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The purpose of this paper is to describe a number of theoretical results for fluids consisting of
orientationally ordered particles. The model considered assumes perfect orientational order, with

a11 molecules fully aligned in a particular direction with respect to a laboratory fixed frame of refer-

ence. However, rotations about the fixed axis are permitted and hence the present theory can be ap-

plied to particles which are not axially symmetric. Physically, such a model can represent liquid

crystals in a dense nematic phase or fluids of particles aligned by strong electric or magnetic fields.

A general formulation is given which allows the hypernetted-chain, Percus-Yevick, and closely re-

lated integral-equation approximations to be solved for orientationally ordered systems. For aniso-

tropic fluids it is interesting to analyze the compressibility and pressure tensors and this is done in

some detail for particles interacting with both short- and long-range (i.e., dipolar) potentials. The
compressibility equation is used to demonstrate microscopically the physical requirement that these

tensors be isotropic in a fluid. Also, the conditions placed upon the pair distribution function g(12)

by isotropy of the pressure tensor were determined by examining the virial equation of state. For
the dipolar case explicit expressions are derived relating the elements of the dielectric tensor to g(12)
for an infinite system. Finally, numerical results are presented and discussed for ferrofluids and for
another model defined by a closely related but short-range potential.

I. INTROOUCTION

The purpose of this paper is to describe some general
theoretical techniques which can be applied to liquids of
orientationally ordered particles. These include liquid
crystals in the nematic phase or fluids of molecules orien-
tationally ordered by strong electric or magnetic fields.
Despite the physical interest of such systems there has
been relatively little attempt to apply theories which have
been quite successful for isotropic fluids to ordered
liquids of this type. Notable exceptions have been the
solution of the Percus-Yevick (PY) approximation given

by Lebowitz and Perram' for a fluid of hard parallel ellip-
soids, the solution of the mean spherical approximation
(MSA) for charged parallel ellipsoids by Dhont, and the
application of the MSA and the hypernetted-chain ap-
proximation (HNC) to ferrofluids as described by Hayter
and Pynn and Martin et a/. , respectively. In this paper
we extend and generalize this earlier work, enlarging
both the class of models which can be considered and the
theories which can be applied.

Following previous work, ' we assume a somewhat
simplified model in which the orientational order is "per-
fect." That is, all molecules are constrained to be aligned
in a particular direction defined in a laboratory fixed
reference frame and orientational fluctuations with
respect to this direction are not permitted. However, we
do consider the case of nonaxially symmetric particles al-

lowing the molecules to rotate about the fixed axis. It

should be emphasized that although in the present model
the particles are orientationally fixed the fact that they
are spatially free to move ensures that the physical behav-
ior of such systems is by no means simple. For example,
Monte Carlo calculations have recently shown that a
fluid of hard parallel spherocylinders can undergo a
nematic-smectic phase transition.

In the present work we use the language and methods
often employed in liquid-state theory. It is shown that
if the pair correlation function, etc. is expanded in an ap-
propriate angle-dependent basis set then the HNC and
PY integral-equation theories can be solved for orienta-
tionally ordered systems in a manner similar to that pre-
viously applied in the solution of these theories for isotro-
pic fluids of nonspherical particles. ' ' ' It is also
found that this formulation allows interesting and con-
venient exact formal expressions to be derived for the
dielectric and pressure tensors. Finally, the properties of
ferrofluids are discussed in some detail and explicit HNC
and PY results are given.

II. GENERAL THEORY

In this section we describe how the integral-equation
theories can be solved for the present model, and derive
exact expressions for the dielectric and pressure tensors.
The approach followed is analogous in spirit to those
which have been applied in theoretica1 treatments of iso-
tropic fluids of nonspherical particles. " ' That is, the
pair correlation and related functions are expanded in an
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appropriate angle-dependent basis set constructed such as
to take advantage of all symmetry requirements of the
orientationally ordered system.

where the asterisk denotes the complex conjugate. Also,
since h (12) must be invariant to the exchange of labels of
identical particles, the condition

A. Expansion of the pair correlation function h mnl( r ) = ( 1 )lh nml(
& (6b)

For the orientationally ordered but translationally in-
variant fluids we consider the pair correlation function

h (12)=h (r, i,X, ,Xi},
where the vector r, 2

= rz —r, and the angles X, and X2 de-
scribe rotation about the orientationally fixed molecular
axis which we choose to be parallel to the z axis of the
reference frame. For the present model it is convenient
to expand h (12) on a complete angular basis set to obtain

+ oo oc (

h(12)= g g g h "'"(r,2)
m, n = —oo (=0 k, = —(

'" Zyi(Q ) (2)

where Q, 2
——(6},2, q!,2} describes the orientation of the vec-

tor r, 2 and YI (Q) denotes the usual spherical harmonic. '

The number of projections in (2) can be reduced by re-
quiring that h (12) must be invariant through an arbi-
trary rotation of the reference frame about the z axis (i.e.,
through the operations of the C„group). Following
Blum and Torruella we project h(12) onto the totally
symmetric representation of C„,

f dR„R Ii(12)
h(12) =

dR
(3)

where R„denotes the representation of a rotation y
about the z axis and the measure dR is equal to dy with

q!E [0,2tr }. The action of R on the angular functions is

e™~e Pi!.(Q ) e! It! +l!+A, IPe e
' yA. (Q )

(4)

so that the symmetrized h(12) [which henceforth we will
identify with h (12)]can be written as

where

m, n, l

h mnl(& )qmnl(1 (Sa)

qmnl(1 2) f mnl ™~!'" ay —(m +n)(Q (5b)

h mnl( ) ( 1 )m +nh —m —nl (6a)

and f "' is an arbitrary, nonzero, normalization con-
stant. We emphasize that, by construction, the complete
angular basis set (Sb) is appropriate only for the expan-
sion of pair correlation functions of phases having perfect
orientational order and invariant under the symmetry
operation C„(e.g. , ferrofluids). These include, as a par-
ticular case, fully aligned nematics of D „& symmetry.

