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Higher-order many-body perturbation-theory calculations of energy levels in cesium
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The question of which contributions to the energy levels of cesium must be included in many-

body perturbation theory to achieve accuracies of parts per thousand is addressed. To this end, we
evaluate second- and third-order correlation corrections to the energy levels of several states. When
these corrections are supplemented with two dominant classes of corrections from fourth and
higher order, the calculated energy of each of the states considered is brought to within a few parts
per thousand of the measured energy. Implications for calculations of transition amplitudes, in par-
ticular, amplitudes of parity-nonconserving transitions, are discussed.

Because of recent high-accuracy measurements of
parity-nonconserving (PNC) amplitudes in cesium, the
general question of the ability of atomic theory to ac-
count for the structure of this atom at the few-percent
level of accuracy has become of particular interest. The
present error in the measurement for the 6s ~7s PNC di-
pole amplitude in cesium is 2.5%, and this error can be
reduced to under 1%.' The study of PNC in cesium
yields valuable information about the structure of unified
theories of the weak and electromagnetic interactions, so
it is clearly of interest to identify methods capable of pre-
dicting properties of cesium with high accuracy. While a
variety of techniques can be employed to study atomic
structure, a particularly powerful and systematic ap-
proach is afforded by relativistic many-body perturbation
theory (MBPT). A recent application of MBPT to energy
levels and parity-conserving transitions in cesium and in
lighter alkali atoms has been given in Ref. 3, and the ex-
tension to PNC transitions is given in Ref. 4. Briefly, the
conclusions of Ref. 3 were that MBPT calculations car-
ried out through second order for energies and third or-
der for matrix elements differed from experiment at the
1% level for the former, and by up to 5% for the latter.
Since the ultimate goal of these calculations is to achieve
accuracies well under 1%, it is clear that higher orders in
perturbation theory must be considered. However, be-
cause the order-by-order implementation of MBPT be-
comes computationally unwieldy beyond third order, it is
vital to identify dominant classes of terms, and when
necessary to sum particular classes of corrections to
infinite order. It is the purpose of this paper to report
our experience with the behavior of MBPT for the calcu-
lation of valence electron ionization energies in cesium.
We have found, starting from a V ' Hartree-Fock
model, that although the inclusion of second-order
MBPT corrections provides dramatic improvement of the
lowest-order energies, reducing the error from roughly
10%%uo to 1%, the third-order correction fails to give any
further improvement. An iteration of the large second-
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FIG. 1. Brueckner-Goldstone graphs contributing to the
third-order energy. Exchange variants are suppressed, as are
the complex-conjugate graphs in (g) —(1).

order effect allows us to sum an infinite class of fourth-
and higher-order MBPT terms. The inclusion of these
terms together with another class of fourth-order terms
related to the second-order energy correction leads to a
dramatic improvement of the energies to within a few
tenths of a percent of the measured values. A detailed
description of the large-scale third-order computation
will be presented along with a description of the iterative
scheme used to determine the higher-order corrections.
We will discuss the results and their possible implications
for transition amplitude calculations.

The third-order MBPT formulas for valence electron
removal energies in one-valence electron atoms are
represented by the graphs of Figs. 1(a)—1(1). Additional
graphs which we would have to consider if we were not
starting our calculation from a V ' potential are not
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shown. The explicit expressions for the graphs of Figs.
1(a)—1(l) are as follows:
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Several conventions are assumed in the above formulas.
All core indices (a, b, c and d) and all excited state in-
dices (m, n, r, and s) are implicitly summed over; U

denotes the valence state. The symbol e„denotes a sum
f single-particle energie s +c, and g—g „,~, where g,b,d is the Coulomb matrix element,

g,b,d = f,(x)f, (x)1(&(y)gd(y) .
dx dy
x—y

(2)

Note that only one graph is shown for each term in Eqs.
(la) —(11), corresponding to g,~d ~g,&,d,'it should be em-
phasized that each graph has either one, three, or seven
partners that are not explicitly shown, though they are
evaluated in the following calculations. Finally, the nota-
tion c.c. refers to addition of complex-conjugate terms,
which are obtained graphically by reflecting Figs.
1(g)—1(1) about a horizontal axis, but give the same con-
tribution.

