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Nonlinear pattern and wave-number selection in convecting binary mixtures
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We investigate the transition from weakly nonlinear to nonlinear traveling-wave states. Pattern
selection due to a transition from convective to absolute instability conditions is found, in good

agreement with theory. While the linear properties depend on the (boundary-dependetit) thresh-

old of convection, the weakly nonlinear properties refer back to the threshold of an infinite sys-

tem.

Considerable efforts have recently been made to under-
stand and identify various spatio-temporal transitions
from an unstable state to a coherently oscillating or chaot-
ic state in numerous hydrodynamic flows. Oscillatory
convection in binary mixtures as well as a variety of
open-flow systems show a transition to spatially develop-
ing traveling waves (TW). For these systems a general-
ized Ginzburg-Landau (GGL) equation can be derived as
a simple model describing the nonlinear evolution of prop-
agating patterns

rp(a, +sa„)A - (I+tcp)eA+ (I+'tc, )gpss„'A

—g(1+ic2) )A ( A.

Here e is the system's control parameter [e.g. ,
e (R —R, )/R„where R is the Rayleigh number and R,
its threshold value], and rp and gp are the characteristic
time and length, respectively, s is the group velocity, and

g, co, c~, and c2 are real parameters. The complex ampli-
tude A(x, t) describes the spatio-temporal modulation of
the marginal waves.

Unlike stationary bifurcations where only an absolute
instability can exist, this type of system [with broken O(2)
symmetry] can exhibit both convected and absolute types
of instabilities. The difference between the two cases is a
relative one in the sense that it depends on the choice of
the reference frame in which the instability is considered.
In the case of an absolute instability the perturbation
grows in time at any fixed point in the system despite the
fact that the wave packet is displaced downstream. In the
case of a convective instability an initial perturbation may
be carried away sufficiently fast so that at the initial site
the perturbation decays to zero although in a moving
frame it grows. Depending on the interrelation between
the rate s/gp, at which a perturbation will be swept a dis-
tance gp downstream and the local growth rate rp ', con-
vected or absolute instability conditions will be satisfied.
The type of instability will, in turn, determine the type of
pattern selected by the system. In general, it was shown '
that for Eq. (1) the solution A -0 becomes convectively
unstable for 0 & e & e„and absolutely unstable for e & e„
where e, (srp/2(p) (1+c t ) '. The transition from

convected to absolutely unstable conditions, in the frame-
work of the GGL equation, occurs at s,* =2(1+c~ )'/
where s (srp/gp)e '/ is the nondimensional group ve-

locity. ' The selected wave number k* and frequency m*

behind the front are'

and

(I +c 2 ) I/2 ~ (1 + 2 ) I /2

(c) —c2) &p

to rp (cp ci)e,
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where k* and m* are the deviations from the critical
values k, and tap, respectively.

Cross"' used this idea of pattern translation to explain
the variety of one-dimensional (1D) TW patterns ob-
served in a finite container. He conjectured and showed

by numerical simulations of two coupled GGL for left and
right going TW, that for s & 2 the nature of the steady
solution in finite geometry cells changes from spatially
modulated TW (confined TW) to TW that have a saturat-
ed value along the entire cell length (full TW). Moreover,
for larger values of s*, spatially and temporally modulat-
ed TW can be observed such that most of the complicat-
ed experimental patterns of 1D TW in convecting
binary mixtures can be explained by this model.

Another success of the Cross theory is a complete
quantitative description of the dynamical and spatial
structure of the linear oscillatory transients in a convec-
tive binary mixture in a cell of finite lateral size. A result
of this model is a shift in the onset of the Hopf bifurcation
e, that is inversely proportional to the length of the con-
tainer L, and is due to the reflection of the TW at the la-
teral boundaries. Recent experiments quantitatively
confirm most of the theoretical predictions in the linear re-
gime' " as we11 as the sequence of nonlinear patterns
selected. Quantitative verification of the nonlinear
properties observed in numerical simulations of the model
and the influence of thermal boundary conditions at the
lateral walls on linear and nonlinear solutions have not
been performed to date. This is the subject of the paper
presented.
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In a binary fluid, the parameters which determine the
convective flow are the Rayleigh number R, which is the
nondimensional temperature difference AT across the
fluid layer, and the separation ratio y, which is a measure
of coupling between temperature and concentration gra-
dients induced by Soret effect. ' It is the sign and the
value of y that determine if the convective state is oscilla-
tory or stationary. For y(0 the concentration gradient
stabilizes the conduction state, as the imposed tempera-
ture gradient destabilizes it. Their competition gives rise
to a Hopf bifurcation at R,. ' Other relevant dimension-
less parameters are the Prandtl number P v/ir and Lewis
number X D/ir where v is the kinematic viscosity, D and
ir are the mass and thermal diffusivities, respectively.