It is possible to write two additional symmetry require-
ments (i.e., independent of the details of the molecular
model} which the h "'(r,z) projections must obey. The
fact that h (12) is real requires that

must hold. Molecular symmetry will further reduce the
number of projections in (5). For instance, for cylindri-
cally symmetric molecules one has m =n =0, l even.

h(12) —c(12)= f h(13}c(32)d(3),
2K

(7)

where c(12) is the direct correlation function, p is the
number density, and d(3)=dX3dr3. In general, for iso-
tropic fluids the HNC approximation has proven to be
the most accurate integral-equation theory. The HNC
closure is defined by the equation

c(12)=h(12)—lng(12) —Pu(12),
where g(12)=h(12)+1, u(12) is the pair interaction,
and It=1/k Ts. In this paper we will be mainly con-
cerned with the HNC theory but we note that using the
present techniques the PY equations can be easily solved
along the lines described in Refs. 12 and 14. Also, of
course, the solution of the MSA follows in a near trivial
manner.

As in the case of isotropic fluids, the reduction and
solution of Eqs. (7) and (8) is based upon expanding
h (12), c(12), and u (12) in an appropriate basis set. For
the present model these expansions are defined by Eqs.
(5). Since the final expressions obtained are somewhat
simpler if

f "'=[4'/(2l +1)]'", (9)

all following equations are written assuming this particu-
lar choice. We also remark that if f "' is defined by Eq.
(9), then for particles which are cylindrically symmetrical
about the oriented axis the g "'(12) reduce to Legendre
polynomials consistent with the expressions employed by
previous authors.

1. Reduction of the OZ equation

Following the original method of Blum and Torruella
for isotropic systems, Eq. (7) is Fourier transformed to
give

h(k, X, ,X2) —c(k, X»X2)

where

f h (k, X, , X, )c(k,Xi,Xi)dX3,
277 0

(loa)

h(k, Xi,X2)= f h(r, X„X2)e'"'dr (10b)

and c(k,X, ,X2) is analogously defined. The Fourier trans-
forms h(k, X, ,Xz) and c(k, X, ,X2) are then expanded in
the form

B. Integral-equation theories: The HNC approximation

Integral-equation theories consist of the Ornstein-
Zernike (OZ) equation supplemented with an appropriate
closure approximation. ' For the present model the
OZ equation can be written in the form
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h(k, Xi,X2)= g h "'(k)g "'(X„X„Qk),

where

h "'(k) =42ri 'I r ji(kr)h "'(r)dr,
0

(1 la)

(1 lb)

which occur on the left-hand side of Eq. (10a) after sub-
stitution for h(12) and c(12). If we insert the definition
(5b) for l{2 "'(12) [assuming Eq. (9)] into Eq. (12) the in-
tegration over g3 can be easily performed to yield

with ji(kr) denoting the usual spherical Bessel functions.
The lt(1 "'(X,,X2, Qk) is defined as in Eq. {5b) with Qk now
describing the orientation of the vector k.

The procedure now followed is to substitute the h {12)
and c(12) expansions into Eq. (10a) and simplify. This
requires the evaluation of convolutions of the type

1 1 1(13) y
2 2 2(32)

' I"y""'"(X„X,, Q)

1 1 1( 13) g
2 2 2(32)

4m im 1X1 in1X25„e e
[(21,+1)(212+1)]'

(13)

X 1)2
' ' '(X3,X2, Q )dX3, (12)

Applying the product rule for spherical harmonics' Eq.
(13) becomes

I, l2 I I, !2 I
(13)yg (32)—$ g (21+1) ( 1) 1 2q 1 2(12)

1' 2 0 0 0 m, +n, nz —n, —(mi+n2)
I

(14)

(15)

We note that for cylindrically symmetrical particles h "'(r) =h '(r), and Eq. (15) reduces to the result given by Hayter
and Pynn and Martin et al. for ferroAuids.

For reasons which will become clear in the later development of this paper it is convenient to introduce the functions

where the large parentheses indicate the usual 3-j symbol. ' In deriving Eq. (14) we have used the standard properties
of the 3-j symbols noting in particular that I

&
+12+I must be even.

Using Eq. (14) the OZ relationship (10a) immediately reduces to a set of coupled algebraic equations relating the
h "'(k) and c "(k) coefficients. These equations are defined by the expression

T

I, Iq I I, I2 I
h mnl(k) —mnl{k) (2I + 1)( I )m+n h '(k)c '(k)0 0 0 m+p n —p —(m+n)

j),12,p

Hmn{k) yf mnlh mnl{k)y —(m n+)(Q

I

In terms of these functions which depend both on the magnitude and direction of k we have

h(k, X1,X2)= g H "(k)e 'e

(16)

(17)

and the OZ, Eq. (10), takes the alternative form

H "(k)=C "(k)+p+H ~(k)C ~"(k), (18)

where C "(k) is defined similarly to (16).

2. The HNC closure

Following the arguments given in Ref. 11 we rewrite Eq. {8)in the form

c(12)=f h(12), dr' —Pu(12),
I' Br'

where

ul (12)= —2)(12)+pu(12),

2)(12)=h (12)—c(12) .

{19a)

{19b)

(19c)
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In order to simplify Eq. (19a) we expand h (12), w (12), and u (12) in 11 "'(12) and apply the product rule

t/J
' ' '(12)11 ' ' '(12)

I) I2 I I, I2 I
= ~ (21+1) 0 0 0 —(m)+ n)) —(m2+n2) (m)+n)+m2+n2)

I

(20)

which can be derived with the aid of the product rule for spherical harmonics. ' Using Eq. (20) it is easy to show that
Eq. (19) leads to the result

c "'(r)=( —1) +"(21+1)
1 1,

0 0 —(m, +n, } (m, +n, —m —n) (m+n)

( m —m] )(n —n] )12

X h ' ' '(r') d»' —Pu "'(r)
iver'

(21)

Equation (21) combined with Eq. (15) allows the HNC theory to be solved for orientationally ordered fluids. (An alter-
native method would be to use the procedure described in Ref. 16.)

