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The topological properties of cubic structures which have been proposed as models for the
cholesteric blue phases (BP) are considered. When the space of the order parameter is restricted to
the standard one for biaxial nematics [SO(3)/D,] then, as a consequence of the cubic symmetry,
these structures must have disclinations. The usual classification scheme, wherein defect lines are
characterized by the conjugacy classes of the fundamental group appropriate to a biaxial system, is
used; some exceptions are also noted. For each of the three groups studied [body-centered-cubic
0° (I432) and O°® (14,32), and simple-cubic O? (P4,32)] two aspects are considered: general sym-
metry constraints on disclinations and the topological properties of equilibrium order-parameter
distributions as found from Landau-theory calculations. For O° and 02, there are two nonequiva-
lent symmetry axes upon which there must be disclinations. When they are characterized by a uni-
axial order parameter, one must be uniaxial positive and the other uniaxial negative in order for the
topology to be consistent with the space-group symmetries. This is not the case for O® where only
one type of defect line, located on the threefold axes, is topologically required. The order-parameter
fields obtained from Landau-free-energy minimization have, except in the case of O°, additional
disclinations. In particular, the three structures described by the O® space group are found to have
distinctly different networks of defect lines. These, as well as the additional disclination found in
the O? structure, are examined and their group structures were determined. Finally, some open
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questions and directions for future work are examined.

I. INTRODUCTION

In the past decade, it has become clear that topological
concepts provide a useful approach to the classification
and study of defects in ordered media. Several re-
views' ~3 dealing with the application of algebraic topolo-
gy to condensed-matter physics have appeared; standard
examples include uniaxial and biaxial liquid crystals and
the phases of superfluid helium.

Simultaneously, the unusual blue phases (BP) which
appear in cholesteric liquid crystals have been intensively
investigated.* Theoretically, the analysis of these phases
and their properties, particularly via the Landau theory
of phase transitions,’ has been extremely successful; mod-
el calculations are in accord with a wide range of experi-
mental observations.

Our objective in this paper is to explore topological
features of the cholesteric BP. We shall concentrate on
three space groups: body-centered (bcc) O° (1432) and
03 (14,32), and simple-cubic (sc) O? (P4,32). The latter
two are believed*> to characterize the structures of the
experimentally observed phases BP I and BP II, respec-
tively.

Thermotropic nematics and cholesterics are composed
of anisotropic (in most cases, rodlike) molecules which
exhibit orientational (not translational) order below a
critical temperature.® Macroscopically, this order mani-
fests itself as an anisotropy in the material’s second-order
tensor properties, e.g., the dielectric and diamagnetic ten-
sors. Such a tensor can therefore be used to construct an
order parameter which describes quantitatively the orien-
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tationally ordered phase or phases. A suitable choice is
the anisotropic part of the dielectric tensor

€;(x)=€f(x)— 1 Tr(e!)3; . (1)
This 3X3 symmetric traceless tensor vanishes in the
disordered phase, where all the nonvanishing elements of
€? are equal and located on the tensor’s main diagonal. It
is nonzero, however, for any orientationally ordered
phase, such as a uniaxial or biaxial nematic, the hel-
icoidal cholesteric, or any of the cholesteric BP.

We therefore consider in this paper the topological
properties associated with a tensor order parameter €;;(x)
appropriate to the cubic cholesteric BP. To begin, we re-
view some well-known results for the nematic and
cholesteric (helicoidal) phases, showing where our ap-
proach makes contact with them. We then consider the
three cubic space groups which have been put forward®
as characterizing the symmetry of cholesteric BP struc-
tures. For each, we determine the constraints (if any) im-
posed on the tensor order parameter by the particular
space-group symmetry. These constraints will be shown
to have topological consequences when the order-
parameter space is also constrained.

For each of these space groups, we also consider the
order-parameter distributions associated with local mini-
ma of the free energy, as obtained from the Landau
theory of cholesterics.>”® Within this framework, the
free-energy density of a system is expressed as a function-
al of the order parameter and its spatial derivatives. In
many cases of interest, the physically relevant parameters
in such an expression may be limited to those required to
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define the phase diagram. Examples are temperature and
applied field for the case of nematics and temperature
and chirality or, more generally, temperature, chirality,
and applied field for the case of cholesterics. By minimiz-
ing the free energy with respect to the order parameter,
we obtain, in principle, both the equilibrium order pa-
rameter distribution and the thermodynamic phase dia-
gram. The latter, in this case, is universal.> "%

In practice, the global minimization of any realistic
free-energy functional for arbitrary values of the parame-
ters is impossible. The approach taken, therefore, has
been to consider, individually, possible high-symmetry
structures for the cholesteric BP.>"® As noted, three
space groups have been considered as possible structures
for the cubic BP. For each of these, an appropriate order
parameter was constructed as a linear combination of a
limited number of appropriate spatial harmonics. The
Fourier amplitudes were then determined by minimizing
the associated free energy and a theoretical phase dia-
gram was obtained by comparing the minimized free en-
ergies for the cubic, helicoidal, and disordered phases at
each point.”® This approach yielded order parameter
fields for each of the possible BP structures, whose topo-
logical character will be examined by us here.

In the final section, we summarize our results and con-
sider their implications. Some open questions and direc-
tions for further studies are also discussed.

II. DEFECTS IN NEMATIC AND CHOLESTERIC
PHASES

A. The uniaxial nematic

As noted in Sec. I, the appropriate order parameter to
describe a thermotropic nematic or cholesteric liquid-
crystal system is a symmetric traceless 3 X 3 tensor. Such
a tensor has five independent elements, each of which can
take any real value between * . The order-parameter
space is thus R 5, which is much larger than those usually
used to characterize the order of nematic (uniaxial or bi-
axial) or helicoidal cholesteric phases. For the case of
uniaxial nematics, the standard!~3 topological line and
point singularity classification is obtained when the order
parameter is taken to be® a unit director field 7(x), satis-
fying the constraint # 2=1. Its space is that of the two-
dimensional projective plane P,.

To relate these two viewpoints, we recall that a direc-
tor representation f(x) is equivalent to the symmetric
traceless tensor one

€4n(x)=(2)"Zegn,(x)n;(x)— 18,1, (2)

where €;0 is position independent. Clearly, this tensor
is a special case of the more general one defined in Eq. (1).
The latter reduces to that in Eq. (2) if we impose two con-
straints: one, that €,;(x) be everywhere uniaxial and two,
that its magnitude be position-independent. These condi-
tions are satisfied when

[Tr(e)P=6[Tr(e) P=€S , 3)
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independent of x.

Offhand, it might appear that imposing two restric-
tions on the five independent components of the order pa-
rameter should reduce the initial five-dimensional space
R to a three rather than a two dimensional one. This is
not so in this particular case due to the uniaxially condi-
tion, which imposes a constraint on the components of
the order-parameter tensor and also ensures that its diag-
onalization requires two Euler angles only. (A sym-
metric, uniaxial, 3X3 tensor is diagonalized by two in-
dependent rotations rather than the three required for a
biaxial one.) Adding the constant magnitude constraint
and the physical requirement that # and —# be the same
state reduces the order parameter space from R 5 to P,.

