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Mean-field exponents for self-organized critical phenomena
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The mean-field critical exponents, ~= —,tr = 2, y =P= 1, etc. , for the self-organized critical state

are derived viewing the self-organized critical state as a critical branching process.

Recently, Bak et al. ' described a critical phenomenon,
occurring in a class of dissipative coupled systems,
dynamically triggered by temporal fluctuations. One ex-
ample is a sand pile, where sand is added randomly. The
sand pile is "stable" if the slope everywhere is less than or
equal to a critical slope, and the dynamically stationary
state is obtained at the "critical" point, where the growth
of the pile exactly balances the creation of avalanches,
i.e., where the sand added equals the sand sliding off the
pile. Since this state is an attractor of an intrinsic dynam-
ics, it is denoted a self organiz-ed critical state. The self-
organized critical state has power-law distributions for
the avalanches, both in lifetime and size.

In this paper the self-organized critical state is de-
scribed by a critical branching process. From this picture
the "mean-field" exponents for the self-organized critical
state emerge naturally. To be specific, consider the
branching process shown in Fig. 1 by which in each "gen-
eration" an individual is replaced by zero, one, or two
descendants, and denote the corresponding probabilities
by C0, C&, and C2. From one generation to the next, the
number of individuals in average increases by a factor
C, +2C2. At criticality, where the "family" barely sur-
vives,

Co=C2 =(1 C] )/2

C (x)=Co+ C,x + Czx (2)

is introduced. The probability D(s) that a branching
process creates a tree with exactly s "individuals" is for
large s,

e(+c,/c, )
D(s)= a 's'

4m C2
(3a)

where v= —,
' and

+Co�/C2

e(+c,/c, )
(3b)

equals 1 at criticality.
Close to criticality, i.e., for

I Co —C2
I

&&Co, expan-
sion of Eq. (3b) yields

in sufficient high-dimensional space the overlap of these
processes will reduce to finite times, and the scaling ex-
ponents will not be influenced. Assuming the direction of
this triggering to be random, the critical dimension is
D =4. Above this dimension the scaling exponents can
be derived from a single branching process.

To extract the critical exponents r, o, y, P, etc. , ' the
generating function

The view that a self-organized state can be regarded as
a critical branching process allows a determination of
mean-field exponents. In general, one branching process
in a "sand-pile" model may trigger another. However,

a =1+ (Co —C2)
1

0

Since a '= 1 —(a —1)s, the cutoff s, in size s is

s, " I Co —C2 I

(4)

where cr = —,'. From Eqs. (3a) and (5) the critical exponent

y for the "susceptibility"

X= g sD (s) oc
I Co —C2

I

is determined to be y =(3 r)/o = l. A—lso, the critical
exponent P for survival or "overflow" when Cz ~ Co,

j= 1 —g D (s) ~ (C2 —Co )~

FIG. 1. Branching process describing the mean-field dynam-
ics of the "sand pile. "

is obtained to be P=(r 2) /tr = l-.
The lifetime distribution D(t) can be calculated as

well, assuming that the lifetime is related to the number
of generations I of the tree by random walk, i.e., t ~ I',
where z=2. The probability q(1) that a branching pro-
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cess stops at or prior to the generation l is given by re-
currence,

q (1)= C (q (1 —1 ) ) . (8)

At criticality the fixed point x =1 of C(x) is barely
stable; the derivative C'(x') =1. By expansion, for large
l,

q (1)=q (1 —1)+Co[q (1 —1)—1]

The probability D(l) that a process stops exactly at the
generation l is

x ' =Co/C2 of C (x) [Eq. (8)]. Consequently,

j =(Cz —Co)/C2, and P=1 as found by summation
above.

In conclusion, the theory of branching processes has
been utilized to understand the mean-field behavior of
self-organized critical phenomena. From this we can also
understand how the dimensionality influences on the ac-
tual values of the exponents; for example, the overlap of
branching processes decreases the value of v that accord-
ingly is smaller in two dimensions than in three. Finally,
the picture predicts an upper critical dimension D=4,
above which the mean-field exponents are exact.

D (1)=q (1)—q (1 —1 ) =q'(1) =Co [q (1)—1] (10)

Thus q(1)=1—(Col) ' and

where /=1. Notice that the probability 1 —j of eventual
extinction when C2 & Co is given by the stable fixed point
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