We note that Eqs. (15) and (21) can be applied directly for models where the pair potential is a continuous function of
the angles Q'&, X2,0,2). This is the case for the ferrofluid discussed below. (See also Refs. 3 and 4.) For hard particles
where this is not the case the discontinuous behavior can be handled as described in Ref. 14.

Finally, it is useful to point out that the electrostatic multipole expansion describing the interaction between orienta-
tionally ordered particles can be readily expressed in terms of the g "'(12). Beginning with the usual general expan-
sion, ' it is not diScult to show that for a pair of orientationally ordered particles the electrostatic interaction
u "(X~,X2, 0,2) can be written in the form

u el(~ y II ) y mnl;ei( „)qmnl

m, n, l

where

(22a)

mn('el(
) y ( I)1 (21+1)

(2j)!(21—2j)!
j (1 —j)

( —m n)—Q (1)Q I (2)
I+1 (22b)

Q J.
——[4m/(2j+I)]'~ pe, (r, }11'.(O, , gr,. ), (23)

In Eq. (22b) the Q represent multipole moments in

spherical tensor notation. These are defined by' '
I

bility) in terms of the projections h "' of the pair correla-
tion function h (12) on the basis set f "' [cf. Eq. (5)]. The
internal energy is given by

where e; is a charge located at r, —:(r;, 8;,q;) in the
molecular frame.

U= — fdr, 2dX, dX2g (12)u (12),
2 (2n. )

where

(24)

C. Thermodynamic Properties g(12)=h(12)+1 . (25)

In this section we derive expressions for some thermo-
dynamic properties (internal energy, pressure, compressi-

Expanding g and u in a way analogous to Eq. (5) and us-
ing the orthogonality relationship between the f "',

f dx, f dx2f "sine, 2de, 2f dg&, 2y
' '"(12)q ""(12)=(2n)(f "') 5~~ 6„„511 (26)

U= 2p g f drg —"' (r)u "'(r) .
„,2I+1 (27)

Analogous expressions for the pressure tensor and

together with the choice (9) for the f "', Eq. (24) is readi-
ly expressed as

compressibility are somewhat less straightforward to
derive. Particular care is necessary for the ferroAuid case
due to the long-range nature of the dipolar potential. For
this reason we shall consider separately the cases of
short-range potentials (i.e., decaying faster than 1lr )

and the dipolar potential which decays as 1/r .
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1. Short-range potentials

a. Pressure tensor. Applying the virial theorem we
define the pressure tensor n. according to the equation

Aq 0 0

0 A~ 0P
p

0 0 All

(3P)

p
where

=U ——Am,
p

(28a)

P - P g r; Vu(r;, X„X2)
p 2N

(28b)

U is the unit tensor, N is the number of particles, and the
angular brackets denote an average value. Equation (28b)
can be written in terms of the pair distribution function
g(r, X&,X2) as follows:

P 2 0 2K 0 2K

Xu(r, X,,I, ) . (29)

Since g~l as r~ ~ and u decays faster than llr, the
integral in (29) is absolutely convergent and an unambi-
guous definition of the pressure tensor is obtained. (This
is, however, not the case for a ferroAuid where u decays
as 1 lr as r ~ oo, see below. ) Due to the symmetry of the
system, f3bFrlp can, a priori, be expressed in the form

Pb,Fr2Aj+ All T
p

P y f~~I f dr r g~~ (r) u (r),
Br

and

(31a)

where A
II

and A ~ indicate the elements of the tensor, re-
spectively, parallel and perpendicular to the axis along
which the particles are aligned (i.e., the z axis). However,
the observation that the thermodynamic properties, in
particular, the free energy, cannot depend upon the shape
of the sample suggests that All and A j should be equal.
This statement will indeed be proved in the next section
under the commonly made assumption that
c (12)-—Pu (12) as r ~ co.

The evaluation of the elements A
II

and A ~ in terms of
g

"' and u "' is rather complicated and the details are
given in Appendix A. Essentially it is possible to derive
the relationships

P ~3O ~ fmnlf mnl'( 1)I+I'+m+n
II j- 4

m, n, l, l', j
1 2 l' 1 1 2 1 1 j

X p i i p p p (21+1)(2j+1)

dr r 5. &. &v i'+1 ——u "'(r) 5&. ,—&I' + u "'(r) g
"' (r) .

0 ' +' Br r ' ' Br r

(31b)

u (12)=uHs(r i2)+u,„;„(ru,8i2),

where

(32a)

From this last expression it is obvious that the require-
ment All ——A~ imposes nontrivial conditions upon the
g "'(r) projections.

It is interesting to consider the explicit expression ob-
tained for a pair potential of the form

model does not have the symmetry required to describe
the nematic phase (i.e., it is not invariant under symmetry
with respect to the xpy plane). However, if n =3 and
a =2@,where p is the dipole moment, the potential (32)
defines the ferroAuid model discussed below. More ap-
propriate models for a nematic system would be either a
potential of the form

u,„;„(r,8)= — P4(cos8),
n 4 (33)

r (duHs(r) = .
0 d (32b)

where P4 is the fourth order Legendre polynomial or an
equal mixture of two species of molecules interacting by

u,„;„(r,8)= — Pz(cos8),
n

(32c)
P2(cos8)

u, ~;, (r, 8)= —aPa
n

(a,P=+1) . (34)

d is the hard-sphere (HS) diameter, 8&2 is the polar angle
describing the orientation of the vector r, z, and P2(cos8)
is the usual second-order Legendre polynomial. This