Our measurements reveal the following basic features
of the nonlinear regime: (i) The value of the temperature
difference AT obtained by interpolation of convective
heat-transport measurements (Nusselt number N vs AT)
for the saturated TW branch till the intersection with the
N I axis, coincides with the threshold for oscillatory
convection in an infinite container. The absolute value of
the onset shift e, from AT due to the finite geometry of
the cell is in quantitative agreement with the theory. (ii)
We quantitatively confirm the criterion for the transition
from weakly nonlinear confined TW to full TW pattern at
c, in a wide range of y. (iii) The nonlinear properties of
the confined TW (heat transport and propagation veloci-
ty) are not altered when thermal boundary conditions at
the lateral walls are varied although the convection onset
is shifted. (iv) Due to boundary effects, the confined TW
branch is hidden for y) y (where y* is determined by
e, ~ e, ). (v) Selection of the average wave number k of
the confined TW branch is observed. The frequency of
confined TW decreases linearly with e.

Our experiments were done on ethanol-water mixtures
with weight concentrations ranging between 25.5-28.5%.
y ranges between -0.005 and -0.078, P= 18, and
L =0.01. We used cells constructed of both high-density
polyethylene (HDPE) with thermal conductivity k 5
mW/cmK and polypropylene (PP) (A, 1.2 mW/cmK)
with heights d 0.3 cm and 0.305 cm, respectively. A PP
cell with metal or HDPE strips glued to its endwalls was
also used in order to vary their thermal conductivity. Ex-
periments were performed with cells of aspect ratios I:4:I
where I 12 and 20. Our experimental apparatus is de-
scribed elsewhere. s

Typical heat-flow measurements for confined (lower)
and saturated TW (upper) branches for y- —0.031 are
presented in Fig. I together with a quadratic fit (solid
line) of N —I as a function of (AT —AT )/AT for the
heat transport by saturated TW, where AT is a free pa-
rameter (this fit corresponds to a fifth-order amplitude
equation). We found that in a wide range of y the fit
gives values of h, T which coincide with the onset value
for an infinite system as predicted by linear stability
analysis. ' We conjecture that hT corresponds to the
critical-temperature difference for the onset of the oscilla-
tory instability in an infinite container. The onset shift e,
predicted by Cross is given by e, —In~r(st/L, ),
where r is the reAection coefticient of TW at the lateral
walls. Assuming r to be independent" of y and depend-
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FIG. 1. N —1 as a function of hT for y —0.031. Solid line
is a nonlinear fit to the data. Circles, confined TW; squares, full
TW. In the inset the ratio of e,/e, &,„~ti as a function of y is

presented.

ing only on the ratio A, ~g//AflgjQ (r 0.094, 0.15, 0.22, for
metal, HDPE, and PP, respectively, in reasonable agree-
ment with the theoretically predicted values), we use its
value determined by a particular set of data to compare e,
with e, t,„~&~—= (AT, —AT )/AT (where AT, is the exper-
imentally measured critical temperature difference across
the cell) in the inset of Fig. 1. (The points without error
bars are obtained by fitting relatively few data points so
that the error bars are large). The good agreement be-
tween experiment and theory thereby supports our conjec-
ture on the role of AT .

The influence of different thermal boundary conditions
at lateral walls on linear and nonlinear behavior of the os-
cillatory convection is demonstrated in Fig. 2(a). Heat-
flow measurements for three cells constructed from PP
with PP, HDPE, and metal end walls at the same value of
y —0.058 are presented on an N —I vs AT plot. We
observed the following basic features: (a) Varying the
boundary conditions at the lateral walls from poor (PP) to
good (metal) conductors shifts the oscillatory instability
onset due to the variation of the reflection coefficient. The
range of the confined TW branch remains unchanged by
increasing the hysteretic region. The experimental values
of the shift are in quantitative agreement with the theory.
(b) The heat transport of the nonlinear TW remains un-
changed for different lateral boundaries, and the transi-
tion to the next nonlinear state occurs at the same value
AT, . (c) The full TW branch does not exist for highly
conductive boundaries. This may be due to a pinning of
the TW at the wall. The stationary convection branch for
the cell with the Iow-A, (PP) and medium-A, (HPDE) walls
coincide with that of the metal-walled cell until losing sta-
bility to the full TW branch at the same point. The sta-
tionary convection branch for the cell with metal walls ex-
tends down to the vicinity of AT . After losing stability
at a saddle node the system returns to approximately
AT . We would like to emphasize here that the station-
ary branch definitely differs from the branch correspond-
ing to full TW as seen from Fig. 2(a).
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FIG. 4. Region of existence of weakly nonlinear TW in the
e-y plane for I" 12 and boundary conditions using poor and
good conductors.
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FIG. 2. (a) N —1 measurements as a function of hT for

