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Using a rotational-invariant Faddeev Ansatz for the electronic two-center wave function that is

written as a sum of terms involving hydrogenic Sturmians and appropriate spherical harmonics cou-

pled to total angular momentum J and parity P, we are able to diagonalize the two-center Hamil-

tonian to obtain the 1scrg, 2sog, 2pcr„, 2pm„, and 3deg electronic energy curves. For 36 Sturmians
in the wave function we get energy states that are accurate to six to nine digits for 0 & R & 20ao. All

adiabatic corrections are calculated for the 1sog state and the results compared with previous work

by W. Kolos [Acta Phys. Acad. Sci. Hung. 27, 241 (1969)]and C. L. Beckel, B.D. Hausen, and J. M.
Peek [J. Chem. Phys. 53, 3681 (1970)]. Using the ideas of R. T. Pack and J. O. Hirschfelder [J.
Chem. Phys. 49, 4009 (1968); 52, 521 (1970); 52, 4198 (1970)] we calculate the avoided crossing ener-

gy gap b c, between 2so g and 3do g curves. For a 36-term Sturmian basis set we get b,a=3.27 cm
at R =4.053 52ao. Our work allows for a general approach to the solution of any molecular three-

body problem that is applicable independently of the light-particle —heavy-particle interaction and

the masses of the two heavier particles.

I. INTRODUCTION

Although there are few molecularlike three-body sys-
tems outside molecular physics, the molecular expansion
method is a suitable basis to obtain a simple solution to a
given nuclear or hadronic three-body problem where two
of the particles are heavier than the third one. Because of
its nature the molecular approach provides great physical
insight and transparency, while at the same time includ-
ing to some extent three-body degrees of freedom that are
needed to achieve a reasonable accuracy in the calcula-
tion. This has been shown in a few model calculations
with short-range light-particle-heavy-particle interac-
tions' and in studies of Be as a nuclear three-body
molecule made up of two a particles and a neutron.
Likewise the method has been used to further understand
the three-body Efimov effect in a system made up of two
heavy particles and a light one. So far, applications to
more complex three-body (or three-body-like) systems,
and possible generalization to four and more particles,
have been limited for lack of a general theoretical frame-
work that easily handles non-Coulomb light-
particle —heavy-particle interactions while providing a
rotational-invariant solution of the two-center problem
that does not rely on the solution of the light-particle
Schrodinger equation in the frame where the two heavy
particles are fixed in space. It is well known that for
Coulomb three-body systems such as H2+ or ppp the
fixed-frame (FF) light-particle wave function separates in
elliptic coordinates. Therefore solutions may be obtained
with great accuracy either by solving two ordinary

differential equations or variationally by using basis func-
tions that take advantage of the above-mentioned separa-
bility. For non-Coulomb interactions no such separabili-
ty can be found and consequently there is no great advan-
tage in using a FF basis set.

In a recent work, hereafter noted as I, we have
developed a set of coupled equations for a molecular
three-body system involving two identical heavy particles
(protons) and a lighter one (electron). Although, for sim-
plicity, we have written the equations for identical heavy
particles and attempted to study the Hz+ molecular ion
to test the theory on a well-known problem, the method
is sufficiently general to deal with any kind of local or
nonlocal light-heavy interaction as well as nonidentical
heavy particles. In the work proposed in I the total
space-frame (SF) three-body wave function is based on a
Faddeev Ansatz for the electronic wave function which is
obtained from the solution of the Faddeev equations for
the electrons moving in the Coulomb field of the two pro-
tons that, although kept at distance R, are allowed to ro-
tate with angular momentum L. For the purpose of solv-
ing these adiabatic Faddeev equations [Eq. (31) in I] the
e-p Coulomb t matrix is expressed in a separable form us-
ing Sturmians, or Weinberg states. The resulting elec-
tronic two-center wave function carries well-defined total
angular momentum J and parity P and is expressed as a
sum of hydrogenic Sturmians centered on each proton

—[tb; (pi, R&)+Qg; (pz, Rz)]
2
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where, as shown in Fig. 1, R, = —R2 ——R, p, =p and

p2 ——p+R, and Q is the permutation symmetry of the
wave function with respect to the exchange of the two
protons. As usual 0=+1 for even permutation symme-
try and 0= —1 for odd permutation syrnrnetry. The in-
dex i denotes the electronic wave function corresponding
to a specific molecular energy solution f; (R) which is
the exact solution of the two-center Harniltonian with
the e-p Coulomb potential represented in a separable
form through Sturmians. The wave-function Faddeev
component reads

N,

0' (P,R )= g &e'.(&' (R)'
l pk I

4'tL~'(Pk Rk)
Q=1 1, L

and R have a solution at discrete values of c. Since at
this stage we are only dealing with the electronic Hamil-
tonian, E; (R ) is independent of J. For PA = + 1, i = 1

denotes the 1so. molecular energy curve, while i =2 and
3 denote the 2so. and 310. curves, respectively. For
PQ= —1, i=1 denotes 2po. „, while i=2 denotes 2pm„.
Although Z; (R) is independent of J, our SF electronic
wave function ll; depends on J through the G; (R;ulL)
spectator coefficients and the number of independent (1L)
pairs one can form for a given J.

Using f; we calculated next the corresponding Born-
Oppenheimer (BO) energy s; (R),

(4)

XG; (R;ulL), (2) where h is the electronic two-center Hamiltonian

where XI is the total number of Sturmians used for each
e-p relative orbital angular momentum 1, and

&tL (Pk'Rk)= X Im(pk)Ilm(Rk)cmMM
m, M

(3)

(a&

(b)

(G)

FIG. 1. Jacobi coordinates of the three-body problem.

The sum in l and L runs over all possible values that cou-
ple up to J and P and the e'„are configuration-space hy-
drogenic Sturmians at energy Z, (R ) with angular
momentum 1 and u —1 nodes, corresponding to principal
quantum number n =1 + u (see I for further details).
Both 'E; (R) and G; (R;ulL) emerge from the solution
of Eqs. (31a) and (31b) in I. These are homogeneous alge-
braic equations for the 6 coeScients that for given J, P,

2 2 2
2 Ze Ze

(5)
2v p p+R

Z= 1 for Hz+, v=A(rnl(AI +~), and At(~ ) is the pro-
ton (electron) mass. Comparing Z; (R) and s; (R) with
the best available results for different BO (Refs. 9 and 10)
molecular energy curves, we found that both Z and c are
exact at R =0 and ~ and seem to converge to the exact
result for 0&R & 00, such that at all R Z&c~c,,„„,.
Nevertheless, we also found that the accuracy of the cal-
culation is far from being acceptable by quantum-
chemistry standards where energy eigenvalues for H2+
are known up to nine significant digits; " further
difficulties arise from the slow rate with which s; (R ) ap-
proaches the exact solution as the number of hydrogenic
Sturrnians increases. Denoting n, „ the largest hydro-
genic principal quantum number (n =u +1) used in the
Sturmian expansion, and l,„ the largest angular mornen-
tum we have included, we found that for
(n,„,l,„)=(8, )7,

' which amounts to a 36-term basis
set, the lscrs energy at R =2ao (ac=0.529 17706 A) is
only accurate to four digits; at R =10ao the accuracy of
the calculation is reduced to two digits alone, down from
three digits when a single-term expansion is used for the
Coulomb t matrix. Similar convergence problems appear
at large R for 2po. „,2pvr„, 2so.g, and 3do. molecular en-

ergy curves. Since we know that for R & 10ao the one-
terrn linear combination of atomic orbitals (LCAO) wave
function gives rise to 1sug electronic energies that are ac-
curate to at least three digits, the above findings clearly
suggest that something is wrong with either the
Sturmian-Faddeev Ansatz for the electronic wave func-
tion g; or with the way s; (R) and G,. (R;ulL) are cal-
culated, that is, through the solution of the adiabatic
Faddeev equations [Eq. (31) in I] that result from using a
truncated separable representation of the e-p Coulomb t
matrix.

In spite of the diSculties encountered in obtaining ac-
curate solutions for the H2+ electronic energies, which
are possibly due to the long-range nature of the Coulomb
potential and the convergence of the Sturmian expansion,
three interesting features emerged: (a) the 2sog and
3do curves we obtain seem to be cross inhibited; ' (b)
the 2pm„and 3dcr potential-energy curves that are re-
sponsible for the chemical binding have their minima
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correctly reproduced within two-digit accuracy at ap-
proxirnately R =Sao and 8.8ao, respectively, ' in spite of
the large-R distance separation; (c) the method is
sufficiently general to handle any kind of local or nonlo-
cal light-heavy interaction which makes any three-body
molecularlike system amenable to rnolecularlike treat-
ment.

