally the FEM was developed in engineering sci-
ence in order to calculate static and dynamic stresses of
complicated constructions. Recently, it has been demon-
strated' that this method can also be used with great
success to solve quantum-mechanical problems. In order
to apply the FEM to the solution of the Hartree-Fock-
Slater equations, one best starts from the variational
equivalent of the second-order partial differential equa-
tions which, for the Schrodinger-type equation (12), takes
the form

u'(s, t)= g u N,'(s, t), (21)

where u is the ith nodal value of the eth element. The
function N (s, t) is the ith shape function. The sum runs
over all nodal values of the element. Two main types of
elements exist, namely, the Lagrangian- and the
Hermitian-type elements. (If the interpolation of an un-

known function is calculated only due to the values of the
function at specified points this is called a Lagrange inter-
polation. The interpolation of the unknown function
which takes also the derivatives of the function into ac-
count is called a Hermite interpolation. ) Lagrangian
elements have only one nodal value per nodal point,
namely, the value of the unknown function. Hermitian
elements have more than one nodal value per nodal point,
because here also the derivatives of the functions are no-
dal values. One conclusion of Eq. (21) is that each shape
function equals 1 only at a single nodal point of the ele-
ment and equals 0 at all others. This restriction allows
the construction of the shape functions from the given
trial function.

We use Lagrange elements with two-dimensional poly-
nomials up to order 6 as trial function. To be able to con-
struct the shape functions we choose as many nodal
points for each elements as there are free coeScients of
the two-dimensional polynomials, Figure 1 shows the no-
dal points of an element for a fifth-order polynomial.

Because of the subdivision of the region into M ele-
ments the functionals I& [Eq. (19)] and I2 [Eq. (20)] can

erties can be taken into account, e.g., one can use small
elements in regions of physical importance and large ele-
rnents in regions of lesser weight. Thus the point distri-
bution can be adapted to a given problem.

The next step in the FEM is to choose a trial function
for the element to approximate the solution of the
differential equation. In order to fulfill the continuity cri-
terion of the solution from one element to the next, the
trial functions are written in a special way. For each ele-
ment a number of points, the nodal points, are chosen. If
u'(s, t) is the approximation of the unknown function
over the element with the number e, this function is writ-
ten as a linear combination of the nodal values

——,'( V —E, )K4(P; ) ds dt, (19)

and for the Poisson equation (13),
2

BV——,'K,

+4nK4(s, t)p(s, t)V' ds dt . (20)

The idea of the FEM is to subdivide the space into X,
small domains called elements. In our case triangles are
used to subdivide the two-dimensional space of our prob-
lem. And it is at this point that one main advantage of
the FEM in contrast to other numerical methods, such as
the finite-difference method used by Laaksonen et
al., " ' becomes important. The size and shape of
elements can be defined very freely so that physical prop- FIG. 1. Nodal points of a fifth-order Lagrangian element.
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be written as a sum of element integrals

M M

I, =g I;, I2=+ I2, (22)
e=1 e=1 0 0 0

with integrals running over the array of the element e.
The substitution of the trial function (21) into the ele-

ment integrals (22) leads to the following linear expres-
sion for the Schrodinger-type equations:

I;=(u')' H'. u' —s(u')' S' u',

with the matrix elements

(23)

and

8¹BN' 8¹"dN'

4f f Bs Bs Bt Bt

+(K3m +2K4V)N N~' ds dt

S; =f f ,'K NN'—dsdt .

(24)

(25)

FIG. 2. Structure of the global matrices resulting from the
subdivision of a rectangular region given in Fig. 3. The matrix
elements of element 1 (2,3,4) are symbolized by 0 ( )&,0,6 ).

For the Poisson equation we obtain the similar matrix
expression These conditions lead to the matrix eigenvalue problem

Iz ——(u, )' D' u' —(u')' d', H u=c-S u (32)

with the matrix elements

BN BN' BN BN'

for the Schrodinger-type equation and to the matrix
equation

(27) D u=d (33)

and the vector elements

d; =4m f fK4p(s, t)N ds dt . (28)

The vector u' is the element nodal vector of the eth ele-
ment.