The standard classification of line and point singulari-
ties which occur in nematic liquid crystals is obtained by
considering appropriate mappings from real space R; to
order-parameter space P,. Note that the latter, and thus
the topological properties of a uniaxial nematic, are
unaffected if ¢, is position dependent, provided, for exam-
ple, that it everywhere satisfies the inequalities
0 <€, <€yx)<€,. In other words, mathematical singu-
larities occur as a consequence of the restriction that
€,~0. This is easy to understand. Suppose that the or-
der parameter had the director form given in Eq. (2) with
€,=~€y(Xx) restricted to a real interval which included the
origin. Then we could smoothly deform any director
configuration fi(r) in a given local region of real space to
any other satisfying the same boundary conditions by (a)
bringing €,(x) to zero in the region, (b) rotating 7 (x) to
the specified director configuration,and (c) returning
€o(x) to its initial distribution. All mappings on a
specified closed surface (e.g., loops or spheres) embedded
in this region would then be in the same class and topo-
logically equivalent.

Given the constraint €,0, there exists' ™ only one
class of topologically stable line defects (see Fig. 1) and a
denumerable number of point defects in uniaxial nemat-
ics (i.e., the fundamental group 7;=Z, and the second
homotopy group m,=Z). However, if this constraint is
relaxed (that is, if the space of the order parameter is en-
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FIG. 1. Cross sections of a representation disclination in a
uniaxial nematic system. Shown are the orientations of the
director field A(x) for (a) + and (b) — 7 configurations. These
belong to the same element of the fundamental group and can
be deformed into each other by a local rotation of f(x) by 7
around the axis indicated in the figure.
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larged from P, to, e.g., Rs), then the original topological
defects in P, may still, in practice, be energetically stable.
Also, in real systems, topologically equivalent structures
may not necessarily be easily deformable into each other
due to energy barriers. Thus, in general, both topological
and energetic aspects play important roles. We shall con-
sider them both in Sec. III.
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B. Biaxial nematic

For biaxial nematics, the standard description' ~* of
the order parameter is more complex. At a given point in
real space, we require three independent Euler angles in
order to diagonalize the biaxial order parameter. The re-
sulting tensor can always be written in the form

_ |
: [—1+u(x)]s(x)] 0 0
eij(X)=7‘g|eO(X)| 0 [-1—p(x)]s(x) 0 |, (4a)
0 0 2s(x)
with
€#0, O<pu<l, s=¢/|¢€] - (4b)

We shall refer to the reduced elements (—1+4pu)s,
(—1—p)s, and 2s in Eq. (4) as the eigenvalues of the or-
der parameter tensor. It follows that s can be either *1;
it necessarily changes sign at those points at which
u(x)=1, i.e., where the biaxiality of the tensor is max-
imum. We shall refer to the locus of these points as the
“biaxial surface,” noting that it divides the system into
regions characterized by positive and negative values of
€y(x). Where pu(x) vanishes, the tensor €;(x) is uniaxial.
We shall label these defects as “‘uniaxial positive’” when
s =+1 and “uniaxial negative” when s = —1. The term
uniaxial will be used when the value of s is irrelevant.

By an argument analogous to that given for the uniaxi-
al case, it is easy to show that the topological properties
of a system described by the general order parameter in
Eq. (4) are identical to those of one in which €, and p are
position independent. The effective space of this order
parameter is therefore three dimensional. Since the diag-
onalized tensor is invariant with respect to a rotation by
7 about any of its principal axes, we see that the order-
parameter space is the quotient group SO(3)/D,; i.e., the
group of proper rotations in three dimensions with the
identification of 7 rotations around three mutually per-
pendicular axes.!=3°

To classify the topological singularities of the biaxial
nematic, one considers, as in the uniaxial case, mappings
from real to order-parameter space. Such singularities
then exist as a consequence of the restrictions imposed on
€y and p. They occur when constraints arising from the
symmetry of the structure force us to violate these re-
strictions locally.

For the order-parameter space SO(3)/D,, there are no
topologically stable point defects, but there are four
different classes of stable line defects.!”3 In group-
theoretical terms, 7;=Q (the quaternion group) and
m,=0. We show,!=3 in Fig. 2, cross sections of represen-
tative line defects for each of these classes. (Rigorously,
these cross sections are planar only asymptotically in the
neighborhood of the dislocation.) Let us consider their
realization in a biaxial nematic system.

The first three defects, shown in parts 2(a) to 2(c) of the
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FIG. 2. Cross sections of representative disclinations in biax-
ial nematic systems. Shown in (a), (b), and (c) are the three non-
equivalent classes of = disclinations, each in a —7
configuration. The nonrotating eigenvector (perpendicular to
the plane of the figure) is that of the eigenvalue with the greatest
| 2s |, intermediate |(—1—p)s |, and smallest |(—1+pu)s |
absolute value, respectively. Shown in (d) is a 27 disclination.
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figure, are similar. In each, there is a 7 rotation of two of
the principal axes characterizing the biaxial order param-
eter on any closed path which encircles the dislocation
axis. The third principal axis is perpendicular to the
cross section. When the order parameter has the explicit
form of Eq. (4), this is equivalent to stating that the eigen-
vector associated with one of the three eigenvalues of the
tensor is perpendicular to the plane of the figure. Note
that it is not necessary that the tangent to the disclination
and the nonrotating eigenvector to be parallel to each
other.

Insofar as the group-theoretical classification of biaxial
line defects is concerned, the question of which of the to-
pological constraints (nonuniaxiality or nonvanishing of
the order parameter) is violated at the disclination is ir-
relevant. However, when energetics are considered to-
gether with the specific order-parameter realization given
in Eq. (1) or Eq. (4) (i.e., the order-parameter space is en-
larged to Rj), it becomes meaningful. Note that when
the nonrotating eigenvector is not associated with the
2s =12 eigenvalue, the amplitude €, of the order param-
eter must vanish at the disclination. In the remaining
case, where the rotating eigenvectors are associated with
(—1—p)s and (—1+p)s, either €,=0 or p=0 is, in prin-
ciple, possible at the disclination, depending upon the en-
ergetics. For example if the physical system is one which
first undergoes a transition from a disordered to a uniaxi-
al state and then to a biaxial one, it is likely that the
structure having the lower free energy would have a uni-
axial core. This is what occurs in the lyotropic rubidium
laurate, 1-decanol, H,O system.'°© Kutka and Trebin!!
call singularities of this type ‘“‘semidefects” and have dis-
cussed their topological properties.

Figure 2(d) shows a representative 27 line defect. Un-
like the 7 case, there is only one topological class of de-
fects of this type. That is, we can always rotate the order
parameter within a local region surrounding the disclina-
tion so that any of the three eigenvectors is the nonrotat-
ing one. Topologically, there is no distinction among
these configurations. Energetically, however, there can
be significant differences. For example, when the eigen-
vector of the 2s =12 eigenvalue is nonrotating, the sys-
tem can “melt” to a uniaxial state (semidefect'!) at the
disclination whereas, in the alternate configurations, it
must melt to an isotropic core. In real systems, the free
energy differences between these topologically equivalent
defect structures is likely to be considerable.

C. Blue phases

From the topological point of view, there is a funda-
mental difference between cholesteric BP structures and
those discussed above. For a uniaxial or biaxial nematic
(and also for the helicoidal cholesteric phase), there is al-
ways a singularity-free order-parameter configuration
(energetically, the ground state). The three cubic space
groups, however, must have topological singularities when
the order-parameter space is taken to be SO(3)/D,. That
is, even when the order-parameter distribution conforms
exactly to one of these space groups (e.g., there are no
edge or screw dislocations), there will always be line de-
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fects and, in some cases, isolated point singularities locat-
ed on them. We shall consider this aspect in detail in
Sec. III.