The noncrossing feature is particularly puzzling be-
cause the Hamiltonian we have in effect diagonalized
does not contain the angular momentum operator L in
the variable R which in the best adiabatic (BA) method of
Pack and Hirschfelder' is responsible for the coupling
between electronic and nuclear motion that generates
cross inhibition. Although in our work we use the elec-
tronic Harniltonian h with a separable representation of
the e-p potential to generate f; and G, (R;ulL), the SF
wave function written in (1), (2), and (3) carries the flexi-

bility needed for the exchange of angular momentum be-
tween electronic motion and nuclear motion that cannot
be easily expressed in terms of a fixed-frame wave func-
tion times a Wigner D function that depends exclusively
on R and carriers total angular momentum J such as one
usually finds in standard quantum-chemistry books.

, Furthermore, since the Sturrnian expansion is known to
converge' for short-range potentials, the problems we
found at large R should disappear for three-body molecu-
lar systems where the light-heavy interaction is short
range. Also, improved accuracy and faster rate of con-
vergence as the number of Sturmians increases should be
found in those cases.

In order to improve on the previous work and obtain
accurate results for long-range light-heavy interactions
two directions may be undertaken: (a) solve the adiabatic
two-center Faddeev equations using the full e-p Coulomb
potential; (b) use a SF two-center Sturmian Ansatz similar
to the one written in (1), (2), and (3) and calculate Z and G
through direct diagonalization of the Hamiltonian h

shown in (4) without setting up a separable representation
for the e-p potential. Since the first approach would most
certainly lead to numerical difficulties we do not feel
prepared to handle at this time, we choose the second al-

ternative, which is more in line with the work developed
in I and the variational methods used in quantum chemis-

try. The major difference relative to quantum-chemistry
methods lies in the nature of the Ansatz, particularly in
the way one achieves a SF representation for the elec-
tronic wave function carrying good total angular momen-
tum J and parity P. Compared to the work developed in

I, by using (1), (2), and (3) to diagonalize h, one gets

Z; (R)=s; (R) and new G; (R;ulL) coefficients.
Since our electronic wave function satisfies the require-

ments needed to perform a BA calculation, irnprove-
ments may be easily included by diagonalizing h +L in-

stead of h alone, leading to the calculation of the avoided
crossing energy gap between 2so. and 3dcTg curves
which have the same syrnrnetry and an improved calcula-
tion of the adiabatic corrections. ' ' In addition, since
the method proposed here, as well as in I, is independent
of the light-heavy interaction one uses, any three-body
molecularlike system becomes easily amenable to
rotational-invariant molecularlike treatment, where adia-

batic as well as nonadiabatic corrections due to appropri-
ate choice of Jacobi variables and coupling to higher
molecular states may be easily accounted for. Recent
work in this direction consisted in a very successful appli-
cation of the work developed in I to the study of Be as a
three-body nuclear molecule made up of a+n+a. '

Our aim here is to test the method in the presence of
long-range Coulomb forces where very accurate results
are known. In Sec. II we write the matrix equations we
solve to diagonalize h with the present choice for the
electronic Ansatz and show the corresponding results for
E; (R) and G; (R;ulL). In Sec. III we calculate all adia-
batic corrections due to Coriolis coupling effects in L,
mass polarization corrections to the electronic kinetic en-
ergy, and derivatives of f; with respect to R. An im-
proved adiabatic calculation of L and the avoided cross-
ing energy gap between 2so and 3do curves is also re-
ported in Sec. III. Finally, in Sec. IV we draw some con-
clusions.

II. DIAGONALIZATION OF THE ELECTRONIC
HAMILTONIAN

where the summation in c runs over all possible combina-
tions of u, l, and L, and

(p, R;c)= [e„'(s;p, ) Y, (p, ,R, )V'2

(7)

R) ———R2 ——R, (8a)

(8b)

p2
——p+R . (8c)

Since most calculations we undertake are more easily
done in momentum space, we write the configuration-
space hydrogenic Sturrnian e'„as

dge„(E;p)=v 471J 2
E — q („(s;g)J((gp)

27T2 2v

(9)

As mentioned before, we take the Faddeev Ansatz for
the electronic wave function that is suggested from our
previous work in Ref. 7 and that we believe is more Aexi-

ble than standard quantum-chemistry electronic Ansatze
in coupling the electronic motion to the nuclear motion.
Nevertheless, unlike in I, we use such an Ansatz to diago-
nalize the two-center Harniltonian expressed in (5), in-
stead of solving the Faddeev equations that result from a
separable representation of the e-p Coulomb potential.
Therefore one starts by writing 1( as

(p, R)= gP (p, R;c)G (R;c),
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where v is the separated atom reduced mass that is need-
ed to obtain the correct dissociation limit.

The g'„are given in Appendix C of I, and the ji are
spherical Bessel functions of order 1. Next we use g in

substitute (5) and (6) in (10), multiply on the left by
(p, R;c'), and integrate in d p and dQ& to obtain a

matrix equation

g [B''(R;JP)+u' '(R; JP)]G (R;c)=0,

I yJP EyJP (10) where

$2
B''(R;JP)=IP (p, R;c') —c— Vc P (pR;c\), ,

V
(12)

and

c"(R;JP)=(P (p, R;c') Z8 Ze

I p+Rl (p, R;c)) . (13)

Equation (11) is a homogeneous algebraic equation whose
solution for a given J, P, and R only exists at discrete
values of s denoted henceforward as e, (R). The corre-
sponding eigenvalues are G; (R;c), which are spectator
coefficients that account for the weight with which each
Sturmian enters in the two-center electronic wave func-
tion. Since the Sturmian eigenfunctions satisfy very sim-

ple properties (see Appendixes A and C in I), most matrix
elements are easily evaluated. One gets

(18)

X f p dp 8'„(s;p)u~(p, R)8'„(e;p),
0

(19)

where rl'„ is the corresponding Sturmian eigenvalue

(
I

)
) (u+I)~

Z

V (R;c'c)= gX& (I'L';IL)

B''(R;JP)=5„„5&I5L I QB (R;c—'c),

where

(14) and

Xg (I'L', IL)=x ( —1)'+ (E) Xg (I'L';IL) . (20)

B (R;c'c)= g Xi (I'L', IL) The X is given by (16a), x by (16b},the 8's are taken from
(9), and

q'dq 0'. (s qC'. (e q) .
X 2 2 j&(qR) .

2%2
q2v

r"
v&(p, R) = —Ze (21)

(15)

The 7 is the angular momentum coupling coefficient
given by

I X I'
X"(I'L'IL)=x( I }'+'+'2'l l L L—

o o o

with r =min t p, R I and r =max Ip, R I. Therefore the
integral in (19) has always to be broken in two regions
[O,R] and [R, 00 ].

As mentioned before, Eq. (11) is a secular equation
whose solution only exists at a discrete set of s; (R}.
Therefore given J, P, and R one finds the values of e for
which the determinant

L X L'
X () 0 W(l'IL 'L;XJ),

(16a)

where x is an extra phase

1 )(I +I'+c)/2 (16b)

u' '(R;JP)= VI„(E)5„„5((5L L—

(0 0 0) is a 3-j coefficient, and W is a Racah. As for v

one again follows the work in I to obtain

i
B (R;JP)+ u (R;JP)

i
=0 . (22)

(23)

As in I the energy eigenvalues e,; (R ) are independent of
J as one expects from the diagonalization of the electron-
ic Hamiltonian alone, but the spectator coefficients
G; (R;c) are strongly J dependent, because the number
of channels c involved in the calculation depends on J.
As usual the G's resulting from (11) are known up to an
overall normalization constant that is fixed by requiring
that

+Q[g'„,(s)+ rl'„(E)]B (R;c'c)

+ V (R;c'c), (17)

at all R. For QP =+ I the lowest energy solution we find
is the 1so.

z molecular curve which is denoted as i =1. In
Table I we show E, +(R) versus R and compare with the
most precise results of Madsen and Peek. ' Unlike in I,
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TABLE I. e,"(R) (in Ry) vs R for increasing (n,„,/, „). The exact 1scr~ results are shown for comparison.