Adding the contributions of all elements leads to the
expressions

and

I1 ——u' H u —cu' S u

I2 ——u' D u —u'd,

(29)

(30)

where u denotes the global nodal vector.
The global matrices H, S, and D are band-structured

matrices, because for any given nodal variable u; at point
(s;, t; ) the sum over all elements runs only over those ele-
ments which share this point. As an example, Fig. 2
shows the structure of the global matrix for the subdi-
vision of a rectangular region given in Fig. 3. The nodal
points are given by the vertices of the triangles. The no-
dal variables are numbered from 1 to 6 and the elements
from 1 to 4. The matrix elements of element 1 (2,3,4) are
marked with the symbols 0 ( X,CI, 6 ).

With the substitution of the trial functions the func-
tionals I1 and I2 are seen to be functions of the nodal
variables u;. The conditions for I1 and I2 to be minimal
are

for the Poisson equation. The order of this matrix equa-
tion is equal to the number N of nodal variables. For
the Lagrangian elements used by us, this is equal to the
total number of points.

The calculation of the matrix elements (24,25,27,38) is
done numerically with a conical product Gauss integra-
tion rule. A number of only 7)&7 integration points for
each element proved to be sufficient for all calculations.

The matrix eigenvalue problem is solved by an inverse
vector iteration method ' with modifications due to the
iterative solution of the Hartree-Fock-Slater equations.
The matrix equation is solved by a Cholesky decomposi-
tion. ' All algorithms used at this point take care of the
band structure of the global matrices.

aI, aI,
=0, =0, i=1, . . . ,X (31)

FIG. 3. Subdivision of a rectangular region with four tri-
angular elements. The enumeration of the nodal points leads to
a bandwidth of 3 for the corresponding global matrices.
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V. BOUNDARY CONDITIONS

To obtain the boundary conditions for the unknown
wave functions and the unknown potential it is useful to
introduce the coordinates

g=(r, +r, )/R,
rt=(r& r2)/—R,

(34}

where the relation to the coordinates s and t used above
(15) is given by (=coshs and ri =cost. Within these coor-
dinates the asymptotic behavior" for the wave functions
P(g, rt) is

/=exp[ —( —2e)' (R/2)g], (35)

where c is the one-electron energy eigenvalue. For the
boundary conditions of the wave functions we use the
value /=0 for practical infinity. The error of this value
can be checked either from Eq. (35}or by variation of the
practical infinity point.

The asymptotic behavior of the interelectronic poten-
tial V is

Smax S

FIG. 5. Equidistant subdivision of the (s, t) region with 50
triangular elements. The nodal points on one element are distri-
buted according to Fig. 1.

V =N/(R /2g) =N/[(R /2) coshs], g—+ 00 . (36)

To remove the N/g decrease of the potential V we in- troduce a function g (s, t) Thus.

V =g(s, t)f (s, t) . (37)

The function f (s, t) is solved by the FEM. The function

g (s, t } is chosen to be

Input:
Physical dat
Grid data

Calculate:
Global matrix D,

Global vec tor d

g(s, t)=N/[(R/2) coshs] .

The resulting boundary condition for f (s, t) is

f (s, t)=1

(3&)

(39)

Calculate:
Shape functions
Element matrices

Solve:

at practical infinity. Other choices for the function g (s, t}
are possible. Favorable are functions which also approxi-
mate the potential for small g and include the dipole po-
tential of the electronic density for large g.

VI. SELF-CONSISTENT SOLUTION

Calculate:
Global matrices

Hand S

Cal cula te:
Total Energy

E

Figure 4 shows the How diagram of the computer pro-
gram. As a convergence criterion we use three parame-
ters. First the change 5, of the one-electron energy ei-
genvalues, second the maximal change 4z of the in-
terelectronic potential, and third the change b z of the to-
tal energy. The most accurate results were obtained with

Solve:
Hu=zSu

'Yes

TABLE I. Convergence properties of total energy and energy
eigenvalue of the system H& with increasing number of points.
All values are given in a.u.

H2, internuclear distance R =1.40 a.u.

Calculate =

Density p (s, t )

Output
Requested
Properties

FIG. 4. Flowchart of the finite-element program solving the
Hartree-Fock-Slater equations.