Since u (12) given by (32) does not depend on X, and

Xz, we have m = n =0 and with some effort we can derive
the explicit expressions, valid for n & 3,
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(2Ai+ A
3

d 3gooo(d)

+ pPan f dr
2m g (r)

r
(35a)

tentials. However, we note that even to linear order in a
this comes about through a nontrivial cancellation of
terms dependent upon a.

b. Compressibility. The isothermal compressibility is,
a priori, a tensor defined by

4 d
All pd g (d) — (d)

II

pPa(n —3}f dr
4m gooo( r)

T

pPa(1 ln —6)f dr
T

pI3a(n +2)f dr
T

(35b)

—PuHS(r&&) —Pu „, (rl&, 8&2)=e e (36)

Expanding e '"'" "' " and keeping only the term
linear in a leads immediately to the expressions

000(r} Oy r (d
1, r&d (37a)

The first term in Eq. (35a) and the first two terms in Eq.
(35b) result from the hard-sphere part of the potential.
The remaining terms in both equations come from the an-
isotropic part of the interaction. We stress again that Eq.
(35b) is not valid when n =3. In particular, it would be
simplistic to assume that the n —3 factor would kill the
logarithmically divergent integral in the third term of Eq.
(35b).

The isotropy of the pressure tensor can easily be
demonstrated in the limit P~O, a ~0. As P~O we can
write

g ( 12) e
—Pu(12)

BENT

&T =P
Bp

(40)

where 7 is the pressure tensor introduced in Sec. II C 1 a.
To evaluate m we make use of the equation'

V-a+PV4=0, (41)

which expresses hydrostatic equilibrium in an external
potential 4. Equation (41) is an exact relationship pro-
vided the potential u is short ranged and can be derived
from the Bogoliubov-Born-Green-Yvon hierarchy. [In
Sec. II C 2 b we shall show how Eq. (41) must be modified
when the potential is long ranged. ] For a small distur-
bance

54(r) =5@ke'"' . (42)

In Fourier space Eq. (41) can be written to linear order in
54& to give

k 5'„+pk5@i, 0, —— (43)

where k=k/k. The density variation 5p induced by 54
is related to the latter by

dX, dX2—P54i, ———5pi, —f f c(k,Xi,Xz)5pi, ,
p 2' 2' (44)

which follows from the definition of the direct correlation
function. ' Using the notation introduced in Sec. II B 1,
Eq. (44) can be written in the form

oo2( )
0, r(d

P
T

n

—P5@i,———5p~(1 —pC (k)) .
1 00

p

From this expression and Eq. (43) it follows that

k 5Fri, —5.pi, (1———pC (k) )k .

(45)

(46)

—,'(2 A i+ A
ll

) = — pd +O(a },
2m d3 4np

p
a

II 3 15

(38a)

Also, since the P "'(12) are orthogonal, it is easy to
deduce that the term linear in a does not contribute to
the g '( r) for I & 2.

Substituting Eqs. (37) into Eqs. (35) one obtains 5'
5Fri, —— 5p„.

5p
(47)

Also, assuming that c(12) behaves asymptotically as
—Pu(12), all Hankel transforms c "'(k) with l&0 van-
ish in the limit k ~0 [for u (12) short ranged] and hence

Consider now the k~0 limit of Eq. (46). In this limit we
must have

+ Pa(n —3)f dr+0(a ) . (38b)
lim C (k)=c (0) .
k~o

(48)

For n & 3 the integral in Eq. (38b) can be evaluated and
the second and third terms cancel exactly leading to

Comparing Eqs. (46) and (47) and using Eq. (48} we con-
clude that

2~ 3
All

——Ai= — p3
(39)

—ooo=—X r =—(1—pc (0))U . (49)

which is just the result one would find for an isotropic
system. This illustrates that as discussed above one does
obtain mII

——~~ ——
—,
' Tr~ for systems with short-range po-

Thus the compressibility tensor is isotropic and the isot-
ropy of n. follows from integration over p.

Using Eq. (18) an alternative expression for 5F/5p can



4778 J. M. CAILLOL, J. J. WEIS, AND G. N. PATEY 38

be derived in terms of H (k). By observing that

lim C (k) =c (0)=5 Oc (0),
k~0

one easily finds that

(50)

7(r, r') =e5(r —r') .

Furthermore, for the present problem symmetry requires
that e be of the form

1 U.
P(1+pH (0) )

2. Long rang-e potentials (oriented dipolar fluids)

(51)
e, 0 0

E'= 0 Eg 0

0 0

(58)

u (12)= u, (12)+uDD(12), (52)

where u, denotes a short-range potential (spherical or an-
isotropic) and uDD is the usual dipole-dipole interaction
whose radial dependence is 1 lr, 2. We assume that the
dipole moment of each molecule is of the form

In this section we consider the case of a system of mol-
ecules ordered along the z axis interacting through a po-
tential of the form

(59)

Moreover, the Maxwell field 5E and the external field 58
satisfy the equation

5E=54'+4ir60 5P, (60)

In order to find an expression of e in terms of the pair
correlation function h(12) it seems natural to apply
linear response theory which relates 5P to 58 through
the susceptibility tensor 7 according to the equation

4n.5P =X 58 .

p, , =ulz+p~(cosy, x+siny, y) (53)
where Go is the free-field Green's function

P=ppi(z . (54)

The dielectric tensor e is defined by

4m 5P(r }= Id r'Qe r, r' ) —U5(r —r' }].5E(r'), (55)

where 5P and 5E are the variations of the polarization
and Maxwell field induced by a variation of the external
field 5C. It is convenient to write (55} in the condensed
form

4n.5P = (7—1).5E, (56)

where the dot denotes both convolution over space and
tensor contraction. In fact, as we are interested mainly in
the long wavelength limit (i.e., k~0) of7, we will assume
that e is a local quantity and therefore expressible in the
form

where x, y, z are unit vectors along the Ox, Oy, Oz direc-
tions of the reference frame. The component parallel to
the z axis is fixed whereas the perpendicular frame com-
ponent can rotate freely around the z axis.