Our approach to studying dislocations in the cholester-
ic BP will be a physical one: Close to a defect line or, in
other words, on a length scale small with respect to a unit
cell dimension,*>"® the order-parameter field in the BP
is the same as in a biaxial nematic. We therefore expect
the structures of disclinations in perfect BP structures to
be similar to those in biaxial nematics. They can, there-
fore, be associated with conjugacy classes of the same
fundamental group.'”® However, since our structures
have additional symmetry, there is no guarantee that de-
fects in the same class are topologically equivalent.! We
shall indeed see that, in some cases, they are not.

In Sec. III, we consider the three cubic space groups in
detail. For each, we determine the general symmetry
constraints, if any, on disclinations and consider the to-
pological properties of the equilibrium order-parameter
distributions found from Landau-theory calculations.®

III. CUBIC BLUE PHASES AS PERIODIC
DEFECT STRUCTURES

Since the tensor order parameter €;;(x) is periodic in
the cubic BP, it is sufficient to specify it within a unit cell.
For our purposes, a convenient choice is the so-called
asymmetric unit. By definition, this is a simply connect-
ed part of space from which, by repreated application of
the group’s symmetry operations, space can be complete-
ly filled.'?> For the cubic space groups, these units have
been described in detail by Koch and Fischer!® and may
be found in standard tables.'? For the three space groups
of interest to us, the relevant asymmetric units are shown
in Figs. 3-5 and their specifications are summarized in
Table 1. Note that threefold and fourfold rotation axes
can only be edges of these units; twofold axes can be ei-
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FIG. 3. The O° asymmetric unit. Its vertices are at A:
(0,0,05; B: (4,0,0); B: (0,3,0); B”: (0,0,3); and C: (,4,4).
The points D, D’ bisect the edges BB'’, B'B"’, respectively. AC
is a threefold axis, 4B and AB’ are fourfold axes, BB", B'B"”,
CD, and CD’ are twofold axes. B,B’, etc., designate points
which are equivalent under operations of the space group. The
exact bounds of the unit are given in Table I.
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FIG. 4. The O? asymmetric unit. Its vertices are at A:
(0,0,0); B: (4,0,0); B": (0,1,0); B": (0,0,3); C: (4,4,%); and
D: (,4,—1). The points E, F bisect the edges BB", B'B", re-
spectively. AC and AD are threefold axes, BB", B'B"”, CD, CF,
DE, and DF are twofold axes. B, B’, etc., designate points
which are equivalent under operations of the space group. The
exact bounds of the unit are given in Table 1.

C A
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FIG. 5. The O® asymmetric unit. Its vertices are at A:
RN A Y DYE N DY
C (4,— 53 C: (5,5,2)and C": (— 4,5, 1). The points D,

E, E', F, F" bisect the edges CC’, BB', B'B", B'C, B"'C’, re-
spectively. AB is a threefold axis, BB’, B'B", B'C’', CC', AD,
AF', DE’, and EF are twofold axes (the last four are not drawn
in the figure). B, B’, etc., designate points which are equivalent
under operations of the space group. The exact bounds of the
unit are given in Table I.
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ther edges or bisectors of boundary planes. (In exception-
al cases, a boundary plane may be composed of two dis-
tinct regions which are coplanar. In such a case, a two-
fold axis lying in the plane need bisect only one of the re-
gions. The asymmetric unit for O® shown in Fig. 5 is one
of these exceptions.)

A. bee O° (1432)

The first cubic space group proposed as a possible
structure for a cholesteric BP, based upon structural'*
and energetic considerations,'® was bcc O3 (1432). This
group has no center of symmetry (as is the case for all BP
structures) and is symmorphic. A general point has 48
equivalent positions in the bcc cell; thus the volume of
the asymmetric unit (see Fig. 3 and Table I) is ;; that of
the standard bcc cell. The unit has the form of a regular
pyramid with a square base. Although the O° space
group is not believed to describe either of the experimen-
tally observed cubic BP, it has been argued that it should
appear at sufficiently short cholesteric pitch.”!® Its topo-
logical properties are of interest in any case.

The O space group has both threefold and fourfold ro-
tation axes. Upon them, the tensor order parameter
given in Eq. (4) must either vanish or be uniaxial, with its
unique axis aligned with the rotation axis. Thus both of
these symmetry axes are necessarily disclinations. In ad-
dition, there are points in the structure with cubic (432)
symmetry, represented by the origin of the asymmetric
unit in Fig. 3. Here threefold and fourfold axes intersect
and the biaxial tensor order parameter must vanish.

Symmetry requires that all physical properties be in-
variant to 7 /2 rotations about a fourfold axis. It follows
that the order-parameter distribution, in the neighbor-
hood of such an axis, is characterized by the singularity
class of Fig. 2(d). On the axis, the tensor vanishes unless
the eigenvector of its 2s =12 eigenvalue is parallel to the
axis, in which case it can be uniaxial. Turning to the
threefold axis, the disclination, insofar as the local topol-
ogy is concerned, can belong to any of the four nontrivial
biaxial classes. For those shown in Figs. 2(b) and 2(c), the
eigenvector of the 2s =12 eigenvalue rotates about the
symmetry axis in its immediate neighborhood and the
tensor must therefore vanish on the entire axis. For the
remaining two classes [Figs. 2(a) and 2(d)], the tensor can
be uniaxial on the threefold axis. Since the 2s =12
eigenvector is along the axis, only one of the three topo-
logically equivalent 27 configurations is compatible with
the symmetry.

While the above classification is identical to that used
for the biaxial nematic and helicoidal cholesteric phases,
there is a significant difference. For the latter, one can al-
ways convert singular configurations belonging to the
same class into each other by a continuous transforma-
tion. Consider, for example, the two topologically
equivalent 7 disclinations shown in Fig. 6. In group-
theoretical terms, these two configurations are character-
ized by different elements of the fundamental group 7, of
the biaxial nematic, with both elements belonging to the
same conjugacy class.! When, however, the disclination
is also a threefold rotation axis, the configuration in Fig.
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TABLE 1. The asymmetric units for O°, 02 and 08 Given are the bounding planes and the por-
tions of these planes, their edges, and the vertices included in each unit. The vertices are defined in

Figs. 3-5. See Ref. 13.

Group Bounding planes Planes Edges Vertices
0° (1432) (@) z=0 a(x —y>0) AB, AC A4;B;C
(b) x —z=0 cly<y) BC;BD
©x+z=1% die(x>7)
d) y—z=0
(e y+z=1%
0% (P4,32) (a) x —z=0 cly<q) AB; AC; AD A;B;C;D
®) x +z=0 diy<i) BC;BD;BE
© x—z=1 e; B"F
d x+z=1 glx>1)
(e) y—z=0 h(x>1)
) y+z=0
@ y—z=1
(h) y+z=1
0°® (14,32) @x=1 a(y+z<y) AC; AB;BC A;B;C
b) y=g3 b(x +z<4) BC";CD;B'E’
©y=—1¢ clz—x>1)
d) x—z=0 e;f(y<0)
(e) y—z=0 g(y_xs%)
) —y+z=74
(g —x+y—z=1

(b)

FIG. 6. Cross sections of two possible configurations (a) —,
(b) + for a 7 dislocation line, characterized by different ele-
ments of the fundamental group belonging to the same conjuga-
cy class. They can be continuously transformed into each other
by a 7 rotation of each of the elements about the axis indicated
in the figure. Only —# defects are consistent with threefold
symmetry on the defect line. The disclinations shown here are
in the same conjugacy class as that in Fig. 2(a); similar examples
can be given for those in Figs. 2(b) and 2(c).

6(b) is not compatible with the point-group symmetry.
Thus, in certain cases, the classification of line singulari-
ties in the BP can be with an element of the fundamental
group rather than with a conjugacy class. The need to
augment the topological theory of line defects by consid-
ering the point symmetry of the order parameter at the
disclination has been discussed by Balinskii, Volovik, and
Kats.!”