Points

6x6
11x11
16x11
21x11
26x 11
41x 16

—1.128 737 69
—1.133620 24
—1.133628 84
—1.133629 49
—1.133629 56
—1.133629 571 7(2)

—0.595 830 41
—0.594 661 19
—0.594 658 13
—0.594 658 60
—0.594 658 56
—0.594 658 569 4(3)
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TABLE II. Total energy and energy eigenvalues of the system N2 for different grid sizes and different orders of the polynomials
over the elements. The last figure for the largest grids is uncertain. All values are given in a.u.

Laaksonen et al. '
N2, internuclear distance R =2.07 a.u.

This work, fifth-order polynomials

Points
E
c(1o.

g )

(1 „)
a(2o g )

c(2e„)
c(1m„)
c(3og )

5989
—108.346 622
—13.981 070
—13.979 661
—1.007 215
—0.460725
—0.404235
—0.350058

2601
—108.346 605
—13.981 068 0
—13.979 658 1
—1.007 214 71
—0.460 725 06
—0.404 234 61
—0.350058 51

3136
—108.346 607 6
—13.981 068 28
—13.979 658 38
—1.007 214 72
—0.460 725 05
—0.404 234 62

0.350058 52

3721
—108.346 608 6
—13.981 068 37
—13.979 658 47
—1.007 214 71
—0.460 725 05
—0.404 234 62
—0.350 058 52

4356
—108.346 609 0
—13.981 068 40
—13.979 658 50
—1.007 214 71
—0.460 725 05
—0.404 234 62
—0.350058 52

This work, sixth-order polynomials

Points
E
c(1og )

c(1o„)
c(2o )

a(2o „)
c(1n.„)
s(3o, )

'Reference 11.

2401
—108.346 609 0
—13.981 068 6
—13.979 658 7
—1.007 214 74
—0.460 725 06
—0.404 234 61
—0.350058 52

3025
—108.346 609 25
—13.981 068 44
—13.979 658 54
—1.007 214 71
—0.460 725 05
—0.404 234 62

0.350058 52

3721
—108.346 609 32
—13.981 068 44
—13.979 658 54
—1.007 214 71
—0.460 725 05
—0.404 234 62
—0.350058 53

4489
—108.346 609 34
—13.981 068 44
—13.979 658 54
—1.007 214 71
—0.460 725 05
—0.404 234 62
—0.350058 52

5, and AE set to 10 a.u. and 6„=10 . Typically the
change of the total energy bE was the most restricting
criterion for the convergence.

The self-consistent calculation is initialized by the vari-
able screening potential of Eichler and Wille. With this
starting potential about 20 iterations were needed to
achieve convergence to 10

VII. RESULTS

We present the results for some of the systems calculat-
ed by us. The systems here were chosen to be identical to
the systems already calculated by Laaksonen et al.,
in order to compare the numerical quality of the results.

For the simplicity the points were distributed equidis-
tantly in the selected coordinate system. As an example,
Fig. 5 shows a triangularization of the two-dimensional
region with a total number of 50 elements. For the fifth-

order polynomials as trial functions this results in a total
number of 26&26 grid points, and in 31)(31 grid points
for the sixth-order polynomials. Such an equidistant
point distribution is not at all optimal, and it will be
shown that point distributions, which are physically more
adequate, will increase the accuracy.

Table I shows the convergence of the total energy and
the 1og level of the system H2 with increasing grid size.
For a number of only 26)&11 grid points an accuracy
better than 10 was reached with fifth-order polynomi-
als. Increasing the number of grid points by a factor of
about 3 to 41)(16 points enabled us to add two more
significant digits to a new benchmark with ten-figure ac-
curacy. This shows the stability of the FEM even for
highly accurate calculations.

The next system was N2. In Table II we compare the
convergence of the results with increasing grid size for
both fifth- and for sixth-order polynomials. For 2401

TABLE III. Total energy and energy eigenvalues of the system CO and BH for the largest grids used
so far. The last figure given is uncertain. All values are given in a.u.

BH
Laaksonen et al. '

CO
This work, sixth order

BH CO

Points
R
E
c( lo )

c(2o )

c(3o )

c,(4' )

c( lm. )

c(5o )

'Reference 11.