Due to the long-range nature of the dipole-dipole in-
teraction, the expressions given in Sec. II C 1 for the pres-
sure tensor and compressibility do not apply to the
present case, and the correct equations are derived here.
In addition, the dipolar system has dielectric properties
which we shall characterize. In view of the fact that for
the orientationally ordered dipolar fiuid electrostriction is
linear in the electric field (contrary to isotropic system
where it is quadratic) it is not surprising that the dielec-
tric constant turns out to be closely related to the iso-
thermal compressibility. Therefore, for clarity of presen-
tation we will first discuss the dielectric results.

a. Dielectric tensor of an oriented polar flfuid. We con-
sider an infinite system (i.e., without boundaries) having a
net polarization

Go(r, r') = VV
1

4m r —r' (61)

Eliminating 5E from (56) and (60) and comparing with
Eq. (59) yields a relationship between the susceptibility
and dielectric tensors which can be expressed in the form

X=7—1+(7 1) G (7—1), — (62)

where, following Fulton, we have introduced the
Green's function

6=60 [1 (7 1) G—o]— (63)

1
G(r, r') = VV@(r,r'),

4m.
(65)

where 4(r, r') is the electrical potential created at r by a
unit charge located at r' in the presence of the infinite
dielectric medium. The explicit expression obtained is
(see, e.g., Ref. 21)

We recall that the dots denote both tensor contraction
and convolution in space. In particular, the inverse in
Eq. (63) is defined with respect to these operations.

It is important to note that 6 and I depend on the
geometry of the sample, whereas e and Go do not. Here,
we shall limit ourselves to an infinite system without sur-
faces which is also the situation considered in integral
equation theories. In this case Eq. (62) is easily Fourier
transformed to yield

X(k) =(7—U)+(e U) 6(k—) ~ (7—U), (64)

where it should be clear that the dots now denote tensor
contraction only. Also as e has been assumed local, it is
understood that we will ultimately take the k~O limit of
this equation.

The Green's function G for an infinite system can ei-
ther be evaluated directly from Eqs. (61) and (63) using
Fourier transform techniques or one can simply remark
that"
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4(r —r'}

1

2y' 2 2
' 1/2

(x —x'} (y —y') (z —z')
+ +

Eg

(66)

and by Fourier transform

X k) 9yllzz+9yi —,'(xx+yy)

+4n13 f dX, dX,h(k, X iXz)p(X, )p(Xz),2'

Fourier transformation of (65) then gives
A.A.

G(k)
si+(sll ei)(k z)

(67)

where k is a unit vector in the direction of k.
Our next task is to express X in terms of h (12). From

linear response theory we have

X(r, r') =4nP[(P(r)P(r') ) —(P(r) ) (P(r') )], (68)

where ( ) denotes an equilibrium average and P is
the microscopic polarization defined by

P(r)= gp, 5(r—r;) . (69)

X 5(r —r')5(X —X')
2m

'2
P

2m
{

I
r —r' I,X,X'), (71)

Substituting (69) into (68) and recalling that the average
polarization of our system is nonzero and given by

(P(r) ) =ppII"z, (70)

one obtains

X(r, r')=4mPf dXd Xp( X)p( X)

with

4 } PPII

9

(72)

(73a)

4mPppi

9
(73b)

Combining (64), (67), and (72) we arrive at the fundamen-
tal relationship

(7—U ) (7 U}——
A.W
kk

6'II
—E'g

e, 1+ (kz)
(7—U)

=9yi —,(xx+yy)+9yIIzz

dXi dX,
+4nPp f f h(k, X,Xz)y(Xi)p(Xz) .

(74)

Equation (74) enables us to express eII and ei in terms of
the pair correlation function. This is most easily
achieved by calculating the trace and the z z component
of Eq. (74). For the trace, taking the zero wave-vector
limit, one finds

eq —1
eq —I+ +'II —'

Ej . 1+ II i(kz

Gfg ]= 9y+4~Pp'f f hmh(k, X,X,)p(X, ) p(X, )2' 2K k~0

=9y+9yIIpgh '(0)P&(k z)+9yipg —,'[h ' "(0)+h '"(0)]P&(k z)
1 1

=9yII[1+p lim H (k)]+9yi[1+p lim H' '(k)],
k~0 k~0

(75a)

(75b)

(75c)

where y =yII+yi. In deriving Eq. (75b) the Fourier
transform of the pair correlation function has been ex-
panded on the g "' according to (1 la). By virtue of (6b)
only even values of I will contribute to the sum. The last
equation reexpresses the result in terms of the correlation
functions defined by Eq. (16). The limits of H (k) and
H' '(k) as k~0 depend on the orientation of k. For ex-
ample, if in Eq. (75b) we assume that k is parallel to z
(i.e., k.z= 1) then

1
1 ——=9y

II
( 1 +pH

II
( Q ) ) +9y i ( 1 +pH

II
( Q ) )

II

~here the obvious notation

Hll (0)= lim H "(k)
k 0
kIIz

(76)

(77)
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has been used.
The z z component of the tensorial Eq. (74) is

—(e~ —1)+

I+p hm H (k)
k~0

For the particular choice k z= 1, Eq. (78) reduces to

(78)

(Ell
—1) 1 1

9yllph '(0) = —
QI

—(2l +1),
ll

(85a)

T

1 ll 1 1
9y~ph

' "(0}=
all QI (2I +1)

ei ell
—el 5 ' 5

For the conditions considered in this paper, specifically

~

u
~

( 1, the series in Eq. (83) will be convergent.
Now by identifying the coeScients of equal Legendre

polynomials in E~. (75b) we can derive the k=0 values of
the functions h and h

' ' (I &0). Explicitly we obtain

=9yll 1+pHll Q)
Ell

Substituting (79a) into (76) then yields

e~ —1=—9y~(1+pHIl '(0)) .