Based upon energetic considerations, we now restrict
ourselves to configurations in which ;0 everywhere ex-
cept at points of cubic symmetry and consider the follow-
ing question: It is topologically possible to have an
order-parameter distribution consistent with 0> symme-
try which exhibits uniaxial positive disclinations only?
Equivalently, can we define an €;(x) in the O° asym-
metric unit of Fig. 3 which has no biaxial surface? If so,
we can obtain a uniaxial director order-parameter field
which is invariant under O° by simply aligning #(x) with
the eigenvector of the + 2 eigenvalue of €;;(x). This dis-
tribution would have point singularities only. We now
show, however, that this is impossible.

We refer to Fig. 3. By hypothesis, €,>0, i.e., s=1
everywhere, except at the point of origin. Then, on the
fourfold axis, the eigenvector associated with the + 2 ei-
genvalue must be parallel to the axis itself and, at the ver-
tices B and B' (B, B’, etc., designate points which are
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equivalent under symmetry operations of the space
group), it must be perpendicular to the edges BB’ and
B’'B". Since these are both twofold axes, the eigenvec-
tors associated with the + 2 eigenvalue must remain per-
pendicular to these axes as we move from B to B’ and
from B’ to B (we return to this point below). Of course,
the order-parameter tensor need not be uniaxial on a two-
fold axis. Consider now the midpoints of BB’ and B'B",
labeled D and D’, respectively, in the figure. Since CD
and CD’ are both twofold axes,? the eigenvectors of + 2
at D and D' must be either along these axes or parallel to
the normals to the planes BB"'C and B'B'’C, respectively.
The crucial point, however, is that the points D and D’
are symmetry related via a 7/2 rotation about the four-
fold axis passing through B'' and perpendicular to the
plane ABB’. Thus if the eigenvector at D is along CD,
that at D' is perpendicular to CD’, and vice versa. In ei-
ther case, at vertex C the eigenvector associated with the
+ 2 eigenvalue must be perpendicular to the threefold
axis AC. This, however, contradicts our original hy-
pothesis, according to which this eigenvector is parallel
to this axis.

We now return to the claim in the previous paragraph
that the eigenvector associated with a + 2 eigenvalue on
a twofold axis cannot change its direction from parallel
to perpendicular to the axis at any point upon it. This
could occur only if there existed a uniaxial negative dis-
clination which intersected this axis (see Fig. 7). One hy-
pothesis, however, forbids such defect lines. This com-

/——— BIAXIAL SURFACE

UNIAXIAL NEGATIVE (a)
DISCLINATION

UNIAXIAL POSITI (b)
DISCLINATION

- | EIGENVECTOR OF I2sl
— | EIGENVECTOR OF I(-1—)sl
—= . EIGENVECTOR OF I(=l+u)sl

FIG. 7. Examples of eigenvector configurations in the neigh-
borhood of the intersection of a (a) uniaxial negative, (b) uniaxi-
al positive disclination with a twofold symmetry axis. At any
point, the eigenvector not shown in perpendicular to the plane
of the figure. In (a), s = —1 in the region between the intersec-
tion of the biaxial surface with the plane of the figure and in-
cluding the defect line. External to this region, s =+ 1. On the
biaxial surface, p=1. In (b), s = + 1 everywhere.
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pletes the proof that it is impossible to define a tensor or-
der parameter with s =+ 1 everywhere (i.e., no biaxial
surface) in the O° asymmetric unit. Note that the proof
did not depend upon the singularity type (7 or 27) on the
threefold axis.

The above analysis indicates that the O° structure has
at least two distinct line singularities, located on its three-
fold and fourfold rotation axes. The disclination on the
fourfold axis must be of the 27 type. That on the three-
fold axis, if of the 7 type, can be associated with only one
of the two elements belonging to this conjugacy class.
When the defect cores are uniaxial (i.e., not isotropic) and
there are no other uniaxial negative defect lines, we must
have s = + 1 on one of the symmetry axes and s = —1 on
the other; these axes are separated by a biaxial surface.

Are these two disclinations, which are required by
symmetry, sufficient as well as necessary? The answer to
this question is obviously positive if we can find an
order-parameter distribution €;(x) with 0° symmetry
having only these defect lines. Let us therefore consider
the topological properties of a particularly interesting
distribution, that corresponding to the minimum free en-
ergy for this structure. It was obtained® via Landau
theory using a trial order parameter consisting of selected
symmetry-allowed”®!® Fourier components character-
ized by (111), (211), and (220) wave vectors. The re-
sulting order parameter is given in the Appendix.

Upon examining the order parameter field for O° given
in the Appendix, we find the following. (a) It vanishes
only at points having cubic symmetry. (b) The only dis-
clinations are on the threefold and fourfold axes. (c) The
former is uniaxial negative and the latter uniaxial posi-
tive. (d) On the threefold axis, the eigenvector of the —2
eigenvalue is aligned with the axis. In its neighborhood,
those associated with the eigenvalues (1+x) and (1—pu)
rotate through an angle of — along a closed loop en-
closing the defect [see Fig. 2(a)] as expected. Energetical-
ly, it is not surprising that this disclination is of the =
rather than the 27 type as the energy cost of the latter is
approximately four times greater than that of the form-
er.® (e) On the fourfold axis, the eigenvector of the + 2
eigenvector is along the axis. In its neighborhood, the
two other eigenvectors rotate through 27 as the axis is
encircled. This is, of course, expected as a 7 disclination
cannot occur on a fourfold axis. (f) The biaxial surface
consists of a collection of sleeves which enclose the three-
fold axes and coalesce with them at points of cubic sym-
metry. They thus form a three dimensional net of con-
nected sausagelike objects; eight of which meet at each
point having (432) symmetry.

Given a distribution €;;(x) for the O’ structure, we can
also characterize it by a uniaxial director by the following
procedure: One, set u=0 in s =1 regions. In the same
regions, replace €y(x) by its average value. Two, set
€,=0 in the region between the threefold axis and the bi-
axial surface. (In principle, we could, instead, ‘“shrink”
the sleeve defining the biaxial surface onto the axis. This
would make the energy of the defect infinite.’) The re-
sulting director configuration has defects on the threefold
axes only. If the sleeve is shrunk to zero, they are of the
type shown in Fig. 1.
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The free energy of the constrained O° director
configuration obtained via the process described above
(with a nonzero sleeve diameter) can be lowered by allow-
ing the director field 7 (x) to rotate locally. Such an ap-
proac?9 to the energetics of BP was used by Meiboom
et al.

B. sc 0% (P4,32)

The possibility that one of the cubic BP might have a
sc O? structure was noted by us®® and by Alexander.”! A
wide range of experimental® and theoretical’>~" evidence
has confirmed this suggestion, and this space group is be-
lieved to characterize BP II. It is nonsymmorphic and
noncentrosymmetric and a general point has 24
equivalent positions in the standard sc cell. The volume
of the 0% asymmetric unit is thus 5 that of the standard
cell. As shown in Fig. 4, it has the form of a regular dou-
ble pyramid with a square base. Its bounds are listed in
Table I.

The nonsymmorphic O? space group has among its ele-
ments fourfold screw axes and two nonequilvalent three-
fold axes. At the origin of the asymmetric unit four
threefold axes intersect and the biaxial tensor must there-
fore vanish at this point. Elsewhere on the threefold axes,
the limitations on the order parameter are the same as for
the case of O°. That is, these axes are necessarily dis-
clinations and, unless €;; vanishes, it must be uniaxial
upon them. If the disclination is uniaxial and has a rota-
tion angle of 7, it must be described by the element of the
fundamental group represented by Fig. 6(a) and not by
that (in the same conjugacy class) shown in Fig. 6(b).