R /ao

0
1

2
3
4

10
15
20

(1,0)

4.00000000
2.858 683 84
2.118367 32
1.735 736 98
1.524 997 22
1.401 997 13
1.192003 29
1.129401 91
1.097 722 56

(2, 1)

4.000 000 00
2.900 642 27
2.203 571 62
1.819922 62
1.589 494 21
1.446 056 96
1.200 915 85
1.133401 17
1.100019 82

(3,2)

4.000 000 00
2.903 212 41
2.205 086 02
1.821 567 64
1.591 970 33
1.448 700 89
1.201 141 50
1.133430 40
1.100028 40

(5,4)

4.000 000 00
2.903 557 26
2.205 257 55
1.821 786 36
1.592 166 14
1.448 838 13
1.201 157 35
1.133431 21
1.100028 49

(8,7)

4.000 000 00
2.903 571 56
2.205 268 13
1.821 792 26
1.592 169 70
1.448 840 56
1.201 15745
1.133431 21
1.100028 49

Exact (Ref. 10)

4.000 000 00
2.903 572 63
2.205 268 43
1.821 792 39
1.592 169 77
1.448 840 59
1.201 157 46
1.133431 21
1.100028 52

one finds that the one-term approximation is very poor,
but as the number of terms in the Sturmian representa-
tion of the wave function increases, e, +(R) converges
quickly and monotonically to the results of Madsen and
Peek at all R. For (n,„,l,„)=(5,4), which amounts to

a 15-term basis set, we get at least five-digit accuracy at
all R, which is a great deal more than we ever got in I
with a 36-term basis set. ' For (nm, „,l,„)=(8,7) one
now gets better then seven-digit accuracy at all R. The
corresponding potential-energy curve defined as

TABLE II. Weight factors 6&+ (R;ull) at R =Sao for increasing (n,„,l,„). In the last column we
show the corresponding results from Ref. 12 for (7,6).

6's

1s
2$

3$
4s
5s
6s
7$
8s

2p
3p
4p
Sp

6p
7p
Sp
3d
4d
5d
6d
7d
Sd

(3,2)

1.477
—1.709 x10-'

1.741 x 10-'

5.088X10 '
—2.368x 10

1.305X10 '

This work
(5,4)

1.475
—1.688 x10-'

1.622 x 10-'
—1.473 x 10-'
—3.277 x 10-'

4.920x 10-'
—2.243 x 10-'

3.646x 10-'
—9.816x 10-'

1.247 x 10-'
—5.681 x 10

4.658 x 10-'

4.570x 10-'
—1.423 x 10-'

(7,6)

1.475
—1.683 x 10

1.612x 10-'
—1.773 x 10-4

1.685 x 10-4
—2.224 x 10
—7.492 x 10-'

4.884x10 '
—2.233 X 1o

4.035X10 '
—3.646 X 10

1.014x 10-'
—5.482 x 10

1.235 X 1o
—5.925 x 10-'

8.862 X 10
3.559x 10-'
1.957 X 1o

4.631X10 '
—1.783 x 10-'

3.421 x 10-'
1.920x 10-'

From Ref. 12
(7,6)

1.28
—1.18x 10

4.50x 10-'
—2.74X10 2

2.70x 10-'
—1.76 X 10

4.80 X 10-'

4.76 x 10-'
—3.72x10 2

4.08X10 '
—4.67x 10-'

3.18x 10-'
—2.56 X 10

2.52 X 10
—4.45 x 10-'

5.77x 10-'
—4.31 x 10-'

7.88 x 10-'

3.17x 10-'
—5.44 X 10

5.08 x 10-'
—1.73 x 10-'

5g
6g
7g
8g
6h
7h
8h

7l
Si

Sj

1.741 x 10-' 1.935x 10-'
—4.234x 10—4

—8.344 x 10-'

7.840 X 10-4
—1.290x10 '

2.773 x 10-4

3.65 x 10-'
—5.11X 10

2.98x 10

3.85 x 10-'
—403x10 '

3.80X10 '
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E +(R)=c, +(R)+ —e +( oo )
(Ze)

(24)

shows the well-known minima very near R =2ao. For
R =2ao, E, + (R)=0.10263406 a.u. , while Madsen and
Peek obtain E„(R) =0.102 632 1 a.u. Our previous en-

ergy result from I at R =2ao is 0.102435 a.u. , which

agrees with the present result only on the first four digits.
Two additional significant digits are obtained by the
present variational approach based on a similar wave-
function Ansatz. The normalized spectator coefficients
6,+ (R;c) are shown in Table II at R =8ao for increas-
ing (n,„,I,„). For (7,6} we show the corresponding re-
sults from I. Not only are the present weights consider-
ably different from the previous ones, but we also find
that the convergence pattern is different. Although as
discussed in Sec. III, the numerical difficulties one en-
counters here are considerably bigger than in I, where the
solution of the corresponding homogeneous equation is
numerically more stable, particularly for large basis sets
(n,„,I,„)& (5,4) and intermediate values of R
(lao & R & 8ao), the present findings give a clear indica-
tion why the previous work lacked the accuracy that is
needed to deal with long-range potentials. Since the
Coulomb potential is a long-range potential, and the
Sturmian separable representation of the Coulomb poten-
tia1 is a sum of short-ranged terms, the method developed
in I is not accurate enough to generate through the solu-
tion of the Faddeev equations energies and wave func-
tions that are acceptable by quantum-chemistry stan-
dards. Even if in I some apparent convergence seems to
exist for the energy eigenvalues, the wave function is well
away from a converged status. On the contrary, if the
same Faddeev-like Ansatz is used in the context of a vari-
ational calculation to diagonalize the full Hamiltonian,
improved results are obtained. Although this may look
like a trivial point, as far as we know, it is not mentioned
or suggested in the literature where Faddeev calculations
involving atomic or molecular systems have been done in
the past. The results obtained here excel the precision of
any calculation using S-body methods, including the one
by Ford and Levin' based on the solution of channel-
permuting-array (CPA) theory using finite element
methods, and seem to indicate that for long-ranged po-
tentials one may get improved accuracy by using a stan-
dard Faddeev global Ansatz as suggested by a given se-
parable representation of the underlying potential, in a
variational-like diagonalization of the original Hamiltoni-
an. Because the above-chosen Ansatz still factorizes with
respect to the relative e-p momentum, the equations that
are solved here have the same dimensionality as the Fad-
deev equation obtained in I but, because we take the full
e-p Coulomb potential instead of a separable representa-
tion of it, extra accuracy is gained. The price one pays is
the calculation of one extra integral involving a multipole
expansion of the light-heavy particle interaction. Here
also lies the advantage of the Sturmian Ansatz which
makes the calculation of most matrix elements a very
easy task. Since we have not used any special numerical
technique to handle integrals over products of highly os-
cil1atory form factors and Bessel functions, beyond mak-

ing sure we had a sufficient number of mesh points to al-
low for eight or nine stable digits in the energy eigenval-
ues, we expect to gain further accuracy and speed in the
calculation by introducing some numerical refinements.
Nevertheless, using a 36-term basis set at each R the cal-
culation of one energy eigenvalue and corresponding
wave function as well as all adiabatic corrections de-
scribed in Sec. III takes about 20 sec on the Cray
XMF48.

Next we study the contribution of high l's to the 1so
energy at different values of R. This is shown in Table III
for (n,„,l,„) ranging from (8,7} to (8,0). As expected
for very small (R &0.5ao) or very large (R &10ao}
values of R the contribution of I & 3 e-p angular momen-
tum contributions only changes the seventh significant di-
git. In between, one may need to go as high as l=5 to
obtain eight significant digits, which implies a 33-term
basis set.

