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Correlation energy differences have been evaluated using an empirical polarization potential for
the two-, three-, and four-electron atom series. In contrast to local-density approximations the Z
dependency of the correlation energies has been well reproduced. Moreover, the quantitative agree-
ment with experimental values is surprisingly good. Deviations are smaller than 0.01 hartree.

There are a number of methods for calculating the
correlation energy of atoms, molecules, and solids.
Rigorous methods such as configuration interaction,
many-body perturbation theory, coupled-pair theories,
and Green’s-function techniques are too expensive for
many practical applications. Hence there have been
many attempts to evaluate correlation energy contribu-
tions to measurable properties, e.g., ionization potentials,
dissociation energies, in an approximate manner.

The density-functional method provides an economical
and physically appealing alternative to more elaborate
methods.! ~® The exact density functional is not explicit-
ly known and could be very complicated, but simple local
approximations are available. For closed-shell systems
the local-density approximation (LDA) gives the correla-
tion energy as a functional of the density p,

E |p|=[pre.p)r, )

in which g,(p) is the correlation energy per electron of a
homogeneous electron gas with density p(r). For atoms
and molecules good results have been obtained by remov-
ing self-interaction terms and taking p(r) as the Hartree-
Fock density pyg(r). %3

However, the various LDA methods fail to reproduce
the Z dependency of correlation energies for the two- and
four-electron atoms. For the two-electron series He, Li™,
Be?t, ..., the correlation energies calculated by the
LDA increase as ~InZ,* while the exact correlation en-
ergies approach a constant value.® For the four-electron
series Be, B, C?*, ..., on the other hand, the correla-
tion energy should be linear in Z,® but the LDA gives a
dependence of ~InZ again.’

In this Brief Report we shall show that by using an
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empirical approach, which is closely related to LDA
methods, we are able to reproduce, in an impressive
manner, the Z dependency of correlation energies for the
two-, three-, and four-electron series.

Our goal is to calculate correlation energy differences,

AE,=E.(N)—E,(N—1), )

where N is the electron number. To do this we define a
correlation energy potential which gives AE, directly,

AE, = [ pyp(r)V,(r)dr . 3)

The motivation and justification to define a potential
V.(r), which is in general a nonlocal one, are found in
works by Gunnarsson and Lundqvist,8 Ros,’ and Sharma
and Thakkar.'°

It is worthwhile to mention that Eq. (3) gives energy
differences directly, i.e., physically observable magni-
tudes, which distinguish it from the LDA and other
methods. The total correlation energy of an N-electron
system can be obtained only through a consecutive appli-
cation of Eq. (3) to the N-,(N —1)-,(N —2)-, ... electron
systems.

In this work V,(r) will be approximated through an
empirical polarization potential, which describes the po-
larization of the (N — 1)-electron charge density due to an
external electron. There is a variety of grounds to justify
this approximation. Perhaps Born and Heisenberg!' were
the first to apply a polarization potential in order to un-
derstand the spectrum of alkali-metal ions. Heisenberg
also used a polarization potential to calculate the excited
states of helium.!? More recently, Ros’ computed a
“correlation potential” for the two-electron atoms H™,
He, and Ne®* from explicitly correlated wave functions.
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in units of r,.

After expanding the numerical values in spherical har-
monics he found that the leading term was very well
reproduced through a polarization potential. It is well
known that the long-range correlation energy can be de-
scribed by a polarization potential and efforts have been
made to match it, at some radius, to more elaborate
methods.!® In a line very similar to our work, Midgalek
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FIG. 1. Polarization potential with both cutoff functions plotted in reduced variables. Energies are in units of a/2 and distances

, cutoff function of Miiller et al. (Ref. 15); — — —, cutoff function of Midgalek and Baylis (Ref. 21).

and Baylis'* applied a polarization potential to improve
the electron affinities of halogen atoms calculated by the
Hartree-Fock method. Lastly, the evaluation of core-
valence correlation energies using a polarization potential
is well known.!>~!° Besides the already cited works there
are many other important papers in which the concept of
a polarization potential has been discussed (e.g., Ref. 20).
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FIG. 2. Correlation energy differences for the two-, three-, and four-electron series. [, cutoff function of Miiller et al. (Ref. 15);

