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We consider physical systems in which microstates can be represented as symbol sequences. The
internal correlations in a microstate give restrictions to its "randomness, "quantified by the measure
entropy of that microstate. It is shown that, in the thermodynamic limit, the measure entropy for
the microstates has an ensemble average equal to the thermodynamic entropy. A simple explana-
tion is that the correlations necessary to generate the whole ensemble can be found in almost any
one of its microstates. If microscopic phases are present, there are subensembles, each given by the
statistics in almost any one of its microstates. The typical microstate in an equilibrium ensemble
can be found by maximization of the measure entropy under energy constraints and general con-
straints on probability distributions for symbol sequences. The typical microstate does not contain
information in correlations of lengths greater than interaction distance, a fact which simplifies the
calculation of the entropy for systems with finite interaction length. We exemplify this by deriving
the entropy for a monatomic ideal gas and the one-dimensional Ising model with an external field.

I. INTRODUCTION

The entropy of a physical system is associated with the
uncertainty of the actual microstate of the system, given
the macrostate. The macrostate is a probability distribu-
tion over the possible microstates, and the entropy is
defined as the ensemble average of —lnp;, where p; is the
probability for microstate i. Expressed in this way, the
entropy is not an average of microscopic properties.
However, for a system in the thermodynamic limit, all
correlations necessary to generate the macrostate are
present in each of the microstates, except in microstates
of a subset of measure zero. Then there must exist some
microscopic property that has an average equal to the
statistical mechanics entropy. This property turns out to
be the measure entropy that can be interpreted as a quan-
titative measure of randomness. For states which can be
coded into symbol sequences, in the limit of infinite
length, the measure entropy is the average Shannon infor-
mation per symbol, i.e., the information which remains
when the information in correlations of all lengths has
been subtracted from the total information per cell.

The idea of looking for this microscopic counterpart to
entropy comes from Bennett, who has shown that there
is a microscopic property, the algorithmic complexity,
which has an ensemble average equal to the thermo-
dynamic entropy for an equilibrium system in the ther-
modynamic limit. The algorithmic complexity for a se-
quence of binary symbols is defined as the length of the
shortest program, or algorithms, for a general-purpose
computer, to generate the sequence. ' The algorithmic
complexity is generally applicable, since it does not
presuppose any probability distributions on substrings of
the binary sequence. The drawback is that there does ex-
ist a general procedure for finding the smallest program,
and thus the algorithmic complexity is not generally
computable. However, if the binary sequence is the out-
come of a stationary stochastic process, the algorithmic

complexity is often well approximated by the measure en-
tropy.

We consider physical systems in which the microstates
can be expressed as binary sequences, and the extension
to lattices of higher dimension is indicated. Then it fol-
lows that the thermodynamic entropy of a system, for
which almost all microstates in the thermodynamic limit
have a correlation information which decreases
sufficiently fast with distance, is equal to the ensemble
average of its microscopic measure entropies. We will
discuss this relation in information-theoretical terms us-
ing the measure entropy and its complement, the infor-
mation in correlations of different lengths.

It is well known that the equilibrium macrostate is the
distribution with maximal entropy given some con-
straints, e.g. , a specified expectation value on the energy.
If the entropy of the equilibrium macrostate in the ther-
modynamic limit is given by the measure entropy of a
typical microstate, this microstate can be found by max-
imizing its measure entropy under the given constraints.

Note that a typical microstate is such that its probabil-
ity distributions on finite subsequences describe the whole
ensemble. Then it follows that the thermodynamics
based on these microstates is formally identical to the
thermodynamics of classical lattice gas theory (see, e.g.,
Ref. 9}. Our aim is, however, to show that, in the ther-
modynamic limit, the measure entropy is a microscopic
quantity which has an ensemble average equal to the
thermodynamic entropy. The idea of such a quantity
originates from Boltzmann, ' who defined a microscopic
property, the H function, which under certain conditions
was proven to be nondecreasing in time —the H theorem.
The aim was to establish a close relation between the H
function and the thermodynamic entropy. Discussions of
difficulties with Boltzmann's approach have been given in
numerous works, e.g., Refs. 11 and 12. We expect the
measure entropy for a microstate to be nondecreasing in
time, implying that the second law of thermodynamics
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holds for single microstates. This will be discussed in
terms of states in infinite cellular automata.