If one now studies the excited molecular energy states
corresponding to 2po„, 2pm„, 2scr, and 3do one also
finds considerably improved accuracy over the work per-
formed in I. In Tables IV-VI the results of the present
calculation are shown at some values of R and for an in-
creasing number of terms in the Sturmian expansion of
the wave function. When compared with the best-known
exact results' one finds that they converge monotonically
at all R and that for the largest (n,„,l,„)we have cal-
culated one gets five- to nine-digit accuracy depending on
which state or R value one considers. As in I, we find
that for a given (n,„,I,„)the 2scr and 3dcrs curves are
cross inhibited. Nevertheless, as shown in Fig. 2, the
cross inhibition gap b,s decreases as (n,„,I,„)increases
to become 2.73 X 10 a.u. (0.0599 cm ') at R =4.0535ao
with ( n,„,I,„)= (8,7). Because at (8,7) the size of the
gap is within the precision of the calculation we cannot
positively ascertin whether the two calculated curves
cross or not. Therefore it is possible that in the limit of
an infinite number of basis states we may get curve cross-
ing as one expects. The only possible way to sort this out
is diagonalizing h +L as suggested in Ref. 13 to find out
if the resulting cross inhibition gap is bigger than the re-
sult quoted above and stable against changes in the num-
ber of terms in the basis state. This was done below
in Sec. III where for (n,„,1,„)= (8,7) we find
he=1.49X10 a.u. (3.27 cm ') at R =4.053 52ao. Al-
though further details are given below, this indicates that
L is indeed responsible for breaking the symmetry that
leads to curve crossing in the BO approximation. ' Nev-
ertheless, because our original Ansatz already breaks that
symmetry one needs a large basis set to restore it when
one diagonalizes h alone. The difference between both
calculations is shown in Fig. 3 for (n,„,I,„)= (8,7).

Therefore both the work proposed in I and here allow
for a very general rotational-invariant treatment of the
two-center potential problem which is based on a
Sturmian-Faddeev Ansatz for the SF hght-particle wave
function that may be used independently of the chosen
light-heavy interaction. For short-range potentials the
method proposed in I should converge well as the num-
ber of separable terms increases, as one finds in standard
three-body calculations. ' For long-range potentials
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(n, I)
R /ao 0.2

TABLE III. c& (R) (in Ry) vs I,„ for n,„=8 and different values of R.

15 20

(8,7)
(8,6)
(8,5)
(8,4)
(8,3)
(8,2)
(8,1)

(8,0)

3.857 234 413
3.856 234 413
3.857 234413
3.857 234 413
3.856 234 411
3.857 234 408
3.856 234 340
3.856 897 784

2.205 268 130
2.205 268 130
2.205 268 130
2.205 268 125
2.205 267 856
2.205 256 385
2.204 813 775
2.181 886 479

1.592 169703
1.592 169 703
1.592 169 701
1.592 169 607
1.592 167 970
1.592 137465
1.591 389 000
1.576 249 398

1.255 140 774
1.255 140 774
1.255 140 763
1.255 140 713
1.255 140077
1.255 131 870
1.255 024 239
1.253 517 957

1.133431 211
1.133431 211
1.333 431 211
1.133431 211
1.133431 211
1.133431 133
1.133429 339
1.133 339 830

1.100028 445
1.100028 445
1.100028 445
1.100028 445
1.100028 444
1.100028 437
1.100028 152
1.100000 002

TABLE IV. e& (R) (in Ry) vs R for increasing (n,„,l,„).
comparison.

The exact 2po. „results are shown for

R /ao

0
1

2
3
4
5

10
15

(2,1)

1.000 000 00
1.129 225 46
1 ~ 334 756 03
1.402 71044
1.391 01499
1 ~ 354477 59
1.199693 23
1.133 389 09

(3,2)

1.000 000 00
1.129 579 43
1.335 033 18
1.402 824 01
1.391 096 02
1.354 580 06
1.199 800 22
1.133416 95

(5,4)

1.000 000 00
1.129 623 62
1.335 067 19
1.402 836 34
1.391 101 21
1.354 583 23
1.199 802 13
1.133417 46

Exact (Ref. 10)

1.000 000 00
1.129 627 25
1.335 068 78
1.402 836 66
1.391 101 28
1.354 583 20
1.199 802 13
1.133417 46

TABLE V. cz (R ) (in Ry) vs R for increasing ( n, „,I,„).
comparison.

The exact 2pm„results are shown for

R /ao

0
1

2
3
4
5

10
15

(2, 1)

1.000 000 00
0.946 750 82
0.847 952 76
0.751 599 51
0.670 102 86
0.604 492 80
0.432 125 15
0.370 984 43

(3,2)

1.000 000 00
0.947 963 56
0.856 716 51
0.771 971 10
0.700 850 45
0.641 910 12
0.461 907 89
0.384 742 91

(5,4)

1.000 000 00
0.948 192 76
0.857 517 77
0.772 869 84
0.701 629 20
0.642 746 44
0.465 412 16
0.387 074 59

Exact (Ref. 10)

1.000 000 00
0.948 215 91
0.857 543 64
0.772 887 70
0.701 649 29
0.642 769 62
0.465 432 58
0.387 090 72

TABLE VI. @2+(R)and c3+(R) vs R for increasing (n,„,I,„). The exact 2scr, and 3dcr, results are shown for comparison.

R /ao

0
1

2
3
4
5

6
7
8
9

10
15
20

(5,4)

1.000 000 00
0.845 679 89
0.721 667 64
0.637 712 44
0.576 965 01
0.612 025 29
0.624 987 26
0.616 836 71
0.597 017 35
0.572 216 62
0.546 226 95
0.438 281 11
0.375 515 27

(8,7)

1.000 000 00
0.845 840 34
0.721 725 37
0.637 771 31
0.577 028 14
0.612 026 15
0.624 989 64
0.616 841 10
0.597 023 25
0.572 223 57
0.546 234 84
0.438 296 08
0.375 532 14

Exact 2sog
Ref. 10

1.000 000 00
0.845 849 17
0.721 729 75
0.637 774 10
0.577 029 73
0.531 011 63
0.495 109 18
0.466 558 80
0.443 554 67
0.424 824 93
0.409 421 25
0.361 809 87
0.336 998 60

Exact 3dcrg
Ref. 10

0.444 444 44
0.450 369 38
0.471 555 26
0.515 008 61
0.571 447 58
0.612 026 15
0.624 989 65
0.616 841 13
0.597 023 28
0.572 223 61
0.546 234 88
0.438 296 12
0.375 532 16

(8,7)

0 AHA AAA 44
0.450 369 31
0.471 554 90
0.515 008 33
0.571 447 53
0.531 010 50
0.495 108 30
0.466 558 14
0.443 554 20
0.424 824 62
0.409 421 03
0.361 809 84
0.336 998 60

(5,4)

0.444 444 44
0.450 368 76
0.471 549 32
0.514 999 75
0 571 AAA 76
0.530 957 09
0.495 066 96
0.466 525 07
0.443 525 95
0.424 799 93
0.409 400 02
0.361 804 77
0.336 997 59
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FIG. 2. c2 (R) and c3 (R) vs R for increasing (n,„,1,„).

and/or considerable accuracy one may still use the same

Sturmian-Faddeev Ansatz but in the context of a varia-

tional calculation. As a consequence of this work any

three-body molecularlike system becomes amenable to
molecularlike treatment, as long as one can find the

Weinberg states or Sturmians of the underlying light-

heavy particle interaction. For some potentials such as
harmonic oscillator, Hulthen, and Coulomb this is an
easy task. For others one may have to solve an eigenval-
ue problem at each e (see I and references therein for de-
tails).

-7.808 7 I I I I I I & I t
t l I I I f & i I I

—7- 8083

—7.8088
—7-8084

—7.8087

—7.8089 ~

4.0534

I I I I I I I I i I I I I I I I I I I

4.0535

—7.8088

4.0536

FIG. 3. c2 (R) and c.3 (R) vs R for (n,„,l,„)=(8,7). While the solid line corresponds to diagonalizing h alone, the dashed line

corresponds to diagonalizing h +I.'/2pR '. The arrow indicates the position of the minimum. The left scale corresponds to the solid

line, while the scale on the right corresponds to the dashed line.
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III. ADIABATIC CORRECTIONS

Using the 1so g electronic energy curve and wave func-
tion developed above we now proceed to calculate the
adiabatic corrections that are needed for an accurate cal-
culation of the Hz+ spectra. In the present work we use
the standard form of the BA Ansatz for the three-body
wave function

method that reduces the task to the solution of a general-
ized eigenvalue problem, we want to make sure that our
method leads to reasonable results for the cases for which
one already knows the answer. Therefore using (25) in

(26)

where H is the full three-body Hamiltonian

(p, R)=g (p, R)4 (R) (25)
fi ~q (Ze) A'

~~ Ze

2p R 2v
'

p
~~+ Ze

I p+R
I

instead of the one proposed in Eq. (41) of I which leads to
a set of coupled differential equations in the variable R.
Two reasons lead us to this choice at this time: (a) we
want to be able to compare some of the adiabatic correc-
tions predicted in the framework of this Ansatz with the
well-known corrections calculated years ago by Kalos
and Beckel et al. ;

' (b) being in the process of developing
a computer code for the solution of coupled differential
equations at negative energies using the spline expansion

(27)

p =At/2,

v=2rnAt/(2At+~), (28b)

and r is shown in Fig. 1, we obtain the usual adiabatic
Schrodinger equation for the relative motion in the vari-
able R

At gR& R BR R+— +s (R)+ +C( (R)+C2 (R)+C3 (R) 4 (R)=E+JP(R) . (29)

1 L
CJP(R ) qjP qJPAfR', (30)

where L is the angular momentum operator in R. Adia-
batic corrections in C, are obtained by subtracting

The C, , Cz, and C3 terms carry the usual adiabatic
corrections in addition to the appropriate angular
momentum centrifugal barrier in the variable R which is
embedded in C&

much like those in Refs. 20 and 21. On the contrary, if
one follows our prescription and uses v=~At(rex+At)
everywhere one gets an attractive correction from Cz.
To compare the results of our calculations with those of
Refs. 20 and 21 we make v =en in (5)—(15).