Restricting ourselves to a nonvanishing order-
parameter tensor on the threefold axes, is it topologically
possible for the two different threefold axes to be charac-
terized by disclinations of the same type (i.e., both uniaxi-
al positive or negative)? Using an argument similar to
that given for the case of O3, we demonstrate that this is
impossible.

Referring to Fig. 4, let us assume s =1 everyone in the
asymmetric unit and that the order-parameter tensor is
uniaxial on the disclinations. This, then, includes both of
the threefold axes, AC and AD. At vertex C, therefore,
the eigenvector of the + 2 eigenvalue is perpendicular to
the twofold axis CE and, at vertex D, the same eigenvec-
tor is perpendicular to twofold DE. Thus, at point E, this
eigenvector must be parallel to the twofold axis BB". By
exactly similar reasoning, we see that the eigenvector of
the + 2 eigenvector at F must be along B'B’. (The
bisectors CF, DF, and the edge B'B'’ are all twofold
axes.) Since, by hypothesis, there cannot be a change
from parallel to perpendicular in the direction of this
eigenvector along a twofold axis, we have a contradiction
at vertex B'’ and our original assumption is invalid. Thus
either the axes AC, AD are separated by a biaxial surface
or, if both have + 2 eigenvalues, there must be a dis-
clination with a —2 eigenvalue elsewhere in the asym-
metric cell.

Given the above result, is there a topologically-allowed
biaxial order-parameter distribution in which, in the
asymmetric unit, only the two threefold axes are disclina-
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tions (one with a + 2, the other with a —2 eigenvalue)?
That is, are these two line defects sufficient as well as
necessary? Here, unlike the O° case, the disclination pat-
tern corresponding to the order-parameter distribution
minimizing the free energy [see Fig. 8(a)] does not give a
definite answer. It was obtained using Landau theory
and an order parameter with (100) and (110) Fourier
components.”®'® The resulting expression is given in the
Appendix. As expected, the disclinations on the three-
fold axes are of opposite sign (s =—1on ACand + 1 on
AD), with the uniaxial eigenvectors along the symmetry
direction. Both are — 1 defects of the type shown in Fig.
2(a). The biaxial surface is a collection of narrow sleeves,
which surround the uniaxial negative disclinations and
coalesce with them at the isotropic points.

However, in addition to these two disclinations, there
is a third one upon which the order parameter is uniaxial
positive. Its end points P,,P, are on the twofold axes,
AB and CF, respectively, and two of the principal axes of
the biaxial tensor rotate through an angle of + when
traversing a loop encircling this defect line. Generating
the standard sc cell from the asymmetric one, we find
that equivalent points on this helicoidal disclination differ
by two lattice constants. Another way of seeing this is to
consider the “group of the line,”?* that is, the set of
operations which leaves this defect line invariant. These
are the elements of a group which is necessarily a sub-
group of 0% For the disclination we are considering the
appropriate group is??> P4,(22), with a primitive transla-
tion twice that of the cubic cell. Here 4, denotes the
screw displacement symmetry operation about the axis of
the helical line (which is the same screw axis in the O?
space group), and (22) that the helix, in addition, is in-
variant with respect to two twofold rotations perpendicu-
lar to this axis. If we define the sc cell as a closed torus
(translation group T3) embedded in a four-dimensional
space, then the segment of the disclination between P,
and P, in the O? asymmetric unit generates a line defect
in T3 with a winding number of two. In other words,
there are two such helical disclinations sharing the same
axis of the O? space group (i.e., they form a ‘“‘double
helix”). In the cubic OZ cell, there are a total of six heli-
cal disclinations (two about each of the structure’s 4,
axes).

In Fig. 8(b) we give some details of the minimum free-
energy order-parameter configuration on the symmetry
axes within the asymmetric unit. In particular, we show
which of the three principal axes of the biaxial tensor is
along each of these axes. Note the interchange in the
directions of two of the principal axes at the points P,
and P,.

Interestingly, although the minimum energy
configuration summarized in Fig. 8 has a third disclina-
tion, such a defect is not a topological requirement. To
establish this, we shall use the following (note, however,
the points raised in the following paragraph): One, since
the 02 system has no fourfold axes, we can always have a
topologically stable configuration without 27 disclina-
tions. The basis for this statement is that, topologically,
we can take the defects on the threefold axes to be of the
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FIG. 8. Minimum free-energy configuration with O2 symmetry. Shown are (a) the type (s = + 1: uniaxial positive; s = — 1: uniax-

ial negative) and location of the disclinations in the asymmetric unit, and (b) the principal axes of the biaxial order parameter tensor
parallel to the threefold and twofold axes and the location of the biaxial surface. At vertex A the order parameter vanishes.

7 type and use the fact that the presence of a 7 disclina-
tion serves to catalyze the decay of any 27 one which is
not symmetry imposed.l Second, it is sufficient, in order
to determine whether there exists an order-parameter
configuration compatible with O? symmetry and without
additional disclinations, to examine the principal axes of
the biaxial tensor on the twofold axes of the asymmetric
unit and, in particular, to determine whether any dis-
clinations necessarily intersect these axes. This follows
by observing the following. (1) If there is a 7 disclination
which does not intersect a twofold axis at all points at
which it exists the asymmetric unit, there must be a
second disclination belonging to the same element of the
fundamental group and symmetrically located with
respect to the twofold axes; an example for a simple sys-
tem characterized by a director order-parameter field is
shown in Fig. 9. (2) Topologically, these two disclina-
tions can be combined so as to put the new end points on
twofold axes; the resulting disclination, if any, is then the
2w type.l We have already pointed out, however, that in
a system with O? symmetry such a disclination is topo-
logically unstable. Thus it is sufficient to examine the dis-
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FIG. 9. Possible director order-parameter field with a —m
singularity in (a) a region bounded by four nonequivalent two-
fold axes, and (b) the same field in two adjacent regions. Direc-
tors which are canted with respect to the plane of the figure are
drawn with a dot at that end of # which inclines upward. The
structure in (b) contains two — and a 27 disclination, which
combine to give a defect-free structure.
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tribution of the biaxial tensor on the twofold symmetry
axes, as claimed.

We stress, however, that the argument in the previous
paragraph must be viewed with caution. As noted in Sec.
I1, for nontranslationally invariant structures, the space-
group symmetry can break the topological equivalence of
defects belonging to the same conjugacy class. There is
thus the possibility that, in the space groups characteriz-
ing BP, the combination rules for defects will not always
be identical with those applicable to translationally in-
variant biaxial systems,' ~* as used by us in the argument
given above. In other words, it is not obvious to us that,
in all cases, we have homotopies (i.e., continuously defor-
mations of the order-parameter field) which combine de-
fects and also satisfy the space-group symmetry at all in-
termediate configurations. If this is not so, then combin-
ing defects as discussed in the previous paragraph may
require, at intermediate stages, distortions of the physical
medium. Having stated all this, however, we shall con-
tinue to assume that the usual rules are valid (or, alterna-
tively, that any distortions required do not entail prohibi-
tive energy barriers) and that it is therefore sufficient, in
order to determine whether there are additional topologi-
cally required disclinations, to study the order-parameter
configuration on the symmetry axes.