(79a)

(79b)

all
—1=9yll(1+pHi (0)), (79c)

Further relationships can be found by assuming k z=O
(i.e., kj.z) in Eqs. (75) and (78). One obtains

V Fr=(VE) P, (86)

(85b)

These results are compatible with a 1/r decay of the
functions h '(r) and h ' "(r) (I &0) at long range.

b. Pressure tensor. As indicated earlier in Sec. II C 1b
the balance equation (41) satisfied by the pressure tensor
has to be modified in the presence of the long-range dipo-
lar interactions. For this case the appropriate expression
has been given by Suttorp and De Groot. It reads

with

(e~ —1)(e~+ 1)
=9y~(1+pH,' '(0)), (79d) where P is the polarization of the system [cf. Eq. (54)]

and E the Maxwell field. Following Suttorp and De
Groot we identify four terms in the pressure tensor

H~ "(0)= lim H "(k) .
k~0
klz

(80)

1+pH
ll

(0) =1—9yll(1+pHll (Q))
1+pH~ (0)

(81a)

From Eqs. (79a) and (79c) it is clear that Hll (0) and

H~ (0) are not independent and satisfy the equation

~=V
p p

'
p

'
p

(87)

The first term in (87) is the ideal-gas term. The second
term is the contribution from the short-range part of the
potential u, . Its explicit form is as previously given in
Eqs. (30) and (31) with u replaced by u, . The last two
terms are the contributions to the pressure tensor from
the dipolar forces and are given by

(81b)= [1+9y
ll
( 1+PH (0)}]

A similar relationship holds between Hll '(0) and
H j '(0). In Appendix B a more direct proof of Eq. (81)
is given by considering the k~O limit of the OZ equa-
tion.

We have not yet fully exploited the information con-
tained in Eqs. (75). Further interesting relationships can
be extracted by expanding the function

pg~~ (1)
1

Pb~' '

I dX) ( dX2

2' 2n.

X Idr h (r, X„X2)rVuDD(r),

(88)

=4m( —,'PP+ —,', P U)—. (89)

f(u)=
21+ u

(82)

f (u)= —g (21+1)QI —PI(u),1 1
I (83)

where Qi is the Legendre function of the second kind
and

V (&l &ll)/&l tf &J & &ll ~5='
I't/(Ell —Eg)/Ej 1f Eg ( Ell

(84}

where u =k z, on the basis set of Legendre polynomials
according to the equation

In (88) the symbol P indicates that the principal value of
the integral has to be taken (i.e., integration is performed
for

~

r
~

& e and the limit e~O is taken subsequently).
This ensures convergence of the integral at small r where
the integrand diverges as 1/r (for finite e the divergence
of the integral is killed by the angular integration). At
long range h (r, X„X2)vanishes (the results of Sec. II C 2 a
suggest that h decays as 1/r ) so that the integral is abso-
lutely convergent for r~ ao. Finally, we remark that as
P&0 the last term i352'I '/p contains an anisotropic part.
However, as shown in Ref. 23, this anisotropic part is ex-
actly cancelled by a similar term in Pb, m. 'L" /p so that the
total pressure tensor m as defined in (87) is in fact isotro-
pic. A further proof of this result will be given below.

We conclude this section by giving explicit expressions
of the pressure tensor for the model potential defined by
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A, j 0 0

0 A, q 0 (90a)

Eq. (32) where we assume n =3, o =2p~~, and pi=0. If
we define

4n5P . z=z 7 5i'. , (93)

plied electric field) is linear in this field (contrary to an
isotropic dipolar system for which it is quadratic). This
is easily seen by projecting Eq. (59) onto the z axis to ob-
tain

p~V"'

0 0 A
ll

0

0

0

and recalling that

5P z=Pll5P .
(90b)

By combining Eqs. (93) and (94) we obtain

(94)

pgW2)

0 0 g (2)
LII .

0 0

0 ALJ 0 (90c)

5p= zX 58.
47TP

l l

(95}

Alternatively, we can use (56) to derive the density
response to the variation of the Maxwell field induced by
5@. This yields

then

3 P g 15P
d3 000(d) + d3h 002(d)

3
pd 3g 000(d ) + pd 3h 002( d )

15

(] ) 4' h 000( )
~L,

~(

=
1

pPa (n —3)f dr
2r

+ ppa (11n 6)f—dr
r

ppa (n +2)f dr
8n h (r)

r"

(]) 2' h 002( )
—,'(2A&'i'+ At,

~I
) =

1
ppan dr

2r

(91a)

(91b)

(91c)

(91d)

1 z(V—1) 5E.5p=
4 ~ll

(96)

15p„=
(equi

—1)(5Ei, z) .
47'

ll

(97)

d. Compressibility and isotropy of the pressure tensor
Consider a variation 5p=5pi, e'"' of the density of the
system. It induces variations 5Fri,e'"' and 5Eke'"' of the
pressure tensor and Maxwell field, which, by virtue of the
balance equation (86} and Eq. (54) for P are related, to
linear order, by

k 5m k
- (k5E„) pl2iiz . (98)

Thus for a variation of the form 5E=5Eke'"' we have, in
the limit k~0

and

Ll
In the k~O limit we have

91e

(99)

(2) 3'
L~(

=
5

In Eq. (91c) the n —3 term has been purposely retained in
order to show how it di8'ers from the corresponding term
in Eq. (35). We observe that now in the integral in ques-
tion g (r) [Eq. (35)] has been replaced by the short-
range function h (r}=g (r) —1. This ensures conver-
gence of the integral and hence that the term proportion-
al to n —3 vanishes. This contrasts with the situation in
Eq. (35) where for dipolar systems we have n —3 multi-
plying a divergent integral and the product cannot be as-
signed a well-defined value.

