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A constrained least-squares fit procedure wherein the integral f [p(r)—po(r)]*dr is minimized

[po(r) is the reference near—Hartree-Fock (NHF) electron density distribution and p(r) is the refined
one obtained from a single Slater determinant] has been developed. The constraints applied are the
exact theoretical {p?) and (r?) expectation values. These expectation values are expected to tailor
the electron density around the nuclear and tail regions, respectively. The procedure has been ap-
plied to lithium and beryllium atoms as test cases. Nearly all the (7") and {p") forn=—2, —1, 1,
3, 4, and 5) expectation values have been improved with use of this procedure. The sacrifice in the
electronic energy, in comparison to the corresponding NHF one, is about 0.02% in both cases.

I. INTRODUCTION

The Hartree-Fock (HF) method has been applied suc-
cessfully to a variety of quantum-chemical problems dur-
ing the last 40 years or so. The application of this
method, which provides a standard benchmark in
quantum-chemical literature, to fairly large systems of
atoms and molecules has become feasible due to the ad-
vent of powerful computers. However, computationally
or conceptually more complicated methods such as
configuration-interaction (CI), multiconfiguration self-
consistent-field (MCSCF), many-body perturbation
theory (MBPT), or the coupled-cluster method, have to
be resorted to for obtaining highly accurate wave func-
tions. The density functional method which employs the
electron density as a basic variable has, of late, become
quite popular for solutions of atomic-, molecular-, and
solid-state problems. However, here one loses the simpli-
city associated with a single Slater-determinantal wave
function also. In this light, Massa and others' ~* have re-
cently developed a novel method to estimate the ‘“wave
function” of a system. Using experimental data of x-ray
diffraction pattern, the wave functions of beryllium atom,
beryllium metal, and the H, molecule in the form of a
Slater determinant has been obtained by them.!~*. The
corresponding electron density naturally satisfies the con-
dition of N representability, i.e., there exists at least one
antisymmetric N-electron wave function giving rise to the
given electron density. The computation of other expec-
tation values is readily possible within this method. Let
F (k) be the experimental x-ray structure factor, and
F_, (k) the calculated one [F (k) is the fourier transform
of electron density]. In the method proposed in Refs.
1-4, the sum 3, [F (k) —F_,(k)]* is minimized by the
least-squares method (note that the least-squares method
was first used by Stewart’® to obtain a Gaussian basis set
for hydrogen atom). The above difference is minimized
by varying the matrix elements P;; of the calculated dis-
tribution F,(k), i.e.,

Fey(k)=3 P; [ W,(n)¥(r)e™"dr . (1)
hj

Here, P;; are the elements of the charge density-bond or-
der matrix and they are varied subject to the constraint
that they form a matrix which is normalized, Hermitian,
and idempotent.

The advantage of the above procedure is that the wave
function is still a single Slater-determinant, which is a
cornerstone of the HF approximation. Although the HF
wave function, by definition, gives the best value for the
total energy offered by single-determinantal functions,
“too much emphasis has been placed on total energy for
assessing the quality of a wave function in the litera-
ture.”* Massa and Frishberg!'® and Massa* have shown
that the x-ray fitted wave function gives better results
than the HF wave function for most of the expectation
values, with only a little sacrifice in the total energy. The
drawback of this method is that it requires entire experi-
mental data for F(k) as the input. This need is obviated
in the method proposed in the present work (see Sec. II).

Yet another simple model has been developed recently
by Gadre and Gejji*’ for refinement of a three-
dimensional probability distribution. If F(x) is a given
distribution, a refined distribution H(x) is to be found
which is “close” to the original distribution. Let

H(x)=F(x)G(x), ()

where G (x) is a multiplicative function determined by
minimizing the integral f [G (x)—1]%dx, subject to the
constraints

[ H(x)dx=N (3)
and
fH(x)xzdx=(x2) , (4)

where N is the number of electrons and (x2) is the
second moment. A standard variational treatment leads
to the solution

G(x)=1+F(x)(A4pux?), (5)

where A and p are the respective Lagrange multipliers.
The results obtained by them’ for beryllium through
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neon atoms were found to be fairly accurate, compared to
either experimental or best theoretical ones. The advan-
tage of the above procedure is that it is a relatively simple
procedure involving linear equations alone for refining
any given probability distribution. The drawback is that
the refined distribution could become negative in some re-
gion® and the weightages which can be used are not
necessarily unique.

In the present work, the authors have used a combina-
tion of the above two procedures to refine a given deter-
minental wave function. The integral [[p(r)—py(r)]’dr
is minimized [p(r) and py(r) are, respectively, the refined
and starting density distributions] subject to the second-
moment constraints. The procedure is discussed in detail
in Sec. II.

II. PROCEDURE

In this work the starting wave function is refined using
a constrained least-squares procedure. The starting wave
functions used were those of Huzinaga,’ viz., 10G (ten-
Gaussian) basis-set for beryllium and 9G basis-set for
lithium. The integral

K=f[p(r)—p0(r)]2dr (6)

is minimized where pj, is the starting electron density and
p is the refined one.

The constraints employed are those of experimental
(r?) and (p?) expectation values since the former expec-
tation value is expected to refine the tail of the Gaussian
in position space and the latter is expected to improve the
Gaussian near the nucleus. The parameters were opti-
mized subject to orthonormality, ensuring that the result-
ing wave function is still a single Slater determinant.
Thus this work represents a combination of the above
outlined procedures.">®’ The parameters, viz., the
linear coefficients as well as exponents, were varied within
+10% of their original values.” The optimization was
carried out by employing subroutine STEPIT, '° which is a
general optimization routine which finds local minima of
a real function of several variables.