The third correction term involves the derivatives of P
with respect to R and may be calculated using some
properties of f and i%BI—M which is an Hermitian
operator while acting on bound states. 's' Since g is
normalized to unity at each R we have

J(J+1)
R

fz
CJP(R) qJP qJP

BR r)R
(34)

and depend not only on J but also on the electronic state
used in (25) (see the Appendix).

Since h and P involve the separated atom reduced
mass [see Eq. (9)] one may write

v ' = '+ (2At ) '= ' —(2Af. ) (31)

where

v (32)

Therefore Cz may be written as

CJP(R ) yJP q2 yJP2' 2v
(33)

which is the usual mass polarization correction to the
electronic kinetic energy. The mass polarization correc-
tion term Cz carries here a sign that is different from the
convention adopted by Kolos and Beckel et al. ' The
difference comes from using the separated atom reduced
mass v in h and f instead of the electronic mass alone.
If one changes v into ~ in (50), (9), (12), and (15), one
gets a repulsive correction for the mass polarization

which involves derivatives of f with respect to R. In the
Appendix we use the work developed in I to write explicit
expressions for Eqs. (33) and (34). In the framework of
the present Faddeev Ansatz for lf, both C, and C2 are
easy to calculate. Therefore most of the numerical effort
goes into obtaining C3, where all derivatives of e (R)
and GJ~(R;c) have to be done numerically. Only the
derivatives of 8'„(e;q) defined in (A4) with respect to E

may be done analytically since 6„ is a ratio of polynomi-
als in 5=&—e. Due to the nature of the electronic An
satz this work is numerically more time consuming than
what one usually finds in equivalent quantum-chemistry
calculations for Hz+. Nevertheless, once the effort of
programming all necessary steps in the calculation is
completed, one has in effect developed an approach that
is flexible enough and general enough to deal with
different molecular three-body problems in atomic as well
as in nuclear physics where the Af/~ mass ra, tio is small-
er than m /m, =2000, or the potentials are short range
and strongly spin dependent.

Corning back to the Hz+ calculation we show in Table
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TABLE VII. C2+(R) (in a.u. ) vs R for increasing (n,„,l,„). Results from Ref. 20 are given for
comparison. For p/m, we use 918.06, which is the same as in Kolos's work.

R /ao (3,2)

10 C2+(R) (a.u. )

(5,4) (7,6) (8,7)

10 H2
(a.u. )

Ref. 20

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0

0.544 627
0.493 689
0.417 750
0.353 420
0.303 273
0.264 536
0.234 340
0.210 521
0.191 518
0.176220
0.163 823
0.129 197
0.119 198
0.120 174
0.124 914
0.129 472
0.132 565
0.134 331
0.135 249
0.136 109
0.136 145
0.136 157

0.544 627
0.493 780
0.418 067
0.353 848
0.303 692
0.264 880
0.234 609
0.210 728
0.191681
0.176 354
0.163 941
0.129 313
0.119302
0.120 226
0.124 905
0.129 425
0.132 510
0.134285
0.135 217
0.136 107
0.136 145
0.136 157

0.544 627
0.493 799
0.418 103
0.353 876
0.303 708
0.264 891
0.234 618
0.210 735
0.191 688
0.176 361
0.163 948
0.129 317
0.119305
0.120 227
0.124 905
0.129 425
0.132 510
0.134285
0.135 217
0.136 107
0.136 145
0.136 157

0.544 627
0.493 802
0.418 107
0.353 878
0.303 709
0.264 892
0.234 618
0.210 736
0.191 689
0.176 362
0.163 948
0.129 318
0.119305
0.120 231
0.124 905
0.129 425
0.132 510
0.134285
0.135 217
0.136 107
0.136 145
0.136 157

0.544 627
not available

0.418 113
0.353 879
0.303 710
0.264 892
0.234 619
0.210 737
0.191 689
0.176 362
0.163 949
0.129 317
0.119303
0.120 224
0.124 902
0.129421
0.132 506
0.124 281
0.135 216
0.136 107
0.136 145
0.136 157

VII the values we obtain for Cz+ versus R and compare
with Kolos's results denoted in Ref. 20 as H2. The values
we obtain for C2+ converge rnonotonically to Kolos's re-
sults as (n,„,1,„)increases. At (8,7) which corresponds
to a 36-term Sturmian basis set, we get six- or seven-digit
accuracy at all values of R ranging from R=O to 20ao.

As in Kolos's calculation C2+ (R) has a minimum around
R =4.3ao. Although we have calculated C,+(R) and
C3+(R) separately we show in Table VIII C|+ +C3+ to
compare with Kolos's results denoted in Ref. 20 as H&.
Unlike C2+ or even C3+, C, + which carries the L ma-
trix elements is very sensitive, not only to the size of the

TABLE VIII. C&+ (R)+C3+ (r) vs R for increasing (n,„,I,„). Results from Ref. 20 are given for
comparison.

R /ao (3,2)
10 [C,+(R)+C3+(R)] (a.u. )

(4,3) (5,4) (6,5) (7,6)

10 Hi
(a.u. )

Ref. 20

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0

0.091 05
0.10673
0.11247
0.11436
0.11487
0.11498
0.11508
0.11533
0.11578
0.120 80
0.128 40
0.135 16
0.138 82
0.13973
0.13938
0.138 72
0.138 13
0.13677
0.13642
0.13616

0.086 70
0.101 79
0.107 44
0.109 50
0.109 88
0.10998
0.10997
0.110 11
0.11049
0.11588
0.124 75
0.132 88
0.137 54
0.13907
0.13905
0.138 57
0.13807
0.13677
0.13642
0.136 16

0.08402
0.098 93
0.104 46
0.104 39
0.103 43
0.102 43
0.099 89
0.101 81
0.105 73
0.11362
0.122 97
0.131 66
0.136 82
0.138 69
0.138 87
0.13849
0.137 99
0.13677
0.13642
0.136 16

0.083 04
0.099 54
0.109 22
0.105 32
0.100 52
0.101 92
0.104 32
0.105 25
0.101 81
0.11257
0.123 64
0.13108
0.13640
0.13846
0.13876
0.13844
0.13801
0.13677
0.13642
0.136 16

0.082 40
0.10409
0.11437
0.103 30
0.102 09
0.104 70
0.105 18
0.104 68
0.10001
0.11488
0.12903
0.13776
0.138 68
0.13841
0.13869
0.138 58
0.13800
0.13677
0.13642
0.136 16

0.083 27
0.095 56
0.098 99
0.099 05
0.098 03
0.096 86
0.095 92
0.095 36
0.095 19
0.099 84
0.11012
0.120 84
0.128 38
0.13245
0.134 38
0.135 29
0.135 71
0.136 11
0.136 15
0.136 16
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basis set but also to the accuracy with which the channel
weights G +(R;u/L ) are calculated as the number of
basis states increases. Therefore for (n,„,l,„}~(5,4)
and R & Sao the results shown in Table VIII are not reli-
able. In spite of numerous checks on the algebra and the
computer code we are not able to overcome this nurneri-
cal difFiculty.