Finally, as in Sec. II C 1 a we can evaluate the low p,
small a limit of the pressure tensor (87} for the dipolar
potential. One easily finds

From (98) and (97) it then follows that

5m 91ll 1k. k,
p p ell 1

which shows that 5m/5p is isotropic and

5p 5p P(e~~ —1)

The compressibility is given by

(100)

(101)

(102}

2~
p p

=1+ pd ——pPa . (92)

which by means of (79c) and (79a) can also be expressed
as

Thus the isotropy of the pressure is confirmed in this lim-
it.

Xr —(1+pH, (0))=—e~~(l+——pH~~ (0)) .
p

'
p

(103)

c. Electrostriction. In a systen1 of aligned dipoles elec-
trostriction (i.e., the density variation induced by an ap-

Again the isotropy of ~ results from that of 5m. /5p by in-
tegration over density.
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III. NUMERICAL RESULTS

Calculations have been carried out for the potential
defined by Eqs. (32) with n =3 and 6. The n =3 case cor-
responds to a ferrofluid with the dipole moment given by
@=&a/2. The n =6 case does not model any particular
physical system, but in view of the discussion given in
Sec. IIC it is of theoretical interest to investigate how
changing the range of the anisotropic interaction
influences the results obtained. For the models con-
sidered a thermodynamic state is conveniently character-
ized by the reduced density p* =pd and the dimension-
less parameter a ' =a lktt Td" which determines the
strength of the anisotropic interaction.

At low density the calculations were performed using
the HNC closure and at high density the reference HNC
(RHNC) approximation2 " was employed. The RHNC
equation is a simple variant of the HNC closure which
ensures that the hard-sphere (i.e., reference) part of the
pair potential is treated "exactly" instead of at the HNC
level which is not particularly accurate for strongly
repulsive potentials at high density. For purposes of
comparison a few calculations for the n =6 case were
also carried out using the reference PY (RPY) closure.
Both the RHNC and RPY theories require the "exact"
hard-sphere radial distribution function and in the
present calculations this was provided by the Verlet-
Weis fit to the Monte Carlo data.

The integral equation theories were solved numerically
as described in Refs. 11 and 12. A grid width Lr =0.02d
was used and the Fourier transforms were performed us-

ing fast Fourier transform techniques with 512 grid
points. In all calculations terms in the correlation func-
tion expansions [cf. Eq. (Sa)] were retained up to I =10.
For the values of a ' considered here this was suScient to
ensure convergence.

A. Thermodynamic Properties

=1+ pd g (d)+2pU
3

for n =6 [cf. Eq. (35a)], and

(104a)

Z,„=1+ pd'g (d)+pU ——,

'kappa

(104b)

for n =3 [cf. Eqs. (90) and (91)]. The last term occurring
in Eq. (104b) is a consequence of the polarization of the
ferrofluid and is not present in the Z,„expression for
orientationally disordered dipolar systems. It can be seen
from Table I that the behavior of Z,„as a function of a *

is quite different for the n =3 and 6 cases. For the
ferrofluid Z,„decreases in a near linear fashion with in-
creasing a'. This behavior is largely due to the presence
of the last term in Eq. (104b). For n =6 Z,„has only a
very weak dependence on a ' remaining practically con-
stant at the hard-sphere result for the range of a ' values

The thermodynamic properties for n =3, p'=0. 2 and
0.6, and for n =6, p =0.6 are summarized in Table I.
We note that the average internal energies per particle
for these fluids are generally rather smaH in magnitude.
For example, for the ferroffuid (i.e., fully aligned dipoles)
at p' =0.6 the average energies are about jue times small-
er in magnitude than the corresponding values for orien-
tationally disordered dipolar fluids at the same density
and a'. " At the lower density p*=0.2 the energies of
the ordered and disordered systems are of comparable
magnitude.

The compressibility factors Z,„have been calculated
using the equations

Zav
p
P

TABLE I. A summary of the thermodynamic properties for the models defined by Eqs. (32).

Closure PU/N Zav ZJ

0.5
1.0
2.0
3.0

0.5
1.0
1.5
2.5
4.0

0.5

1.0

2.0
3.0
40

HNC
HNC
HNC
HNC

RHNC
RHNC
RHNC
RHNC
RHNC

RHNC
RPY
RHNC
RPY
RHNC
RHNC
RHNC

—0.0108
—0.0436
—0.181
—0.436

—0.0063
—0.025
—0.056
—0.152
—0.386

—0.0088
—0.013
—0.035
—0.051
—0.143
—0.330
—0.606

1l =3,
1.460
1.351
1.125
0.897

Pl =3,
3.98
3.67
3.37
2.82
2.05

n=6,
4.28
4.29
4.28
4.31
4.30
4.33
4.40

p =02
1.460
1.351
1.126
0.897

p =06
3.94
3.60
3.27
2.65
1.79

p* =0.6
4.24
4.33
4.20
4.40
4.13
4.10
4.10

1.460
1.350
1.125
0.896

4.00
3.70
3.43
2.90
2.18

4.30
4.27
4.32
4.26
4.39
4.45
4.55

0.493
0.550
0.710
0.975

0.093
0.098
0.104
0.118
0.144

0.088
0.088
0.088
0.087
0.088
0.087
0.087

1.31
1.69
2.79
4.69

1.175
1.37
1.59
2.11
3.18
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considered. It is not obvious why this is so but it appears
to be true for both RHNC and RPY theories.

Also included in the table are the perpendicular and
parallel compressibility factors given by

Z =—7r
II II

'
p

(10Sa)

Z =—7Tj. ~

p
(105b)

S(k) =1+pH (k),
=1+p g h '(k)PJ(cos8),

I

1 —p g V '(k)P, (cos8)
I

these relationships can be expressed in the form

(106a)

where mII and m~ are calculated using the expressions de-
rived in Sec. IIC. Again we emphasize that for these

uris one must have
II

Zx=Z, „. It is obvious from
Table I that the approximate integral equation theories do
not satisfy this exact condition at high density. It is im-
portant to note that we are convinced that the discrepan-
cies between ZII and Z~ are due to the closure approxi-
mations themselves, and not to the basis set truncation or
numerical inaccuracies. We remark that for the RHNC
closures at p=0. 6 and n =6 the error is such that
Z~ & ZII whereas the reverse is true for the RPY approxi-
mation.