Because at this stage we are implementing MBPT in an
order-by-order manner, as opposed to using so-called
all-orders methods, the role of our third-order energy

calculation in the all-orders framework will now be dis-
cussed. All-orders methods are methods that sum impor-
tant classes of diagrams built up iteratively from low-
order diagrams. In higher order there are generally
terms that will be missed by any given all-orders scheme;
such terms can be evaluated individually. For one-
valence electron atoms, a powerful and accurate all-
orders method that can sum all terms associated with
both single and double excitations of core electrons is the
coupled-cluster method. The coupled-cluster method has
been applied to neutral lithium to obtain highly accurate
energies by Lindgren. This particular method picks up
the graphs 1(a), 1(b), 1(e), and 1(f), but omits graphs 1(c)
and 1(d) entirely. In addition, in the standard implemen-
tation, the graphs 1(g)—1(1) are also included, but the cor-
responding c.c. graphs are omitted. It is, however, possi-
ble to modify the coupled-cluster method to include both
these c.c. terms and graphs 1(c) and 1(d). In the follow-
ing we tabulate the third-order graphs individually, so
that our results can be combined with the coupled-cluster
methods if desired.

We have discussed the evaluation of third-order graphs
in considerable detail elsewhere. However, our previous
work was carried out on the light alkalis, and cesium
presents considerably greater numerical challenges, forc-
ing us to make certain approximations. Our experience
with the second-order energy shows that the deep core
states of cesium play a very small role in determining the
corrections to valence energies. For this reason, we left
the shells with principal quantum numbers n =1, 2, and
3 inert in the present third-order calculation, and allowed
the core summations to range over the 4s&/2, 4p &/2, 4p3/2,
4d3/2 4d5/2 s1/2 p1/2 and 5p3/2 core states only;
when this same restriction is applies to the second-order
energy it changes the value by less than 1%. Since our
calculation is carried out using 6nite basis set techniques,
the amount of computing required is strongly dependent
on the size of the basis set: if we were to use the same
basis set that we employed in our second-order calcula-
tion, which consisted of 40 states for each ~ value, we
would not have been able to carry out the third-order cal-
culation with the computing resources available to us.
Two devices permitted us to overcome this difficulty.
While the size n of the basis set was left relatively large
(n =32) for s, p, and d states (which dominate the calcu-
lation), for states of higher angular momentum a smaller
basis set (n =16) was used. The next approximation re-
lied on the fact that those states in our basis set which
represent high-energy continuum states lead to extremely
large energy denominators and relatively small overlap
integrals in the numerators of the MBPT formulas; these
terms therefore play a negligible role. This is particularly
true of the s, p, and d states, for which about one-half of
the spectrum could be neglected; for I ~ 2 this was less
true, so no truncation was made there. Thus the basis set
was effectively reduced to a manageable size of n =16.
The error introduced by these approximations in the
second-order energy and in certain third-order correc-
tions was tested and was found to be less than 1%. The
final approximation made was to restrict the number of
partial waves summed to five, instead of retaining the
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nine or ten used in the second-order calculation. We esti-

mate that the net eFect of all the approximations used in-
troduces an error of less than 3% in E' ' for s states and
6% for p states.

In this paper we also consider two classes of higher-
order corrections. Both of these corrections are expected
to be important, since they are related to iterations of the
large second-order energy diagrams. The dominant part
of the second-order term comes from the expression
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This expression can also, however, be thought of as the
first term in the following iterative scheme, which is a
form of the Bethe-Salpeter equation:
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It is straightforward to see that EF ' results from the first
iteration; because of its large contribution, it is clear that
higher-order terms will play a significant role. For this
reason we choose to evaluate the next iteration,

FIG. 3. (a) Iterated Brueckner (IBR) graphs formed by
chaining the second-order self-energies. (b) Graphical definition
of X(2)(s), defined in Eq. (6).
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which is represented in Fig. 2; when viewed together with
the second-order energy and the part of the third-order
energy associated with Fig. 1(f), it is seen that we are
evaluating ladder graphs with two, three, and four rungs.
The sum to all orders of this set of ladder graphs is of
central importance in nuclear physics, because of the
strong repulsive short-range forces between nucleons.
For the present calculation, however, this partial series
converges rapidly: for example, for the 6s energy in cesi-
um the contributions from E' ', EF ', and E~ ' are, re-
spectively, —0.01926, +0.0050, and —0.0010 a.u. Note
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the alternation in signs of this series, which follows from
the fact that c,„—c „ is a negative quantity. Although
we terminate the iteration at fourth order, it is possible to
sum this series to convergence. We plan to continue the
iteration in the framework of the much more complete
(and computationally demanding) coupled-cluster ap-
proach; work on this is now in progress.

The second set of fourth- and higher-order graphs in-
cluded in the present calculation is shown in Fig. 3. In
our scheme, we sum chains of second-order self energy-
units, which are defined by the relation

where i and j are arbitrary states, and where the core
state a, and the excited states m and n, are summed over
implicitly. With this definition, the second-order valence
ionization energy for a valence state U is the diagonal ma-
trix element of the self-energy operator:

E' '= {v
i

X' '(e.„)
i

v ) .