If there are states with different correlation functions,
each having a maximum in measure entropy, we say that
there are different microscopic phases. For a one-
dimensional system, it is shown that if the number of mi-
croscopic phases increases less than exponentially with
the size of the system, then the relation between measure
entropy and thermodynamic entropy still holds. It is
easily seen that, for a one-dimensional equilibrium sys-
tem, there is no information in correlations longer than
the interaction distance for the typical microstate. This
corresponds to a result in lattice gas theory where such a
statement holds for the macrostate.

The typical microstate is derived for two simple sys-
tems. The measure entropy for the typical microstate in
an ideal gas gives the Sackur-Tetrode equation, and the
measure entropy for the microstate in the one-
dimensional Ising model with an external field also agrees
with the exact expression of the thermodynamic entropy.

II. MEASURE ENTROPY
AND THERMODYNAMIC ENTROPY

We review some information-theoretical properties of
lattice systems which are useful in the analysis of internal
randomness and correlations of microstates. The micro-
states are assumed to be written in the form of binary
symbol sequences.

Consider an infinite sequence of zeros and ones for
which the probabilities p (i,i 2

. i ) for length-m
subsequences i,i2 i, where i„EI0, 1I with
k =1,2, . . . , m, are well defined. The m-point Shannon
entropy S is then defined as'

Sm
l ] yl2y ~ ~ y l

1
p (i, i2 i )ln

pm l ll2 lm )

It has the properties b,S =Sm —Sm, &0 (SO=0) and
=QS —5,S,g 0, m & 2. The second-order

difference gives the information in correlations k of
length m,

k = —hS
l ] 7 p r ~ I $ I

pm (l 1 i2 lm )pm 2(l2l3 ' ' '
lm I )

p (l, l, ~ l )ln
pm —1(l 1 l2 rn —1)pm —1(12 3 m )

(2)

which is a relative information or Kullback information
between p and a maximum-entropy estimate

pm�(1112 ' ' '
1m )=pm 1(1112 lm 1)pm 1(1213 . .

lm )/
p 2(i2i3 i, ) of p given correlations m'&m. '

The (spatial) measure entropy s„ is defined as (see, e.g. ,

Ref. 14)

1s„= lim —S = lim AS
m~ao m m~oo

which is the average entropy per cell. The entropy
difference converges faster, and for Markov chains of
memory m, i.e., sequences in which each symbol depends
only on the m preceding ones, one has s„=b,S . (The
measure entropy for a lattice of dimension n is given by
the average entropy per cell for an n-dimensional block
when the side lengths increase to infinity. )

The total information of 1 bit, or equivalently ln 2, per
lattice site can be decomposed into three non-negative
terms, ' ln2=(ln2 —S1)+(S1—s„)+s„. The first term
can be interpreted as an information quantity due to
difFerent probabilities for 0's and 1's. The second term
can be written as the sum of correlation information from
all lengths, g k . Thus the third term s„can be inter-
preted as the random information per lattice site. The
average m-point Shannon entropy approaches the mea-
sure entropy as m ~ ~, and the rate of convergence g is
given by

This can be written as a product of mean correlation
length (in information-theoretical terms) and correlation
information, and it was introduced by Grassberger as a
measure of complexity for binary sequences. '

For physical systems we usually need the possibility of
choosing among an infinite number of symbols, each cor-
responding to a certain physical state. In the limit of a
continuum of states, represented by the set of real num-
bers, we will need a function for the density of states. Let
the microstate be an infinite sequence of real numbers,
and let v (r, r2 . r ) be the density of states for a
subsequence (r, r2 r ). The probability density for
this sequence is denoted p (r, r2 r ) and satisfies the
normalization condition

f dr1 f dr2 . f drm vm(r, r2 rm )pm(rlr2 r )