To demonstrate that no topologically required disclina-
tions are required for O? symmetry in addition to those
on the threefold axes, we give, in Fig. 10, an example of a
configuration satisfying this condition. Shown is the
orientation of the principal axes of €;;(x) on the symme-
try axes. A self-consistent pattern is obtained without
any interchange of principal axes except at the intersec-
tion points with the threefold symmetry axes. Thus addi-
tional defect lines are not required.

Finally, consider the characterization of an O? system
by a uniaxial order parameter (i.e., one whose space is
P,=S,/Z,). The same procedure used for the O° case
results in a structure which is singularity-free except on
those threefold axes upon which the biaxial tensor had a
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—2 eigenvector. Here the defects are of the type shown
in Fig. 1. This is the uniaxial O? configuration used as a
starting point by Meiboom et al.'? in their analysis of BP
structures with director order parameters.

C. bec O® (14,32)

When experimental studies* made it clear that there
exist two cubic cholesteric BP, it was suggested?® that the
02 space group could characterize the structure of one of
t}Le?;. This assignment has since been confirmed for BP
L*>

The bce space group O is nonsymmorphic and non-
centrosymmetric and a general point has 48 equivalent
positions in the standard cell. Its asymmetric unit, given
in Fig. 5 and Table 1, is quite different from those for the
space groups O° and O2. In particular, the threefold axes
of 0% do not intersect and there are both positive and
negative fourfold screw axes. There are no points in the
0?8 structure at which the biaxial order-parameter tensor
necessarily vanishes.

As in the two other space groups considered, there
must be a disclination on the threefold axis of the asym-
metric unit. In principle, it can be either the 7 or 27
type; if the former, it is, as discussed earlier, described by
the fundamental group element of Fig. 6(a) rather than
that in Fig. 6(b). When the order parameter is uniaxial
on this symmetry axis, it can have either a + 2 or —2 ei-
genvalue. Again, the first question is whether there must
be other topologically required dislocations in O® struc-
tures characterized by a biaxial tensor order parameter?

As discussed in Sec. III B, taking the disclination on
the threefold axis to be of the 7 type reduces this ques-
tion to determining whether additional 7 disclinations
must intersect the twofold axes of the asymmetric unit.
We therefore assume that the threefold axis is a —# dis-
clination and, without loss of generality, take it to be uni-
axial positive. We next divide the problem into two
parts: First, must there be a biaxial surface and a uniaxi-
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FIG. 10. A topologically acceptable order-parameter configuration in the 0? asymmetric unit with disclinations on the threefold
axes of the structure only. Shown are the principal axes of the order parameter parallel to the threefold and twofold axes and the lo-
cation of the biaxial surface. The order parameter vanishes at vertex 4.
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al negative disclination in the unit, given the above
configuration on the threefold axis? Second, if the answer
to the above is negative, must there be uniaxial positive
disclinations in addition to the one on the threefold axis?

We show, by demonstration, that the answer to the
first part is negative. There are three nonsymmetry relat-
ed types of twofold axes in the O® structure, two of which
intersect the threefold axes. In Fig. 11, one of these is
represented by the segments AD, AF', and EF, the
second by BB’, B'B", B’C", and CC’. The third type of
twofold axis appears as DE' in the figure. Since the first
two types are both perpendicular to the threefold axis
(AB in the figure), the eigenvector of the + 2 eigenvalue
on any of these axes will be everywhere perpendicular to
it in the absence of a biaxial surface. Of course, this
eigenvector can (and will) rotate about the symmetry axis
in order to satisfy the conditions we now specify at their
intersections. These points, where axes of different types
cross, are D, E, and E' (at E and E’, one of the twofold
axes is external to the unit shown). At each of them, the
three different axis types are at right angles to each other.
Then, again in the absence of a biaxial surface, the eigen-
vector of the + 2 eigenvalue must be parallel to DE’ at
all points upon it. We thus have a realizable
configuration for the eigenvector of the + 2 eigenvalue
everywhere on the twofold axes which is consistent with
the initial assumption that no uniaxial negative defect
lines exist. This demonstrates that the answer to the first
part of our problem is indeed negative.

We now turn to the second part. Take the
configuration of the + 2 eigenvector on the twofold axes
to be as in Fig. 11 and consider the orientation of the oth-
er two eigenvectors. Clearly, it is sufficient, upon the
twofold axes, to specify the eigenvector parallel to them.
What we must show is that there is a configuration
wherein the eigenvectors of (—1—u) and (—14pu) do
not interchange directions at any points on the twofold
axes except where they cross the threefold one. At the
latter, of course, an interchange must take place.

: EIGENVECTOR OF 2
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B ——- | EIGENVECTOR OF (-l+p)

FIG. 11. A topologically acceptable order-parameter
configuration in the O® asymmetric unit with a uniaxial positive
(s = +1) disclination on the threefold axis of the structure only.
Shown are the principal axes of the order parameter parallel to
the threefold and twofold axes of the structure. The order pa-
rameter is nonzero everywhere.
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In Fig. 11, we show a configuration satisfying the
above conditions. In it, the eigenvector of (—1—pu) is
parallel to the segments of the twofold axes AD, BB’, and
B’B'"" while that of (—14-pu) is parallel to AF', EF, CC',
and B'C”. Both these eigenvectors are perpendicular to
DE' and rotate about this axis. Thus, by demonstration,
we have shown (somewhat to our surprise) that there are
no topologically required uniaxial positive disclinations in
addition to that on the threefold symmetry axis. We con-
clude that the only topologically required disclination in
any O® structure with a biaxial tensor order parameter is
the one on the threefold axis. It, of course, can be either
uniaxial positive or negative.

What are the topological properties of the minimum-
energy structure? The Landau theory analysis for the O®
structure, based upon an order parameter with (110),
(200), (211), and (220) Fourier components®'® yields
three local minima for the free energy. These are summa-
rized in the Appendix and their defect structures are
given in Figs. 12 and 13.

Consider first Fig. 12. We see that all three structures
have disclinations in addition to the required one on the
threefold axis. In particular, for 0% and Of, the disclina-
tion on this symmetry axis is uniaxial positive and there
is also a uniaxial negative disclination and a second uni-
axial positive one in the asymmetric unit. In O2 which is
believed>® !’ to be the structure of BP I), the topology is
different; the threefold axis is a uniaxial negative disclina-
tion and there are, in addition, two uniaxial positive ones
in the asymmetric unit.

1. 0}

The simplest disclination structure is that of O} [see
Fig. 12(a)]. Here the segment of the uniaxial negative dis-
clination in the asymmetric unit has its end points P,, P,
on the twofold axes DE' and B'C"’, respectively. The end
points of the additional uniaxial positive one (P;,P,) are
on the twofold axes DE’ and AF’. These are both 7 dis-
clinations (uniaxial negative: + 7, positive: —) and the
resulting eigenvector orientation on the symmetry axes
for this structure is shown in Fig. 13(a). Both have a heli-
cal structure; their symmetry groups (‘“‘group of the line”)
are P4,(22) (negative) and P4,(22) (positive).”> The
screw orientation of the uniaxial negative defect line is
opposite to that of the positive one and their axes are the
4, and 4, screw axes, respectively, of the O® space group.
For both, the primitive translation is identical to that of
the cubic cell, thus the winding number of these helicies
on the torus T3 is unity. Each has a unique (unshared)
helical axis and there are six of both the uniaxial positive
and negative helicoidal disclinations within a cubic unit
cell. The biaxial surface is a collection of disjoint helical
tubes, one of which surrounds each of the uniaxial nega-
tive helical defect lines.