The chaining of the self-energy units is achieved by solv-

ing iteratively the following set of equations:
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FIG. 2. Brueckner-Goldstone graph for E'„', defined in Eq.
(5).

Thus 5c,' is equal to the second-order energy. On itera-
tion, one generates the subset of fourth- and higher-order
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TABLE II. Decomposition of E"' (atomic units).

State

E(3)
E(3)

B
(3)EC+D

E(»
E

E(3)
F

E(3)
E(3)

(3)EI+J
E(3)
E( )

L

6$ ] /2

0.000 24
—0.004 68
—0.000 14
—0.000 21

0.004 95
0.000 40
0.004 34
0.000 85

—0.000 43
0.000 31

6P ]/2

0.000 10
—0.001 89
—0.000 20
—0.000 11

0.001 82
0.000 11
0.001 69
0.000 21

—0.000 21
0.000 11

7$1/2

0.00006
—0.001 10
—0.000 04
—0.00005

0.001 20
0.000 10
0.001 04
0.000 21

—0.000 11
0.00008

FIG. 4. Example of two self-energies connected by a core
line. This is one of five possible time orderings.

terms depicted in Fig. 3. Note that the sum over states in

the lines connecting the self-energy units in Fig. 3 can in-

clude both core and excited states (but must exclude the
valence state v); correspondingly, i and j in Eq. (8b) refer
to all states, both core and excited. An example of a
MBPT diagram arising from a connection on a core line

is given in Fig. 4. Finally, the 5e(") in Eq. (8b) generate a

subset of so called fold-ed diagrams starting in sixth order.
For this second class of corrections we have iterated

the equation until convergence. The fourth-order contri-
bution for the 6s state was —0.0024 a.u. ; after conver-
gence, this result changed to —0.0027 a.u., making it
clear that there are significant contributions at the tenth
of a percent level from diagrams of order six and above.

The lowest order v
' Hartree-Fock and second-order

energy corrections have been discussed previously, and
we simply present them in the first two rows of Table I
for the three states considered here, namely, the 6s, &2,

6p, &2, and 7s&i2 states. In the third row the third-order

energy is given. It is of interest to consider the break-
down of the complicated expression for the third-order

energy, so in Table II the contributions of E„' ' —El ' are
shown. Note that we combine Figs. 1(c) and 1(d), and

Figs. 1(l) and 1(k). These graphs, which differ only by the
direction indicated in the closed loop, are individually

quite large, but almost precisely cancel. In the next row

we give E„' '. A feature of this class of diagram is that for
higher partial waves, the number of allowed channels
grows rapidly. This growth is particularly rapid in rela-
tivistic calculations because of the existence of two ~
values for each value of l. For this reason we were forced
to consider only three partial waves, truncating at l =2.
In addition, only the dominant 5p3/2 and 5p&i2 core
states were included. While this procedure for second-
and third-order calculations is good in 10%, we assign a
larger error of 20% to be conservative. In the fifth row
of the table we list the values of the iterated Brueckner
corrections E)BR

' defined by

E(4 ) g~[2]+g [3]+.. .

In the final two rows of the table, the sum of the theoreti-
cal contributions is compared to the experimental energy.

Perhaps the most striking result of this calculation is
the size of the contributions of third and higher order.
While the end result is in agreement with experiment at
the few tenths of a percent level, which is also the size of
our numerical uncertainties, this agreement arises from
cancellations of contributions of several percent. For ex-
ample, the 6s

& i2 energy differs from experiment by
+1.4% in magnitude after including the second-order
correction. However, if one then includes only the
third-order correction, the theoretical value would differ
from experiment by —2. 8%, a significantly less accurate
result. Only after the inclusion of the selected set of
fourth- and higher-order terms described above does the
situation improve. While it would be desirable to have a
more smoothly convergent perturbation expansion, it is a

TABLE I. MBPT contributions to valence energies of cesium (atomic units).