y —0.058 for cells with different lateral walls (squares, PP;
diamonds, HDPE; circles, metal walls; open symbols, confined
TW; solid symbols, stationary convection; triangles, full TW for
PP walls; crosses, full TW for HDPE walls). (b) Frequency ra-
tio co/coo as a function of e for confined TW at y —0.058.
mp 4.9 is the neutral frequency.

Figure 2(b) shows the dependence of the frequency ro of
the confined TW on hT for the same values of parameters
as in Fig. 2(a). We see that the frequencies along the
confined branch for the three sets of data are identical.
We obtain for the slope 8ro/8o a value of 10.87roo which is
about order of magnitude larger than predicted by Eq. (3)
at y —0.058. Thus we observe that for weakly non-
linear TW both the frequencies and heat transport are

unaffected by variations in lateral boundary conditions.
This conclusion is also supported by experiments per-
formed in cells made of HDPE having different aspect ra-
tios for the same value of y.

In a previous publication (Moses, Fineberg, and Stein-
berg ) we reported preliminary results on the experimen-
tal test of the criterion s, , for the transition from confined
to full TW. Here we present quantitative verification of
this prediction. The experimental results in the range of y
between -0.005 and -0.078 are presented in Fig. 3. The
experimental value for s, at which the transition occurs is
independent of y as predicted and is equal to 1.57+ 0.07.
The parameter go which appears in formula for s was
taken from theoretical estimates. ' Values for io are the
result of interpolation of our experimental measurements,
and o, was obtained using the experimental values AT,
and AT . We used the value of s in the linear regime' as
required by marginal stability. Since the observed bifur-
cation to confined TW is subcritical unlike the supercriti-
cal one assumed in Eq. (1),one cannot expect exact quan-
titative agreement with the value s, predicted but the ex-
istence of a sharp selection criterion is indeed apparent.

As an extension of the ideas presented, we find that the
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FIG. 3. Nondimensional group velocity of TW at transition
from confined to full TW, s&*, as a function of y. A typical error
bar is shown.
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FIG. 5. Dependence of average k/k, as a function of e at
—0.058, I 20, typical error bar shown.
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region of the e-y plane in which the confined TW branch
is observed can be limited by lateral boundary eH'ects. Al-
though the transition to full TW e& is solely a function of
y, the onset shift e, is dependent on both iiv and the lateral
boundary conditions [Fig. 2(a)]. Therefore, for given
boundary conditions, a value y exists for which e, e, .
For values of e, & e& the convection onset will occur in the
region where the confined TW branch is already unstable.
The transition will then be to a higher branch. Since the
saddle node of higher branches in the region of the
codimension-2 point extend below that of the confined
branch, this branch may be entirely hidden. Figure 4
shows theoretical calculations of both e, and e, for poor
(PP) and good (HPDE) conductors for aspect ratio I 12
together with the experimental data. The values iirpp and
IyHDpE shown (arrows in Fig. 4) are the least negative
values of lp for which confined TW were nor observed ex-
perimentally for PP and HDPE walled cells (for I 12),
respectively. These points are in remarkably good agree-
ment with the values of y for which e, e& as seen from
the graph.

Another possible consequence of a convected instability
condition is the experimentally observed wave-number
selection on the confined TW branch. The selection in
this dynamical situation may be due to the same mecha-
nism as in the case of vortex-front propagation in
Rayleigh-Benard convection. "' In Fig. 5 we present
the average value of the wave number k/k, as a function
of e (hT —hT, (gxpt))/BT, (gxpt) along the confined TW
branch together with a fit (solid line) of the data to
k/k, —1 (0.405+'0.03)e' g

' (k, 2.98~0.04 is the
critical value of the wave number obtained from the fit).
Using c2 —5.6 (Ref. 16) and c~ —0.049 (Ref. 13) one
finds from (2) that k/k, —1 0.28e'i go '. Thus, even
though expressions (2) and (3) pred'ct the observed e
dependence, we do not find quantitative agreement with
the theory.
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