=1 . (5)

Then the measure entropy for the infinite sequence is
defined, cf. Ref. 16,

s„= lim —f dr
1 f dr2 f dr v (rl r2 . r )

1

m~oo m
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)& ln
1

p (r r2. . r )

r/= lim (S —ms„) .
/pe ~ oo

(4)
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We consider a physical system with X available micro-
states, and we assume it to be the macrostate

The thermodynamic entropy (in units of the Boltzmann
constant ks ) is then

S(P)= g p, ln —= ln—

Thus it is an ensemble average over —lnp, , a property
which depends on the probability distribution P. Bennett
has shown that if the macrostate is concisely describable,
then the entropy S can be approximated with the ensem-
ble average over the algorithmic information H (i ) of the
microstates i. The following inequalities hold for the
probability distribution P:

S(P) & g p;H(i}&S(P)+H(P)+O(1) .

Here H (P) denotes the minimum information needed for
describing the macrostate P. The O(1) term comes from
the ambiguity due to the choice of general-purpose com-
puter. For a thermodynamic system, the entropy P is of
the same order of magnitude as the number of particles,
say, 10 binary digits (bits), while H(P) corresponds to
some thousand bits in a nondeterministic algorithm
(Monte Carlo program} which samples the ensemble. We
also expect H(P) to increase slower than linearly in the
size of the system. Thus, the algorithmic information is a
property of the microstate, and, in the thermodynamic
limit, its ensemble average is equal to the thermodynamic
entropy.

The relation (9) is conceptually important, but, since
H (i } is not a computable function, the relation cannot be
directly used as a tool for calculating the entropy. How-
ever, since the algorithmic information has been shown
to be equal to the measure entropy for almost all se-
quences which are outcomes of a stationary stochastic
process, there is a direct relation between the entropy
S(P) and the ensemble average of the measure entropy
s„(i)of the microstates i = 1,2, . . . , X.

In the following we restrict ourselves to one-
dimensional systems, and sketch a proof for the relation
between the measure entropy of the microstates and the
entropy of the macrostate. Further, we assume that the
microstates can be described as length-L sequences of
zeros and ones, a=(j,j~ . jl ). (Systems of higher di-
mension can be analyzed in a similar way. ) We denote
the set of microstates by Q. Then the macrostate PI is a
probability distribution over 0,,

(10)

We divide 0 into nonoverlapping subsets QI, such that
each microstate in Qk has approximately the same corre-
lations for lengths m (M. Here M is chosen to be large
compared to typical correlation lengths that appear in
the microstates, but small compared to L. (However
there may occur low probability microstates with long

correlation lengths for which such an inequality does not
exist. )

Note that if a microstate a is generated by a nondeter-
ministic algorithm which uses relatively short correlation
lengths 1, &&M &&L, then the concepts defined in Eqs.
(1)—(4) can be applied to that sequence. The microstates
in Qk can then be regarded as generated by the same al-
gorithm, but with dift'erent random numbers.

Let Q (a) denote the probability distribution over m-

length sequences P in the microstate a,

where B denote the set of all length-m binary sequences.
Then the closeness between the elements in Qk can be ex-
pressed as

1—
~
S(Q (a, ))—S(Q„,(az)) &e«1,

m

m &M, all a&, a2EQI, . (12)

Let pn(Q&) be the probability in Pl for a randomly
chosen microstate to belong to QA. . In the limits L~~,
M~ co, and L/M~ ac, we expect for simple physical
systems that there are only a finite number of subensem-
bles Qi, with pn(QI, ) &0, and we say that they corre-
spond to difFerent microscopic phases. The microstates
in such a subensemble have all the same internal correla-
tions, and they can be regarded as being generated by a
specific stochastic process 0., defined by the probability
distribution QM(a) (M~ao and a&Ok). It is assumed
that, for almost all microstates generated by cr, the infor-
mation in correlations of length m, k, decreases
sufficiently fast for g to be finite. (This may not be valid
at phase-transition points. )