2. 0§

Consider next Of. The uniaxial negative disclination is
essentially the same as in the Of structure, with its end
points (P,P,) on DE' and B’C"”. The additional uniaxi-
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al positive one, however, is quite different. We see, in
Fig. 12(b), that it has four segments within the asym-
metric unit and, like the uniaxial negative defect line, in-
tersects the twofold axes DE’ and B'C"” (at P; and P,).
All four segments are ‘“‘connected” when the symmetry
operations of the space group are applied; thus they must
have the same defect structure. It is in this sense that we
consider them as a single disclination—this does not im-
ply that these segments are connected in the standard cu-
bic cell. Both disclinations (the uniaxial positive and neg-
ative helicies) are of the + type and the resulting eigen-
vector orientation on the symmetry axes is shown in Fig.

R. M. HORNREICH AND S. SHTRIKMAN 38

13(b). The group of the uniaxial negative helix is again
P44(22) and its axis is the screw axis of the O®% space
group. Its winding number is unity and there are six
such defect lines in the cubic unit cell. The biaxial sur-
face is the same as for Of; i.e., a set of disjoint helical
tubes, one surrounding each of the uniaxial negative dis-
clinations.

The uniaxial positive helical disclination is more in-
teresting. Its structure is characterized by the line group
P4,(22). However, the axis of the helix is not the 4,
screw axis of the O® space group but, rather, the
structure’s 4; axis! This is connected with the fact that

FIG. 12. Disclinations in the O® structure for the three local minimum free-energy distributions of the biaxial order parameter
found in Ref. 8 and summarized in the Appendix. Shown are the type (s = + 1: uniaxial positive, s = — 1: uniaxial negative) and lo-
cation of the disclinations for (a) 08, (b) Of, and (c) O}. The letters a, b,c denote points at which disclinations “leave” and “reenter”
the asymmetric unit.
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FIG. 13. Principal axes of the order parameter parallel to the
threefold and twofold symmetry axes in the asymmetric unit for
(a) 0}, (b) Of, and (c) O&.
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the winding number of this defect line in the space T is
three. That is, the primitive translation of the line group
is thrice that of the cubic cell, or, in other words, there
are three such defect lines (a “triple helix”) associated
with each of the 4; axes in the cubic unit cell. The 4,
operation of the space group takes us sequentially from
one of these three lines to the other, so that this symme-
try operation must be invoked three times in order to re-
turn to the original disclination. These three 4; opera-
tions are equivalent to a single 4, screw operation in the
group of the line. In a cubic unit cell, there are 18 uniaxi-
al positive helicoidal defect lines. This number is not a
factor of 48, the number of equivalent points in the unit
cell, reflecting the fact that some of the rotation opera-
tions take a point on one of the disclinations to an
equivalent point lying on the same disclination. It is, of
course, a factor of 144=3x48, the addition factor of
three taking into account the enlarged unit cell of the line
group. Finally, as in the case of O}, both the helical dis-
clinations (positive and negative) are of the — 7 type and
their senses of rotation are opposite.

3. 08

Finally, consider O%, the third structure with this space
group which is also a local minimum of the Landau free-
energy functional [see Fig. 12(c)]. It differs from the two
discussed previously in that its threefold axis has a uniax-
ial negative rather than positive character. This is the
only such defect in the structure; there are no uniaxial
negative helicoidal disclinations. There are, however,
two uniaxial positive ones. The first is represented by a
single segment in the asymmetric unit and has its end
points P,P, on the twofold axes AF’' and B'C"”. The
other has two segments in the asymmetric unit, connect-
ed by a twofold rotation about DE’. It intersects the two-
fold axes DE' and B'C", at the points P; and P,. Both
these disclinations are of the —m type. The eigenvector
configuration on the symmetry axes of the O} structure is
shown in Fig. 13(c). Here again the biaxial surface is a
collection of disjoint tubes, one of which surrounds each
of the threefold (uniaxial negative) axes.

The line group of the defect going through the points
P,, P, is* P3,(21). Thus this helical disclination, unlike
all those (both positive and negative) discussed previous-
ly, does not have as its axis one of the fourfold screw axes
of the O® space group. Its primitive translation is V'3 /2
that of the cubic cell, i.e., the distance between the bcc
lattice points at a vertex and the body center of a cell,
and the winding number in the space T is unity. This is
a 4+ disclination and there are three equivalent defect
lines of this type in the cubic cell.

The other two uniaxial positive segments in Fig. 12(c)
belong to the same helical disclination in the cubic cell.
It is of the +7 type and its line group is P4;(22). The
helical axis is the 4; axis of the space group. The primi-
tive translation is equal to that of the cubic cell (winding
number of unity in T°) and there are six equivalent dis-
clinations in the cell.

Finally, we consider the characterization of an O3
structure by a uniaxial order parameter. Unlike the two
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previous cases (O° and 0?), it is, in principle, possible
here to define a direction field which is both invariant un-
der the O® space group and also defect-free. This can be
done, for example, by beginning with a biaxial tensor field
consistent with the configuration of the principal axes
shown in Fig. 11 and then taking fi(x) to be parallel to
the eigenvector of the -+ 2 eigenvalue at every point in
the asymmetric unit. Of course, there is no reason to ex-
pect that the resulting director configuration will be at-
tractive energetically.

In fact, both of the director distributions with O® sym-
metry which have been suggested as structures for the
cholesteric BP (Ref. 19) have disclinations. One of these
was obtained by beginning with Of and introducing the
director field in the same manner discussed earlier for the
cases of 0° and O2. The resulting structure than has dis-
clinations on its threefold axes. In the second O® uniaxial
structure, the disclination was placed on the 4; axis of the
space group. This is not the position of the uniaxial neg-
ative defect line in either O; or Of, but is rather their
(common) axis. Here, unlike the other uniaxial structures
considered as models for the cubic BP, the position of the
disclination is not dictated by symmetry and should
therefore be determined by minimizing the free energy.
This was not done in the approximation used by
Meiboom et al.!® Also there is no distinction between
the 02 and the O} structures when the order parameter is
constrained to be uniaxial.

IV. DISCUSSION

In this paper we first considered the possible order-
parameter spaces which can be used to describe the
cholesteric BP. When this space is restricted to that
commonly used for biaxial nematics [SO(3)/D,], there
are topological consequences. Then, as a consequence of
the cubic symmetry, there must be disclinations in these
structures. This is not the case, of course, for the nematic
and usual helicoidal cholesteric phases. The classification
scheme used for the defect lines was the standard one for
biaxial nematics, wherein disclinations are identified with
the conjugacy classes of the fundamental group of the
system (i.e., the eight element quaternion group). In ad-
dition, however, we pointed out that, in certain cases,
where the disclination is a threefold rotation axis of the
space group, one can identify it with a element of the fun-
damental group rather than a conjugacy class only.

We considered in detail three cubic space groups which
have been suggested as possible structures for cholesteric
BP. For two of these, bcc O° and sc 02, there are two
nonequivalent symmetry axes upon which there must be
disclinations. Assuming that these defects are character-
ized by a uniaxial (rather than vanishing) order parame-
ter, we showed that, in both structures, one of the dis-
clinations must be uniaxial positive and the second uniax-
ial negative in order for the topology to be consistent
with the space group symmetries. Thus any model for a
cubic BP based upon a unit director field with the sym-
metry of either one of these two space groups must neces-
sarily have disclinations. This was not the case, however,
for the third space group we considered, bcc O®. Here
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we found that uniaxial order parameter distributions (i.e.,
director fields) consistent with the absence of defects are
topologically possible. They do not, however, occur in
any of the configurations found by minimizing the free
energy.

