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Causality in the Coulomb gauge: A direct proof
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A direct calculation of causality behavior in Coulomb-gauge solutions to the Maxwell equations
is given, with an arbitrary time-dependent source.

V E=p/6,
V B=O,

VXB=p(J+eE),
VxE= —B.

(la)

(lb)

(lc)

(ld)

In the Coulomb gauge, the new potentials A and P are

introduced so that

E= —VP —A

B=VX A,
V A=O.

(2a)

(2b)

(2c)

It is immediately obvious that P satisfies Poisson's equa-

tion, since from the Coulomb-gauge restriction (2c) and

(la)

The Coulomb gauge is commonly used in quantum
electrodynamics owing to the simple quantization
rules. ' The results should be equivalent to Lorentz-
gauge calculations unless gauge-dependent approxima-
tions are used. However, an obvious property of
Lorentz-gauge calculations is that all solutions for fields
and potentials can be expressed in terms of causal propa-
gators. This is not the case in the Coulomb gauge, as the
scalar potential is acausal. In fact, the vector potential is
also acausal in the Coulomb gauge. It has an instantane-
ously propagating part which is often overlooked in con-
ventional interpretations of the solutions.

We show in a direct calculation how these acausal po-
tentials are able to generate causal E and B fields. An
earlier calculation demonstrates this equivalence in the
case of a sinusoidally varying source. We note that it is
difficult to distinguish advanced from retarded solutions
with this type of source. An inverse Fourier transform is
required to treat a nonsinusoidal current, with corre-
sponding problems in proving the existence of such trans-
forms. Our much simpler proof is valid for an arbitrary,
bounded, time-varying current source. In addition, we
are able to clearly identify the terms responsible for the
apparently acausal behavior.

The proof proceeds from the usual Maxwell equations,
with

V P= —p/e . (3)

Solving, with boundary conditions vanishing ws

[r/ —+00,

(4)

p c t —t' — r —r'
A(x) =

4n. /r —r'/

X[J(x')—eVP(x')]d x'+ AH(x) . (7)

Our notation of VP implies partial diff'erentiation rela-
tive to both arguments. Clearly, the integral must in-
clude P evaluated at positions for which r=r', and hence
t=t'. However, P is acausal, as it depends instantane-
ously on changes in the charge density at distant loca-
tions from the location where P is evaluated. Thus A is
also acausal as it is a function of a source term which in-
cludes P. This point is often ignored in elementary treat-
ments of the Coulomb gauge. Note that (J—eVP) is a
transverse field, since by Eq. (3) and charge conservation

V (J eVttt)=V .J+—p=O .

We next wish to calculate the physical fields of the po-
tentials in Eqs. (4) and (7). It is simplest to evaluate the B
field initially. Dropping the homogeneous term,

B(x)= V, Xp 5(c[t—t'] —
~

r —r'
~

)

4~ r —r'

X[J(x')—@VS(x)]d x' .

Here we have used the notation x=(r, t ). This solution is
acausal: P depends on p without retardation. Next, from
(lc),

VX(VX A)=p(J —e(VQ+ A)) .

Applying the Coulomb-gauge equation again, we find

V A —A@A= —JMJ+p, eVP .

Solving with outgoing wave boundary conditions and a
homogeneous term AH(x),
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Hence, on partial integration with respect to r',

(9b)

Here we have used the fact that the term in braces is a
function of (r —r') to exchange differentiation in r and r'.
The surface terms that occur in partial integration vanish
provided J and p are bounded, since VP-1/IrI at
large

I
r I. The term in P vanishes on taking the curl of a

gradient. Thus only causal terms remain in the solution
for the B field, even though it is obtained from an ap-
parently acausal vector potential.

The E field must satisfy Eq. (lc), which imples that the
solution can be written as

(10)

This expresses the E field in terms of its initial value, to-
gether with causal fields evaluated at the same point and
earlier times only. Thus we have demonstrated the

causal behavior of the E field as well, so that each of the
physical fields is causal.

We note that our arguments are applicable to both
quantum and classical operator equations. In addition,
they hold for either advanced or retarded solutions if the
sign of the time arguments is reversed.

While the use of Coulomb gauge techniques is relative-
ly widespread, the fact that both the potentials have
acausal behavior is often ignored. These must always be
combined to obtain causal physical behavior. That gauge
transformations can alter the apparent causality proper-
ties of the potentials is a universal property of gauge field
theories of all types. In fact there is never any guarantee
of causality properties of the potentials, only of the ob-
served fields. The usual procedure of defining causal
Green's functions in terms of the potentials is only
correct if it produces the correct causal behavior in the
observables. This appears to be relevant to such ques-
tions as photon localization, a topic of much current in-
terest, and possibly to lattice gauge theory as well.

One of use (P.D.D.) wishes to acknowledge useful dis-
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