We use these facts in the following decomposition of
specific thermodynamic entropy s (Pl ) =S (Pc )/L, which
holds in the limit L ~~:

s ( Pl ) =—g p ( cr ) g p ( cc
~

cr )ln
1 1

L p(cryo)

+—gp(cc) gp(cr
~

a)ln
1 p (cr a)
L p(cr )

Here p (a
~

o ) denotes the probability for the process o to
generate the sequence a, and p(o

~

a) denotes the proba-
bility that microstate a has been generated by a. Since
almost all microstates generated by o. have same measure
entropy, the first term is the ensemble average of the
measure entropies. The last term is the relative informa-
tion between p (cr ) and p (o

~
a), averaged over a and di-

vided by L. The relative information is less than or equal
to the logarithm of the number of microscopic phases.
Thus, if the number of microscopic phases increases
slower than exponentially in L, this term vanishes. Then
we get, in the thermodynamic limit, that the specific ther-
modynamic entropy is equal to the ensemble average of
the measure entropies of the microstates,
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where a denotes a typical microstate in the subensemble
corresponding to a.

If the entropy of the distribution over microscopic
phases is zero, i.e., all microstates can be viewed as being
generated by the same algorithm, then Eq. (14) expresses
the fact that, in the thermodynamic limit, the ensemble is
given by the statistics in one microstate. To find the ther-
modynamic entropy is then equivalent to finding a typical
microstate and calculating its measure entropy.

The thermodynamic entropy for an equilibrium system
under energy constraints can be found by maximizing the
macroscopic entropy with the constraint of a specified ex-
pectation value of the internal energy. This problem is
usually solved by introducing Lagrangian multipliers p
and P for the normalization and the energy constraints,
respectively, and the solution is the Gibbs distribution.
Then the multiplier f3 is equal to 1/(ks T), and p/P is the
Helmholtz free energy.

The measure entropy of a typical microstate in an equi-
librium ensemble is also given by the maximum under en-

ergy constraints, e.g., a specified energy for the micro-
state, and the constraints given by general properties of
probability distributions on symbol sequences. These are
the normalization constraint, the requirement of positive
probabilities, and the condition that a summation over
last index in an length-m distribution shall give the same
length-(m —1) distribution as is given by a summation
over first index. If the interaction distance is finite, m,
the typical microstate does not contain any information
in correlations of lengths greater than m, and the mea-
sure entropy is equal to hS . This follows immediately
from the fact that, without violating the constraints, the
correlation information from lengths m ' ~ m can
be decreased to zero by defining p (i, i 2 i )

=P (i,i 2 i ), step b.y step starting with m ' =m + 1,
see Eq. (2). The maximization problem can be formulat-
ed as follows:

max
p

p (i,i~ i )ln
pm l l

.i, )

(15)

under constraints on normalization and energy u,

pm(lil2 im ) 1 (16)

p~(iii2 . i )h(i, i2 i )=u, (17)

where h is the Hamiltonian, and the general conditions
for probability distributions on symbol sequences. If the
problem is solved by introducing Lagrangian multipliers,
the multiplier P associated with the energy constraint (17)
has the same meaning here as in the maximum of the
macrostate entropy, P= 1/(kiiT). In Sec. III the rnaxi-

s(P~)~ gp(0)s„(a )= g p(a)s„(a) as L~~,
aEQ

(14)

mization problem (15)—(17) is solved for an ideal gas and
for the one-dimensional Ising model with an external
field.

The maximization problem may give more than one
solution, implying that there are different microscopic
phases, each having the same value on the measure entro-
py of their typical microstates.