2.366
—24.808 852
—6.532 360 4
—0.407 865 2
—0.173 132 3

2.13
—112.129 925
—18.744 146
—9.911 347
—1.044 171
—0.489 071
—0.413 613
—0.303 029

4356
2.366

—24.808 851 48
—6.532 36004
—0.407 865 19

0.173 13242

4356
2.13

—112.129 91528
—18.744 143 25
—9.911346 09
—1.044 17077
—0.489 070 75
—0.412 612 71
—0.303 029 91
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N2, internuclear distance R =2.07 a.u.
Sixth-order polynomials

Mesh A Mesh B

TABLE IV. Total energy and energy eigenvalues of the sys-

tem N2 for two different point distributions. Mesh A refers to
an equidistant grid with all elements of equal size, whereas mesh
B refers to a logarithmic point distribution in the s coordinate.
All values are given in a.u.

2
TcpU nmb ~ 1 (40)

no special vector routines were used. About 90% of the
CPU time was needed to solve the matrix eigenvalue
problem (32) and the matrix equation (33). The CPU
time per iteration is about 20 seconds for the 31X31
point grid with sixth-order polynomials. The increase of
CPU time with grid size is about

Points
E
s(1crg )

c(10„)
c(2og )

c(20.„)
c( lm„)
c(30., )

961
—108.346 45
—13.981 04
—13.979 63
—1.007 214 3
—0.460 725 5
—0.404 234 6
—0.350 057 7

961
—108.346 59
—13.981 066
—13.979 656
—1.007 215 0
—0.460 725 3
—0.404 234 7

0.350 058 7

mb Pl 7l
1/2 (4l)

when n„d is the order of the polynomials of the trial
function. The last formula is only true for the regular
grids used up to now.

Here n denotes the number of grid points, n
&

is the num-

ber of levels to be calculated, and mb is the bandwidth of
the global matrices. For the bandwidth mb we can write

points the accuracy of the sixth-order polynomial grid is
comparable to that of the 4356-point fifth-order polyno-
mial grid. This comparison shows clearly the advantage
of high-order trial functions for the FEM in order to ap-
ply this method to quantum-mechanical problems. These
results are expected to be accurate within 10 a.u. The
results for the asymmetric molecules CO and BH, given
in Table III, are the results obtained with the largest
sixth-order grid.

In Table IV a step towards an optimized point distribu-
tion is documented. In this table we compare the results
of the system N2 for a 31&31 point grid of sixth order.
In mesh A we use an equidistant distribution of the
points, whereas in mesh 8 the s coordinates [Eq. (15)] of
the vertices of the triangles are distributed logarithmical-
ly. The points used for the s coordinates are about 0.0,
0.091, 0.219, 0.348, 0.649, and 1.0 times the maximal s
value (for practical infinity we use 25 a.u. in this case).
The other nodal points for a single element are distribut-
ed equidistantly within that element. With this distribu-
tion of elements still far from being optimal the accuracy
of the results is about 1,0)& 10 a.u. This is about a fac-
tor of 15 better than the accuracy of 1.5)&10 a.u.
achieved with the linear mesh A.

All calculations were performed on an IBM 3090-40E
mainframe. The FORTRAN vectorize option was used for
all routines handling the global matrices and vectors, but

VIII. CONCLUSION AND OUTLOOK

It has been demonstrated that the finite-element
method is adequate for solving the two-dimensional
Hartree-Fock-Slater equations with high numerical accu-
racy. The results presented are by two orders of magni-
tude more accurate than the results achieved by Laak-
sonen et al. " with the finite-difference method, al-
though we used a much smaller number of points. Up to
now no numerical instabilities have been found in the cal-
culations with increasing grid sizes. The main difference
between the engineering approaches of the FEM and the
current approach is the need of very-high-order trial
functions.

A Hartree-Fock approach to diatomic molecules is one
of our next goals. The first attempt towards an optimized
element distribution shows a very nice increase in accura-
cy. With better adapted element distributions we hope to
reach very accurate results with a very small number of
grid points. If this can be achieved one can think of at-
tacking a three-dimensional numerical calculation within
reasonable computer times.
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