*, cutoff function of Midgalek and Baylis (Ref. 21); and O, experimental values from Ref. 6.
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TABLE 1. Correlation energy differences AE,=E_.(N)—E_ (N —1) (in mhartree). N is the electron

number.
AE,

Atom N ro (a.u.) a (a.u.) MB* MFM® Expt.
H- 2 1.5 4.5 33 36 40
He 2 0.75 0.28125 40 41 42
Li* 2 0.50 0.055 56 42 42 44
Be?* 2 0.375 0.01758 43 42 44
B3+ 2 0.30 0.007 20 43 42 45
CcH 2 0.25 0.003 47 44 42 45
N3+ 2 0.21429 0.001 87 44 42 45
Li 3 0.572 0.1915 3 3 2
Be*t 3 0.414 0.052 5 5 3
B2+ 3 0.324 0.019 6 6 4
C3+ 3 0.267 0.0088 7 7 5
N+ 3 0.226 0.0047 8 8 5
Be 4 2.280 25.0 46 53 47
B+t 4 1.636 8.12 59 66 63
Cc*+ 4 1.279 3.59 71 79 77
N3+ 4 1.052 1.90 83 92 91

2Midgalek and Baylis cutoff function (Ref. 21).
®Miiller et al. cutoff function (Ref. 15).
“Experimental values from Ref. 6.

The correlation potential to be used has the following
form:

Vr=—="2aolr), 4)
2r

where a is the electric dipole polarizability of the respec-
tive (N —1)-electron ion. For the cutoff function w(r),
necessary to avoid divergence as r goes to zero, two
different functional forms were employed. The first one,
used by Midgalek and Baylis,'*?""?? is

r6

—7 . 5
(rg+r*? o

womp(r)=
The second one, proposed by Miiller et al.'> has the fol-
lowing form:
—r2/r(2,)4 ]

COMFM(")=(1—€ (6)

In both formulas the cutoff parameter r, was chosen as
the expectation value {r) of the outermost occupied or-
bital.

There is no conclusive reason to prefer one cutoff func-
tion or another, and the final results depend slightly on
the functional form. The same conclusion has been found
in many applications of polarization potentials.!>!¢22 In
Fig. 1, the polarization potential curves with both cutoff
functions are shown. Although the differences between
the polarization potentials appear to be large at small dis-
tances, the results of applying Eq. (3) are very insensitive
to these differences. The use of a relatively simple form
for the polarization potential has been well justified in
many works (e.g., Refs. 15, 16, and 18). Other theoreti-
cally derived forms?*»?* cannot account for the exclusion
effect; therefore it seems to be more appropriate to
choose a form which is convenient for integration and

which gives a clear physical picture.

To evaluate the polarization potential one needs nu-
merical values of a for the (N — 1)-electron ions. For the
one-electron series the a values are exactly known,
a=4.5/Z* (in a.u.). For the two-electron series the
values were taken from Refs. 15 and 25. For the three-
electron series we calculated them using a finite-field
method and psuedopotentials with a large basis set. De-
tails of the computational method can be found in Refs.
19 and 26. The Hartree-Fock density pygr(r) entering
into Eq. (2) was taken to be the density of the outermost
orbital. It was numerically obtained using the atomic
Dirac-Fock program written by Desclaux.?’

The results for the two-, three-, and four-electron series
are shown in Table I and Fig. 2. In Table I, the parame-
ters used in the polarization potential are also listed. The
first observation confirms that the numerical results do
not depend significantly on the specific form of the cutoff
function. The calculated correlation energy differences
are compared to “experimental” ones, which were com-
puted using experimental ionization potentials and
Hartree-Fock energies, using estimates for relativistic
effects and radiation corrections.® It is seen that not only
the correct trends for each series are well reproduced but
also that the calculated values are quantitatively in very
good agreement with the experimental ones. The devia-
tions are smaller than 0.01 hartree. In view of these re-
markable results, we conclude that it could be
worthwhile to explore further the virtues of the polariza-
tion concept for estimating correlation energies.

Part of this work was supported by the Direccion de
Investigacion y Bibliotecas, Grant No. E-2579-8713 and
the Consejo Nacional de Investigaciones Cientificas y
Technoldgicas (Project No. 634).
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