The second law of thermodynamics tells us that the en-
tropy S (P) for a closed thermodynamic system increases
in time. Equivalently, the ensemble average of the mea-
sure entropy for the microstates must increase in time.
But we expect a stronger statement than that to be valid:
The measure entropy of a single microstate almost never
decreases in time. We discuss this briefly in terms of
infinite cellular automata, which define an interesting
class of systems for studying microscopic dynamics. An
infinite cellular automaton maps an infinite sequence onto
the set of infinite sequences by a rule which depends on
the local symbols only. In a previous article we studied
a class of deterministic rules which were suf5ciently re-
versible to conserve the measure entropy of the sequence.
But then the entropy is constant, and we do not get any
dissipation. What happens in such a dynamics is that in-
forrnation moves into correlations of larger and larger
distances, so that, locally, the entropy of the microstate
appears to increase. It was also shown that if the rule is
modified by an arbitrarily small amount of noise, then the
measure entropy increases to a maximum value. In the
time evolution of the microstate of a physical system, the
information found in correlations must decrease, for ex-
ample by an increased correlation length which makes
the correlation information more sensitive to stochastic
influence.

III. EXAMPLES: THE IDEAL GAS
AND THE ONE-DIMENSIONAL ISING MODEL

1 l 1
S& ——poln + 3

d pp& p ln
po A pif(p)

' (18)

under normalization and energy constraints. Here, f (p)
is the probability density of p, satisfying the normaliza-

We solve the maximization problem, Eqs. (15)—(17), for
two simple examples: the ideal gas and the one-
dimensional Ising model with externa1 field.

Consider first a gas of N noninteracting point particles
with mass m in a volume V, with a constraint on the ex-
pected value on the kinetic energy of the particles.
Divide the volume V into boxes of volume I « V/X. To
each box two state variables are associated. The first
variable is 1 if there is a particle in the box and 0 other-
wise, and the second variable is the momentum p of the
particle, if there is one. Then we get a cubic lattice of
these pairs of variables, with a density of ones p, =Nl /V
and a density of zeros po =1—p, . The thermodynamic
limit is given by %~co with V/V constant. Since the
absence of interaction implies that there is no informa-
tion in correlations, we are to maximize the measure en-
tropy, which is given by the entropy of one cell (the den-
sity of states is 1 /h ), cf. Eq. (6),
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tion condition, Eq. (5). The maximum value is obtained
for f (p) being the Maxwell-Boltzmann distribution, and
it is

N13 y 5 3 2mmk& T
S) —— ln —+—+—ln

~
+0

hz

(19)
This is the measure entropy per lattice site, and if it is
multiplied by k~V/1, we get, in the limit 1~0, the
Sackur-Tetrode equation for thermodynamic entropy for
N particles,

5 3 21Tmkg T
S =k~N ln —+—+—ln

N 2 2

In the second example, we consider an infinite one-
dimensional sequence of spins, and we denote spin up by

e =J(2p, —po —p2)+H(po —p2) (21)

Since the interaction is over pairs only, the measure en-
tropy is equal to the entropy difference S2 —S&. Thus by
introducing Lagrangian multipliers p for the normaliza-
tion constraint and p for the energy constraint we have to
maximize

1 and spin down by 0, so that a microstate is an infinite
sequence of zeros and ones. Suppose that the interaction
energy between nearest neighbors of antiparallel and
parallel spin is +J and —J, respectively, and that an
external field contributes with energy +H and —H for
spin down and spin up, respectively. If the probabilities
for configurations of pairs of spins are po =P(00},
p, =P(01)=P(10), and p2 P(——11), with po+2p, +p2
= 1, then the energy e per site can be written

Po+Pl (Po+P1 )(Pl+P2 } P1+P2
S(PO,P &,P2, P,P }=Poln +P &1 +p2ln

Po Pt P2

+p[e —J(2P& po p2) —H(po p2)]+@(l—po —2p, —p2) . (22)

The solution is

p, =in[cosh(PH)+[sinh (PH)+e ~]'~ ), (23)

2PJe ~ " PH sinh(P—H)S =p+
[sinh'(PH)+ e -'t"]'" (26)

(ePH e
—P)(e PH —P)—

2[sinh (pH)+e 4J] t /2—
XI3H —p

2[sinh'(PH)+e -4t"]'" '

(24)

(25)

which gives the thermodynamic entropy per spin (in units
of ktt)

in agreement with the expression that one gets in tradi-
tional approaches. '
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