As we mentioned before, the 6's are obtained from the
solution of Eq. (11) which is a homogeneous algebraic
equation that depends on R and c.. At a given R a solu-
tion only exists for a discrete set of c.'s, which are those
for which the determinant (22) vanishes. Given one of
them, say, s)+(R), which corresponds to Isa~ energies,
we look for the eigenvector of 8+U corresponding to a
zero eigenvalue (the lowest one in actual fact). For that
purpose we make use of standard routines from Interna-
tional Mathematical Statistical Library or Numerical Al-
gorithms Group with great success for most choices of
(n,„,l,„) and R. Nevertheless, for R & 8ao and
(n,„,l,„)& (5,4) the resulting G's become unstable
when we change the size of the basis set. The numerical
difficulties are associated with the B + u matrix having in
those cases several eigenvalues very close to zero (ranging
from 10 to 10 ) in addition to one at 10 ' . When
the lowest eigenvalue is at least a factor of 10 smaller
than the next one no numerical difficulties are encoun-
tered and stable results are obtained for the dominant
6's.

Therefore if we limit ourselves to the (5,4} results in
I

Table VIII we find that, much like Hi in Kolos's calcula-
tion, C ) +C 3 goes to zero at R =0 and peaks around
R =0.9ao, but fails to have a minimum at R =2ao (has
one instead at R = 1.6a0) or to increase monotonically as
R ~ 0() (has instead a second maximum at R = 8ao). The
minimum at R =2ao seems to appear at (6,5) although, as
mentioned above, the results are not be trusted.

Provided one is able to overcome the numerical
difficulties mentioned above, one could always argue that
improved accuracy should result by increasing
(n,„,l,„). Nevertheless, in view of a discrepancy be-
tween our results and Kolos's results for R ~ Sao, we
suspect that the choice of adiabatic coordinates (p)rRk )

in (7) instead of correct Jacobi variables (p)r, Rx ) shown
in Figs. 1(b) and 1(c) may in the end be responsible for a
persistent but small discrepancy at all R which naturally
shows up in C, + (R ).

To overcome the problems encountered in the diago-
nalization of h using (7), we make use of the ideas of Pack
and Hirschfelder' and diagonalize instead h +L /2p. R
using the same Ansatz. This corresponds in part to an
improved adiabatic (IA) calculation' since the mass po-
larization matrix elements involving ( —I /4JN)V„a, re left
out. Including them is not difficult in the present formu-
lation, but since our main concern is the accuracy with
which L matrix elements are carried out by the present
Ansatz we decided not to include them at this time. The
new matrix equation for the 6's is

B''(R;JP)+U''(R;JP)+ g L''(R;JP G (R;c)=0, (35)

C, +(R)= [s,+(R )](35) [E,+(R)](„), (36)

where the Lr are given in (A18}, (A20), and (A23) after
the G's have been removed. Unlike (11) we find that (35)
is extremely well conditioned at all R and choice of
(n,„,l,„) ranging from (2, 1) to (8,7). Once the G's are
obtained from the solution of (35) new adiabatic correc-
tions C z+(R) and C 3+(R) may be obtained using (A27)
and (A35) —(A40). In Table IX we show the new results
for C z+(R) with (n,„,I,„)=(8,7) which are less repul-
sive than the corresponding values shown in Table VII.
The difference between the two calculations grows with R
and becomes 5)&10 a.u. at R =20ao. Also in Table IX
we show C 3+(R) for increasing (n,„,l,„). Although
we have displayed six digits after the decimal point we
believe that only the first four or five are accurate due to
limitations on the precision with which we calculate the
derivatives of the 6's. For comparison we also show
C3+(R) with (8,7). Although C3+(R) is more repulsive
than C3+(R) for R &3ao and less repulsive thereafter,
the difference never exceeds 6/10 a.u. and decreases
at large R to become =1.1)&10 a.u. at R =20ao.
Adding to C3+ the energy difference C (+(R) between
the 1so.

g electronic energies obtained from the solution of
Eqs. (11)and (35)

we get new improved results for the adiabatic corrections
associated with L and the derivatives of P(+. This is
shown in Table X for an increasing number of terms in
the basis set. As expected from Ref. 15, improved adia-
batic results (all orders in the perturbation) are less repul-
sive than standard ones (first order alone), but in our
calculations the greatest change occurs in C,+(R) rela-
tive to C, +(R). Because our C)+(R) results for
(n,„,l,„)~ (5,4) are not reliable, we compare the results
of Table X with those of Kolos, which like those of
Beckel et al. ' we take to be the benchmark for first-
order adiabatic contributions. Although improved adia-
batic and standard adiabatic results do not have to coin-
cide, for large heavy-light mass ratio their difference is
small and grows with R. In a recent calculation' for
HD+ the difference is 1.8&10 a.u. at R =5ao and
6.8&10 a.u. at r =20ao. The difference between our
improved adiabatic results with (n,„,l,„)=(8,7) and
Kolos's results grows with R to become 3&(10 " a.u. at
R =5ao and decreases thereafter. Our results now devel-

op a minimum at R =2ao but show a persistent max-
imum at R = 10ao and still an exceedingly large
difference relative to Kolos's result at R =20a0
(2.4X 10 a.u. more repulsive). Since the present calcu-
lation suffers from no ill-conditioned numerical problem,
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TABLE IX.
parison.

C&+(R) and C3+(R) vs R for different (n,„,i,„). Co3+(R) at (8,7} is given for com-

R /ao

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0

10 C 2(R)
(a.u. )

(8,7)

0.544 627
0.493 799
0.418 100
0.353 869
0.303 707
0.264 880
0.234 605
0.210 722
0.191675
0.176 348
0.163 934
0.129 296
0.119277
0.120 189
0.124 859
0.129 375
0.132457
0.134231
0.135 164
0.136057
0.136095

(4,3)

0.044 255
0.071 384
0.077 839
0.076487
0.072 717
0.068 529
0.064 637
0.061 265
0.058 449
0.056 157
0.050 616
0.050466
0.051 217
0.050 745
0.049 366
0.048 015
0.047 065
0.046479
0.045 628
0.045 480

10 C +(R) (a.u. )

(6,5)

0.044 100
0.071 211
0.077 705
0.076 377
0.072 625
0.068 453
0.064 573
0.061 208
0.058 409
0.056 119
0.050614
0.050473
0.051 222
0.050751
0.049 376
0.048017
0.047062
0.046474
0.045 627
0.045 480

(8,7)

0.044078
0.071 185
0.077 688
0.076 370
0.072 623
0.068 453
0.064 582
0.061 235
0.058 475
0.056 185
0.050 678
0.050 498
0.051 181
0.050 695
0.049 351
0.048 016
0.047 064
0.046 477
0.045 627
0.045 480

10 C3+(R)
(8,7)

0.044075
0.071 185
0.077 675
0.076 363
0.072 613
0.068 441
0.064 566
0.062 211
0.058 410
0.056 133
0.050 645
0.050500
0.051 241
0.050 758
0.049 376
0.048 022
0.047 078
0.046 485
0.045 638
0.045 491

we have to conclude that such persistent error in the cal-
culation of the L contribution to the potential energy
can only be attributed to the choice of adiabatic Jacobi
variables in (7) which are not the exact ones for correct
angular momentum coupling to total J and P. The wrong
choice of Jacobi variables obviously leads to errors that
vanish as R ~0 or ~ but that may be significant at inter-
mediate values of R, as we find here. Although using

(px, Ax) instead of (px, Rk) increases the algebraic
work, it will not increase the computational time by a
significant amount. In spite of the limitations of the
present approach to predicting L energy contributions
accurately we calculate next the 2so -3do.

g cross inhibi-
tion gap b e for increasing (n, „,I,„). Using (7) we diag-
onalize h and h +L /2pR in the region around R =4ao
and calculate the energy gap b, c. in both cases. As report-

TABLE X. Improved adiabatic results C &+(R)+C 3+(R) vs R for increasing (n,„,I,„).

R /a() (3,2)
103[C,+(R)+C 3+(R)] (a.u. )

(5,4) (7,6) (8,7)

10 H1
(a.u. )

Ref. 20

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0

0.051 984
0.089 263
0.104 137
0.110769
0.113451
0.114367
0.114681
0.114892
0.115203
0.115687
0.120 771
0.128 389
0.135 144
0.138 787
0.139690
0.139331
0.138 680
0.138094
0.136740
0.136 388

0.048 457
0.081 838
0.094 559
0.096 560
0.094 566
0.091 968
0.090 945
0.091 891
0.093 276
0.094025
0.094 568
0.106 793
0.127 665
0.136 169
0.138 553
0.138 817
0.138455
0.138001
0.136739
0.136388

0.046961
0.079 143
0.088 195
0.087 953
0.086464
0.085 599
0.083 535
0.080 630
0.077 781
0.075 492
0.078 704
0.086 196
0.095 131
0.110046
0.118601
0.122 976
0.129 113
0.135 360
0.136739
0.136388

0.046 576
0.077 916
0.085 977
0.085 968
0.085 115
0.082 661
0.078 997
0.075 423
0.072 604
0.070 918
0.073 308
0.077 948
0.090 253
0.100407
0.107 399
0.116451
0.124031
0.137750
0.136716
0.136 388

not available
0.083 27
0.095 56
0.098 99
0.099 05
0.098 03
0.096 86
0.095 92
0.095 36
0.095 19
0.099 84
0.110 12
0.120 84
0.128 38
0.13245
0.134 38
0.135 29
0.135 71
0.136 11
0.136 15
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TABLE XI. Cross inhibition gap between 2scrg and 3do.
g

curves obtained from the diagonalization of h and h +I. /2pR
for increasing (n,„,I,„).