For Be, Bunge’s'! Cl-theoretical {r2) and {(p?) con-
straints were used, and for Li, Banyard’s]2 ( p2> (experi-
mental) and Gupta and Boyd’s'? (theoretical) values were
used as constraints. From the optimized set of parame-
ters, {r") and {p") (where n = —2,—1,1,2,3,4,5) expec-
tation values were calculated. Then p(r) (density in posi-
tion space) and y(p) (density in momentum space) were
computed using the same set of parameters. The results
and comparison with literature values are presented in
Sec. III.

III. RESULTS AND DISCUSSION

Table I compares the (r") and (p") expectation
values computed with the refined distribution and those
computed with the original Huzinaga’ 9G basis set for
lithium. In Table II a similar comparison of expectation
values of the beryllium atom using the refined distribu-
tion and Huzinaga’s’ 10G basis set is presented. Table II

TABLE I. Expectation values for the Li atom 9G basis sets
(all values in a.u.).

Expectation Huzinaga® Refined®

values 9G 9G Correlated®
(r-2) 30.146 30.244 30.246
(r-1) 5.715 5.733 5.718
p(0) 13.039 13.154 13.867
(r) 5.018 4.994 4.994
(r?) 18.601 18.372 18.372
(r?) 94.27 92.16 92.44
(r*) 559.9 540.6 545.8
(r’) 11171.1 10752.2
(p~2) 26.12 25.65
(p™1 5.166 5.128 5.149
y(0) 8.103 7.973
(p) 4.905 4.925
(p?) 14.862 14.956 14.956
(p*) 70.84 71.16
(p*) 592.4 587.2
(1/r;) 2.281 2.525 2.199
Energy —7.4323 —17.4317 —7.4780

*Values computed from Huzinaga’s 9G (nine-Gaussian) basis set
(Ref. 9).

®Values computed in present work.

‘See Ref. 12.

also displays the expectation values computed by Frish-
berg* and Bunge.!!

From Table I it is clear that most of the properties ob-
tained in the present work have improved; for example,
(r=?%) and (r) expectation values of present basis are
nearly the same as the correlated one, typical deviations
from the latter ones being less than 0.01%.

Further, it will be noted that the (r*) and (r*) expec-
tation values have improved dramatically. All the prop-
erties for the Li atom in coordinate space examined in the
present study, except for {(r~!'), have improved. The
wave function obtained using Huzinaga’s basis is compa-
rable to the NHF wave function, but the wave function
obtained by constraining (r?) and (p?) expectation
values to the exact values is closer to the exact wave func-
tion, and the loss in energy is less than 0.01%, with
respect to the Huzinaga 9G basis, which is insignificant.

In the case of the beryllium atom, as is shown in Table
I, if one goes through all {(r") properties, the same
trends as in lithium are seen. The improvement is espe-
cially remarkable in {r3), (r*), and (r>) which clearly
indicates that the refined wave function mimics the exact
one more closely than any other NHF quality wave func-
tions in the literature. Here also the loss in energy is a
mere 0.02%. On comparison with all {(r") expectation
values, the present electron density distribution is found
to be comparable to the value of Frishberg* in the tail re-
gion, as reflected by the (r®), (r*), and (r*) expecta-
tion values.

The (p") expectation values for Be in Table II are
self-explanatory of the success of the above method. The
{p) expectation value is closer to the correlated one and
(p3) is nearly identical to the respective correlated mo-



38 BRIEF REPORTS 489

TABLE II. Expectation values for the Be atom 10G basis set (all values in a.u.).

Expectation Huzinaga® Refined®

values 10G Frishberg® 10G Correlated?
(r-2) 57.56 57.63 57.49 57.59
(r=1 8.408 8.425 8.450 8.425
p(0) 34.082 33.612
(r) 6.126 5.988 5.963 5.978
(r?) 17.28 16.32 16.28 16.28
(r®) 62.76 57.25 56.95
(r*) 266.6 231.6 235.7 233.1
(r’) 1283.7 1065.5 1102.0 1085.96
(p~?) 24.86 23.40
(p~1 6.291 6.114
y(0) 5.7067 5217
(p) 7.435 7.507 7.529¢
(p?) 29.144 29.19 29.33 29.33
(p*) 185.4 184.8 186.24°
(p*) 2091.5 2165.5 2050.3 2029.1°
(1/r;) 4.489 4.538 4.566 4.380
Energy —14.572 —14.572 —14.569 —14.667
*Values computed from Huzinaga’s 10G basis set (Ref. 9).
"See Ref. 4.
“Values computed in the present work.
dSee Ref. 11.

“Values computed by integrating appropriately weighted difference of correlated and NHF Compton
profiles (Ref. 14). The value of this integral was added to the value of {p")xyr. However, (p*) es-
timated this way is rather unreliable due to the inadequacy of the available J(g) data in the high-q re-

gion.

ment. The (p ~!) expectation value is also in the correct
direction in comparison with the correlated value.

An interesting observation in the case of the lithium
atom is that the values of p(0), the density at r =0 in
coordinate space, has also improved. Hence it can be
concluded that the entire distribution has been generally
improved with a negligible loss in energy.

Thus, here is a novel method of generating a property-
oriented wave function, using just two experimentally
measurable quantities, viz., the second moments {r?)
and {(p?). It yields almost all properties better than the
currently available NHF ones in the literature, at a loss
of less than 0.02% in the energy. The present method en-
sures that the electron densities in both the spaces are al-
ways non-negative and thus remedies a drawback of the

earlier refinement procedure.® The present procedure is
expected to be particularly useful for the generation of
molecular Gaussian basis sets. The results in the present
study point towards a wider scope and better applicabili-
ty of this method.
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