State

EHF
E(2)

E )

E(4)

EIBR
(4 . )

6$1/2

—0.127 37
—0.017 74

0.005 63(17)
—0.001 01(20)
—0.002 69(3)

6P] /2

—0.085 62
—0.006 91

0.001 63(10)
—0.000 38(8)
—0.001 10(3)

7$]/2

—0.055 19
—0.004 20

0.001 39{4)
—0.000 25(5)
—0.000 19

Etota]

Eexpt

—0.143 18(26)
—0.143 10

—0.092 38(13)
—0.092 17

—0.058 44(6)
—0.058 65
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well-known feature of the many-body problem that a
more natural expansion is one in terms of the number of
excited core electrons. The full implementation of a rel-
ativistic version of one of these schemes for a system the
size of cesium is an extremely-large-scale task. The role
of the present calculation in this framework is as follows.
By including E' ', EF ', E„' ', and E',BR ', we have picked
up the most important part of the contributions of double
excitations, and by carrying out a complete third-order
calculation we have included perturbatively a number of
terms that would be missed by an all-orders method trun-
cated at double excitations. While these contributions
are small, they play a significant role at the level of pre-
cision considered here. They can be automatically picked
up by all-orders methods involving triple excitations.
However, because of their relative smallness, it does not
seem worth the effort to implement these much more
computationally demanding programs. It is our opinion
that the approach most likely to lead to the next level of
accuracy, the hundredth of a percent level, is the follow-
ing. A complete all-orders method involving up to two
excitations should be set up with high-quality numerical
methods. In particular, as high a number of partial
waves and as large a basis set as possible should be used.
This will of necessity involve a large amount of computer
time, which we estimate to be on the order of tens of
hours of CRAY time. Any all-order method, as men-
tioned above, sums infinite classes of diagrams, but only a
subset of the diagrams in any given order, as some dia-
grams will in general be associated with excitations of a
higher order than used in the method. However, we have
already in third order identified individual contributions,
so that such terms can be added in to an all-orders
method. The next step is to extend the calculation to
fourth order. While a very large number of graphs are
present in this order, a great number of them are au-
tomatically accounted for by the all-orders methods. We
propose to evaluate the remaining graphs directly, in the
same way that we calculated E„' '. While we would ex-
pect these remaining graphs to be small, they will very
likely contribute at the hundredth of a percent level, and
should be included in the next stage of these precision
calculations. One could even imagine extending this
analysis to fifth order: however, at this level some au-
tomated scheme will certainly be necessary because of the
enormous number of graphs present. The evaluation of
the remaining fourth-order graphs is important for
another reason. A very grave danger always present in
the many-body problem comes from the fact that the per-
turbation expansion is complex, and contributions of rel-
atively high order are significant. This makes it possible,
in principle, to manipulate the calculation by simply in-
cluding terms until agreement with experiment is found,
and then stopping. For this reason it is vital to learn as
much as possible about the perturbation expansion to en-
sure that one is not missing large terms that cancel for

the property one is considering, but may not do so for a
property one wishes to predict. The best way to do this is
to carry out MBPT in an order-by-order manner.

One class of higher-order diagrams that has been
stressed recently by Dzuba et al. ' for thallium is the set
of polarization or ring graphs. In third order these are
represented by Figs. 1(a), 1(b), 1(g), and 1(h). We have
not included the fourth- and higher-order ring graphs in
this calculation. However, note that there is a strong
cancellation in third order between the individually large
contributions from Figs. 1(b) and 1(h). The good agree-
ment found with experiment in this calculation is an indi-
cation that the higher-order polarization corrections are
not as important for cesium as for thallium.

For the three states considered the Breit corrections to
the energy are well below the level of numerical uncer-
tainty quoted in Table I; we find these corrections to be
0.0000146, 0.0000342, and 0.0000049 a.u. for the 6s»2,
6p, &2, and 7s»z states, respectively. It should be
remarked that the relatively small size of these correc-
tions is a result of random-phase-approximation (RPA)
screening which reduces the Breit correction to the 6s»2
energy by an order of magnitude. The reduced mass and
mass-polarization corrections are of order 1X10 a.u.
and are therefore completely negligible at the present lev-
el of accuracy.

In conclusion, we have carried out a MBPT calculation
complete through third order, including two types of
higher-order corrections, for removal energies of valence
states of cesium. Agreement with experiment at the few
tenths of a percent level was found. The next stage of
this investigation is to include infinite sets of diagrams as-
sociated with all-order methods based on double excita-
tions, while calculating higher-order excitations perturba-
tively through fourth order. The principal reason for
carrying out high-accuracy calculations on cesium is,
however, for the prediction of PNC matrix elements.
From our investigations we would conclude that the
graphs considered here should be included at least as
external legs in any matrix element calculation: this same
procedure at second order is known to dramatically im-
prove agreement between theory and experiment for
parity-conserving matrix elements. Other kinds of
graphs will also enter that are less directly related to the
calculations of this paper. Once again, a direct im-
plementation of MBPT through successively higher or-
ders should allow for identification of the important
graphs.
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