15
21
28
36

(nmax&lnax )

(5,4)
(6,5)

(7,6)
(8,7)

1.241 x 10
3.734x 10
1.686 x 10
2.731 x 10-'

Ac (a.u. )

h+L /2pR

3.926 x 10-'
2.557 X 10
1.844 x 10-'
1.490x 10-'

extrapolated graphically =1.3 x 10-'

ed earlier, even when we diagonalize h for a given size
basis set, we find an energy gap between the two curves,
but this gap gets smaller as we increase (n,„,l,„) up
to (8,7). On the contrary, when we diagonalize
h +L /2PR we find that the 2su -3do cross inhibition

gap does not seem to plunge below 10 a.u. This is
shown in Table XI for increasing (n,„,l,„)where N is
the total number of basis states. With N=36 we get
b, a~6=1.49X10 a.u. (3.27 cm ') at R =4.053 52ao
from the diagonalization of h +L /2PR . If one graphi-
cally extrapolates hc for N = ~ one gets hc. =1.3X10
a.u. (2.85 cm '). If instead one diagonalizes h alone b E

seems to go to zero as N increases. This confirms the ex-
planation of Pack and Hirschfelder' that L is responsi-
ble for breaking the symmetry that leads to curve cross-
ing in the BO approximation.

IV. CONCLUSIONS

Using the Sturmian-Faddeev Ansatz that was first
developed in studying the two-center Faddeev equations
in the adiabatic limit, we have diagonalized the light-
particle Hamiltonian h without using any separable rep-
resentation for the light-heavy potential, In view of the
nice factorization properties of the two-center Ansatz that
the Sturmian separable representation of the light-heavy
particle interaction suggests, the diagonalization still in-
volves the solution of an algebraic homogeneous equation
whose solution at each R only exists at a discrete set of
energies e; (R). Although our only approximation con-
sists in using adiabatic Jacobi variables (p», R») instead
of (p», A») our space-frame two-center wave function
carries all conserved quantum numbers of the Hamiltoni-
an H.

When we apply the method to the solution of H2+ to
obtain first the electronic energies corresponding to 1so. ,
2so.g, 3do.g, 2po. „,and 2pn. „states we get energy results
that are accurate to five to nine digits, depending on the
values of R and the electronic state chosen. Usually for
R & 5ao one gets better than seven-digit accuracy, while
in the inner region the accuracy drops to five or six
figures alone. For the 1so. state we calculate, in first-
order perturbation theory, all adiabatic corrections re-
sulting from mass polarization, Coriolis coupling due to
the angular momentum I in the variable R, and deriva-
tives of the two-center wave function with respect to R.
Of all three terms only the L contribution seems to be

strongly dependent on the size of the basis set and on the
accuracy with which the SF wave function is calculated.
The adiabatic contribution due to mass polarization
agrees with previous results by Kolos up to five or six
significant figures, but the sum of the remaining two adia-
batic corrections fails to converge to Kolos's results by as
much as 1.2X10 a.u. Although part of the problem
may be attributed to the homogeneous equation becom-
ing ill conditioned when the number of Sturmian basis
states increases beyond N= 15 and R & 8ao, the
discrepancy at large values of R [2.3X10 a.u. at
R =10ao with (n,„,lm, „)=(5,4)] suggests that the error
may be associated with the use of adiabatic Jacobi vari-
ables, instead of the exact ones that are needed to con-
struct an exact eigenstate of the total angular momentum
J based on spherical harmonics that depend on the light-
heavy relative orbital angular momentum I and light-
heavy pair to remaining heavy-particle relative orbital
angular momentum L.

To avoid numerical difficulties in the solution of the
underlying homogeneous equation, we make use of the
ideas expressed in Ref. 13 and diagonalize h +L /2pR
instead of h alone, leading to an improved adiabatic cal-
culation of the L contribution. The resulting homogene-
ous equation is extremely well conditioned, leading to the
stable results for the 6 weights as one increases the num-
ber of basis states up to N=36 for (n,„,l,„)=(8,7).
The resulting changes in the mass polarization term grow
with R and become 5&(10 a.u. at 8 =20ao. Although
our improved adiabatic results and the standard adiabatic
results of Kolos need not coincide, the difference we find
in the L term is possibly too large. Therefore, for im-
proved accuracy, one needs to use exact Jacobi variables

(p», A» ) in (7) instead of (p„,R» ).
Finally, and with a note of caution for the reasons

pointed out above, we calculate the L contribution to
the 2so. -3do cross inhibition gap by diagonalizing
5 +L /2pR for both states. For N= 36 we get
hc&6 ——1.49)( 10 a.u.

Although the present approach to the molecular
three-body problem may have its limitations for the solu-
tion of Hz+ that advanced quantum-chemistry methods

may excel, it is general enough to deal with any three-
body molecularlike system independently of the light-
heavy interaction or the heavy-light mass ratio, because it
uses a SF two-center wave function that is written up in

terms of light-heavy potential Sturmians, carries all con-
served quantum numbers of H, and leads to the correct
dissociation limits for the molecule. Therefore, if all the
accuracy problems we encountered in H2+ can be solved,
it may even be an attractive method to deal with some
atomic molecules such as dd p or pp~. In nuclear physics
where uncertainties in the shape and strength of the po-
tential overshadow the need for extremely high accuracy
in the numerical solution of the equations, the present
Ansatz may be successfully used to study a few systems
that behave like hadronic molecules. Work in this direc-
tion has led to the study of Be as a nuclear molecule
made up of a+ n +a. '

Another important conclusion from this work relative
to I is that the Sturmian-Faddeev two-center Ansatz lacks
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the accuracy needed to deal with long-range interactions
when the weights G (R;c} are calculated through the
solution of the corresponding adiabatic Faddeev equation
where the light-heavy t matrix is represented in a separ-
able form using Sturmians. Nevertheless, if the very
same Ansatz is used directly to diagonalize the two-center
Hamiltonian, a remarkably improved accuracy is ob-
tained without increasing computing time by more than
10%. Progress is underway to test similar ideas in the
solution of the fu11 Faddeev equations for the He atoms.
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d3

)&e'q ~[1+0(—1) e'q ]

nl g'„(E;q)

Xy&L '(qR)G (R;c), (A 1)

1 d q(r, R)= g f, n, a, (e;q)[8,+Q( —1} oz]
C

JM
+VII. ( q, R } (A2)

where

a, (e;q) =8'„(e;q)G (R;c),
—1

g'„(e;q),8'„(e;q)= s — q2v

(A3)

(A4)

and

~ I JM
where ni &——4m( i—) and yIL '(qR) is given by (3} with

Y& (q} instead of Y& (p). Since p=r —R/2 we may write

gas

APPENDIX

As mentioned in Sec. III we now make use of the work
developed in I to give explicit expressions for C, , C2,
and C3 . Putting together Eqs. (6), (7), and (9) to write

&q [r—(1/2)R]

g iq [r+(li2)R]
2
—e

Using (A2) one may first calculate the norm of g
J ) = y N c'c(R JP) =1,

C &C

where the norm matrix X is given by

(A5)

(A6)

(A7)

N' '(R;JP) = N (R;c'c)5 . 5I1IL+0g XJ (I'L', 1L)N&(R;c', c) G (R;c')G (R;c), (A8)

and and

nN"(R;c'c) =f q "8'„(e;q)8'„(E;q), (A9} R =R
tel 3

1/2

YJ„(R), (A14)

2

Nz(R;c'c)= f q "8'„(E;q}8'„(E;q)j&(qR). (A10)
2772

4m

' 1/2

Y,„(q}. (A15)