In addition, we considered the topological properties of
order-parameter configurations obtained>”® by minimiz-
ing the Landau free-energy functional. For O°, we found
that the defect structure of the minimum energy
configuration had the minimal number of disclinations
and isotropic points required by the space-group symme-
try. This was not the case, however, for the nonsym-
morphic groups O2 and O%. The structures with these
group symmetries contained additional uniaxial disclina-
tions having a helical character. That is, they formed
helicies about a screw axis of the space group. For these,
we specified the group of the line, i.e., the group which
leaves the defect line invariant, and also their winding
number. In some cases, the axis of a helical disclination
was shared by two or three defects, giving a double or tri-
ple helix structure.

We also considered the limit wherein the order param-
eter is constrained to be uniaxial everywhere except on
defects lines. Except for the case of the bce structures O8
and O}, the director configurations used in the litera-
ture!® had defect lines in the same symmetry-prescribed
locations obtained from Landau free energy minimiza-
tion. For these two structures, however, the disclination
was taken to be a straight line, contiguous with the axis
of the line group, rather than a helical structure.

The results obtained for O8%, where three different
structures corresponding to local minima in the free ener-
gy was examined, were particularly interesting. While in-
variant under the same space group, these three order-
parameter configurations differ significantly when con-
sidered as nets of disclination lines. They have in com-
mon, however, a single (within the asymmetric unit) uni-
axial negative disclination, even though this is not topo-
logically required and, considered in isolation, raises the
free energy. In two of the structures (02 and OF), these
defects are helical and thus have the same line group and
helical axis. The helical uniaxial positive defect lines in
these structures do, however, differ considerably. In the
third structure (O2), the uniaxial defect is on the three-
fold axis and, of course, is nonhelicoidal. As in the other
two O% structures, there are two uniaxial positive dis-
clinations, here both are helicoidal.

For all the structures obtained from Landau—free-
energy minimization, the biaxial surfaces are essentially
narrow tubes, one surrounding each of the uniaxial nega-
tive defect lines. This is not a topological requirement
but rather, as expected, the result of taking order-
parameter configurations corresponding to free-energy
minima. Other order-parameter configurations exhibit
different biaxial surfaces; for example, structures having
the same uniaxial negative disclination networks as O8
and Of can have a single, multiply connected biaxial sur-
face, one with the topology of a Schwarz surface.?

We again stress that all our results are based upon an
order parameter restricted to the space SO(3)/D,. When
“escape” to a large space is permitted, many or all of the



topological defects disappear. This is well known, for ex-
ample, for the case of uniaxial nematics, when an escape
to a biaxial parameter space [i.e., from P, to SO(3)/D,] is
allowed.!%242

The analysis presented here was restricted to the three
cubic space groups which have been introduced in
theoretical studies® of the BP structures which appear in
the absence of an external field. We remark in passing
that similar disclinations lines (both uniaxial positive and
negative) appear also in icosahedral models?® considered
in connection with BP III. When a field is present, other
structures become thermodynamically stable, including
two different hexagonal phases and a tetragonal one.*?’
A study of their topological properties, similar to that re-
ported here, would also be of interest. However, only
partial Landau—free-energy calculations for these struc-
tures are presently available.?®

We again note that this study was concerned with the
topological properties of “perfect” BP structures; in oth-
er words, ground-state disclination networks compatible
with a given space-group symmetry. The more general
problem of the classification of defects in nonideal struc-
tures, e.g., those with edge or screw dislocations, should
also be considered. It is particularly relevant as such
dislocations have been observed in cholesteric BP.?’

Finally, there is the question of direct experimental ob-
servation of defects in the BP. Uniaxial negative disclina-
tions, in particular, are analogous to those usually seen®
in nematic and cholesteric phases and should, under ap-
propriate conditions, be observable. Note, in this connec-
tion, that while dislocations have not yet been observed,
isolated screw dislocations have been seen in the hexago-
nal BP which exists in an external field.”’ Direct
confirmation that the uniaxial negative disclinations in
BP I are contiguous with the threefold symmetry axes
would support the Landau-theory prediction that the
structure of this phase is O2 rather than 02 or Of. More
generally, studies of defect structures in the BP could
help to resolve unanswered questions' on the application
of homotopy theory to systems which are not translation-
ally invariant.
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APPENDIX
The states with minimum free energy for the three cu-

bic space groups were obtained by using an order param-
eter of the form>”8

€;(x)= 3 N~ %0
Ikl

M,k k,D]e 275"

Xexplik(hE+kn+1E)r/V2] . (A1)
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Here (£,7,§) are the components (m approprlate units) of

x (h,k,1) are Mlller indices, 0 =h2+k?2+1?, the multipli-
city N=0n2’ " /(n,!), where ny(n,) is the number of
vanishing (equal) |h |, |k |, |] |, k is the chirality, the
amplitude €,(0)>0, and the phases satisfy
Ylh k)= —,(— k,—I). The basis matrix
[M,(h,k,I)] is defined such that [A, k,[] is along the polar
axis of a local coordinate system (defined separately for
each value of [ A, k,/] in which it has the form

o
[My]=> |i —1 0 (A2)
0 0 0

The parameter r (which determines the unit-cell dimen-
sion) is fixed by minimizing the free energy.

(1) O°: For all bee groups, the four lowest-lying states
are those with 0 =2, 4, 6, and 8. For O°, the o =4 state
is forbidden,”®'® thus €,(4)=0. With the coordinate sys-
tem used in Table I, the phases ¢,(h,k,l)=1,(0) and the
independent phases 1,(110), ¥,(112), and ¥,(220) must
be equal to either O or 7; we set them at 0. From the
free-energy minimum, we obtain® at a typical point
(chirality k=1.5, temperature t =2.9) in the phase dia-
gram,

€,(2)=0.48; €,(6)=0.06 ;
(A3)
€,(8)=0.01; r=0.98 .
(2) 0% For sc groups, the four lowest-lying states are

those with o=1, 2, 3, and 4. For 0?2, the latter two
values are symmetry forbidden”®!® and €,(3)=¢,(4)=0.
For the O? coordinate system in Table I, we again have
Py(h,k,)=1,(0) and the independent phases ¥,(100),
,(110) are again equal to either O or 7. Setting them
equal to m, we obtain® at the free-energy minimum for
(k=1.3,t =2.5)

€,(1)=0.41; €,(2)=0.23; r/v2=0.89 . (A4)

(3) 0% For this bee structure, the values o =2, 4, 6,
and 8 are all allowed.”®!® Using the coordinate to sys-
tem given in Table I, the phases are®

1,(200) =

m/2=0or 7,
—mw/2o0r +7/2,
Yo(112)=9,(112)= —9p(112)—7/2
=—¢(T12)—m/2=0o0r 7
¥,(220)=1,(220)+7=0 or 7 .

All other phases can be obtained from the above by cyclic
permutation of the (h,k,/) indices. Taking the first-
mentioned value for each phase [except ¥,(110)=m for
the case of O8], we obtain® the following free-energy
minima at k=0.9, ¢t =1.6: for Of,

€,(2)=0.33;
€,(8)=0.02;
for O},

€,(4)=0.16; €,(6)=0.01;
(A6)

r=0.90,



4858
€,(2)=0.43; €,(4)=0.03; €,(6)=0.18 ;
€,(8)=0.08; r=0.82, (A7)
for OCS,
€,(2)=0.36; €,(4)=0.28; €,(6)=0.18;
(A8)
€,(8)=0.01; r=0.77.
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The values given here for €,(0) are those used to ob-
tain the BP topologies given in Sec. III. We stress, how-
ever, that the topological properties of the three cubic BP
are independent of the particular point in the (k,?) plane
at which the local minimum of the Landau free energy is
calculated.
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