The angular momentum coe(ficient X is given in (16).
Since the L operator acts only on R we write it a Likewise,

L = gL+L„, (A 1 1)
L„Y~M(R.) =&L (L +1)CMqM+„YLM+„(R) . (A16)

such that
Since L„ is a linear operator C, (R) becomes the sum of
three matrix elements over all channel components

L„e' =fi[R)&q]„e'q'' (A12) g2 2
CJ (R)= g g L'r'(R;JP) .AR, , 0

(A17}

(A13)
The first matrix element Lo is given by
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L(') '(R;JP)= L (L + 1 )N (R;c'c)5I (6L L+Q g Xg (I'L'; IL)N~(R;c'c) 6 (R;c')G (R;c), (A18)

where

Xi~(I'L'IL) =( —1)&L'(L'+ l )&L (L +1}L'LW(LLL'L'; 1X )X~JP(1'L';IL),

while for L
&

we get

L;'(R;JP)=—N'(R;c'c)t:- (I'L', IL)+= (IL;I'L')]R
2

+Q g Ng(R;c'c)[:-g (I'L', IL)+=g (IL;I'L')] 6 (R;c')G (R;c),

(A 19)

(A20)

where

and

(I'L', IL)=x'(/2 ( —1) +'I 'I L 'E 1
2

X')/L (L +1)EW(11LL;1L')W(l'IL'L;1J),

(
1)(I+I'+1)/2

(A218)

(A21b)

I' 1 K K 2 I L' 1 K' K' X L
(I'L', IL)=x "(/2X I'I ~ 'L 1 ~ k ~k

0 0 0 0 0 0 0 0 0 0 0 0
K, K'

J E L

X ( —1) +''(/L (L +1)Eg A W(11LL;1A)W( AL'LK', Xl ) I' K 1

A L' X A

(A228)

1 )
( I + I'+C. + ) ) /2 (A22b)

For L2 we obtain

RL2'(R; JP}=
4

N (R '&c'c)5(I5L L —Q g X~ (I'L';IL)N~(R;c'c)

N (R;c'c)b, (I'L', IL) Qg b~JP(I'L', I—L)N~2(R;c'c) GJ (R;c')GJP(R;c}, (A23)

where

1
L+L' I' 1 K I 1 K

(I'L', IL)=( —1)" '' I 'I L 'L ~~ K k'
0 0 0 0 0 0

L 1 E' L' 1 E''
X 0 0 0 0 0 0 E E 1

L 1 K'
(A24)

and
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I' 1 K
a"(I L'IL}=xI I L 'ES' g t'E'P'P'

0 0 0
K, K'
P, P'

I 1 K' L' 1 P L 1 P'

0 0 0 0 0 0 0 0 0

P 2 P' K' X K
X 0 0 0 0 0 0 g A 8'(PP'A I;XL)W(KK'I A;Xl')'. A

K' A I'

X 1 P L' ( —1)a+a'+

I L J
(A25a)

(
1)(I+I'+2)i2 (A25b)

Since at R =0 only the X =0 term in Lo is nonzero one

gets I'=I, L'=L, Xo (IL;IL)=(—1) L(L+1), and
N (c'c)=NO(0;c'c). For the Iso curve where 1=0 is

the only contributing state at R =0, one gets L =J and
P =( —1) . Therefore for QP=1 the standard centrifu-
gal barrier (R /JKR )J (J + 1) emerges from (A18) due to
the normalization condition (A8}. The L& term does not
contribute at R=O because, being 1=1', L =L', and
X =0, all 3-j s are zero. Likewise, L2 gives a zero contri-
bution at the origin due to cancellations of pairs of terms
in the first and second large parentheses of (A23). At
R = ~ all N& terms vanish and for similar reasons one
recovers a pure centrifugal barrier term of the type
(fi /AIR )J(J+1) in addition to a constant term C, (()0)
which can be shown to be

(A28)

P(r, R) =P„(r,R)+ lljs(r, R), (A29)

where

d3
g f 3 n&a, ( eq)[ 8, +Q( —I) 82]

(2m )

JM
Xy,L, '(qR), (A30)

is related to the expectation value of the asymptotic ki-
netic energy for the electronic motion.

Finally we use (34) to obtain C3 (R), which involves
derivatives of g with respect to R. First one writes

(( )= —'(( ——') (s q )s),At 2v
(A26) a, (e;q)= e„(e;q)I

BE
(

G(R;c}Be

where
I

is & is the asymptotic hydrogen wave function
and —,

' the value of I( given by (A24) with I'=1=0 and

L =L'=J. As shown below, this constant term together
with a similar one from C3(oo) cancels out the C2(00)
contribution. Therefore the method we propose leads to
the correct dissociation limit that one needs in very accu-
rate calculations of molecular systems where the heavy
particles have a different mass. ' For molecular energy
curves where at R =0 or ~ the dominant l is different
from zero one still obtains a centrifugal barrier term, but
the way it appears is not as transparent as in the case of
1=0, because both at R=O and (x), for 1&0 and J&0,
several L's contribute to the Lo matrix element with
different weights.

Next we calculate Cz (R) by using (Al) in (33). Since
the V, operator only acts on the plane wave in the vari-
able r, one may add and subtract e (R) to —(fi /2v)V,
to obtain

+e'„(.;q) G(R;c) (A31)

and

d3
g f n, a, (e;q}[8)+Q(—1} 82]v2, (2n}

JM
XylL, '(q &) . (A32)

and

8= e'q =i(q.R)e'~i R ~ i .R
aR

(A33)

(q.R)=q g Y)„(q)Y~)„(k) . (A34)

The derivatives of 8 are straightforward to calculate
since

Cz (R)= — e (R)+ g B(R;JP)G (R;c')

X G (R;c}, (A27)

Therefore

C3'(R}=&0~
I 0~ &+2&4~ I A &+&Ps I fs &,

(A35)

where B is given by (12) and (14), It is worth noting that
from (33)

where all the norms can be easily calculated using the
methods developed above, leading to integrals of the
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same type as those obtained for C& . The simplest of all
terms in (A35) is the first one,

(f„~g„)=g N (R;c'c)+AJAX~(I'L';IL)
C, C

T

(t('j„~ gtt ) = —,
' g N '(R;c'c):" (I'L', IL)

C, C

+Q g:-~ (I'L'; IL)N ~(R;c'c}
X

(A37)

&(N &(R;c'c)

(A36)

where N" and N & are given by (A9) and (A10), respec-
tively, after substituting 8'„.(E;q) by a, (e;q) and 8'„(E;q)
by a, (e;q),

where N" and N ~ are given by (A9) and (A10), respec-
tively, after substituting 8'„'(e;q) and 8'„(e;q) by a, (E;q)
and a, (e;q) as given in (A31). With careful program-
ming all these integrals may be done independently of the
values of G (R;c), Be/BR, and BG (R;c)/t)R, much
like in (AS). Nevertheless, to inake the notation as simple
as possible we wrote it in closed form. Likewise using
(A30) and (A32) —(A34) one gets

I. 1 L'
W ( I'IL 'L; 1J),

and

(
1)((+t'+()/2

l' 1 I
:- Jt, (I'L', IL)=x( —1) +'I 'l E'L

(} () (}

(A38a)

(A38b)

=I (I'L'IL}=x( 1) + I 'I L 'L / y g g '

K, K'

I' 2 E E 1 I L X E' E' 1 L'
0 0 0 0 0 0 0 0 0 0 0 0

L X K'

1 )((+I'+5+()/2

Finally, for the last term in (A35) we obtain

I hatt ~ hatt) = —,
' g N (R;c'c)h (I'L', IL) —Qg bj (I'L', IL)Ng(R;c'c) G (R;c')G (R;c),

C, C

(A39a)

(A39b)

(A40)

where N" and NJ are given by (A9) and (A10) and the b, 's by (A24) and (A25). Since all N&'s vanish at R ~ ao, and
Be/BR and t)G/BR go to zero as R —+ ee, at R = ee only a constant term in (Pit ~ Pit ) remains. For the iso curve, for
reasons similar to those pointed out above for C, (R), we get

112vC3(oo)= —— ls q ls43%, 2v
(A41)

Therefore C, ( ae )+C2( ae )+C3( ae ) =0, assuming one uses v instead of m in the appropriate places.

Permanent address: Centro de F&'sica Nuclear, Avenida do
Professor Gama Pinto 2, 16699 Lisboa, Codex, Portugal.
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