For the ferrofluid it is interesting to examine the dielec-
tric tensor. For the present model ej =1 and @II can be
calculated either from (79c) or (79a). When expressed in
terms of the structure factor defined by

I3Ir= — ——S,(0) . (109)

For the short-range potential with n =6 c (0)=0 and
the compressibility is given by [cf. Eq. (49)]

1x
p 1 pc 000(0)

(110)

From Table I we see that for the ferrofluid gT increases
with a' whereas for the n =6 case XT remains essentially
constant at the hard-sphere value in accord with the con-
stant pressure. Thus we see that the contribution to
SJ (0) from the long-range dipolar interaction has a large
effect upon the thermodynamic properties.

B. Structural Features

For the present model the pair distribution function
expansion reduces to the form

g (r) =g (r, 8)= g g '(r)P, (cos8) .
1

The projections g '(r) for a ferrofluid at p'=0. 6 and
a'=4. 0 are shown in Fig. 1. We note that the magni-
tude of the projections decreases rapidly with increasing
I. As mentioned above I =10 was sufficient to ensure the
convergence of Eq. (111)for the values of a' we consider.
In practice, a good way to test that the expansions are, in
fact, convergent is to check that Eqs. (106b) and (106c)

e((
—1 =9y((Si(0),

SJ(0)

Sii(0)

(107a)

(107b)
3.5—

where Si(0) and S~~(0) are defined as the k~0 limit of
(106) for cos8=0 and 1, respectively. Equation (106c) is
obtained by using the expanded form of the OZ relation-
ship and this reexpression for S(k) is the most con-
venient for calculating eII. In the k~0 limit only the
terins c (0) and c (0)= —6y~~/p contribute to Eq.
(106c) (cf. Appendix B) leading to the relatively simple re-
sults

1.5—

SJ (0)= 1

p 000(0) 3

1
Sii(0) =

1 —pV' (0)—6y

(108a)

(108b)

0.5 -'

Using Eqs. (108) it is easy to verify that Eqs. (107a) and
(107b) will give consistent values of

e~~ assuming of course
that the OZ equation is satisfied. The numerical results
obtained for eII are given in Table I and we note that the
values increase more rapidly with a ' at the lower density.

The isothermal compressibilities are also given in Table
I. For the ferrofluid Eq. (102) relates XT to @II.

Specifically we have

-0.5
1.0

I

&.5

FIG. 1. Projections g (r) for the ferrofluid at p =0.6 and
a =4.0. The diferent values of k are k =0 (+ ), k =2 (~),
k =4 (0); k =6 (&(), k =& (V). For k ) 10 the g (r) values are
too small in magnitude to be seen on the scale used in the figure.
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give consistent results for S (k).
The distribution functions g(r, 8) for p*=0.6 and

a*=4.0 obtained for the n =3 and 6 systems are illus-
trated in Figs. 2(a) and 2(b), respectively. Curves for
selected values of 8 ranging from 0' to 90' (i.e., parallel
and perpendicular to the z axis) are included in the
figures. It is apparent that the orientational dependence
of g (r, 8) is much as we would expect from the symmetry
of the dipolar potential. Specifically, near contact g (r, 8)
is greater for 8=0' [i.e., g~I(r)] where the dipoles are
aligned in attractive configurations, and lowest for 0=90'
[i.e., g~(r}] where the dipoles interact repulsively. We re-
mark that apart from the fact that the variation with L9

near contact is somewhat more extreme for the shorter
ranged n =6 potential Figs. 2(a) and 2(b} are quite simi-
lar.

For the dense ferrofluid the variation of gII(r) and gj (r)
with a is shown in Figs. 3(a) and 3(b), respectively. It is
evident from these plots that the tendency to align and
form chainlike structures increases rapidly with a '. The
anisotropy developed in the system is quite remarkable
with

g~~ being nearly six times larger than gz at contact
for a*=4.0. Unfortunately, we find, as did Martin
et al. , that it is not possible with present numerical tech-
niques to obtain converged solutions to the integral equa-
tions for the much larger values of a ' (i.e., lower temper-

8.0—

4.0—

0.0
1.0

1.5 &

0.5
1.0

1.5—

1

1.2

I
(

~ ]
I

1.6 2.0 2.4

I

1.6

I

1.4
I

1.6

1.0—

FIG. 3. Dependence of the functions (a) g~~(r) and (b) g, (r)
upon a* for the ferrofluid at p*=0.6. The curves are as fol-
lows: a*=1.0 (Cl), a*=2.5 (X), a =4.0 (6).

4.0— .5 I
)

~
l

I

1.6 2.0 2.4

0.0
1.0 1.4 1.6

15.0— 2.0—

10.0—

5.0— 0.0 I
'

I

1.6 2.0 2.4

0.0
1.0

I

1.4
I

1.6

FIG. 2. Distribution function g (r, 8) for selected orientations
at p*=0.6 and a =4.0. The results in (a) are for n =3 and
those in (b) are for n =6. The curves are as follows: 0=0' (0),
&=50'(X), 0=90 (&).

atures) of interest for magnetically saturated ferrofluids.
It is possible that this problem could be overcome by re-
taining more terms in the correlation function expansion.
However, it is not easy to test this conjecture since the
accuracy of the present numerical algorithm used to cal-
culate the Hankel transforms (cf. Ref. 11) would have to
be improved in order to include terms for I & 10.

The structure factors S(k, 8) (for p'=0. 6, a =4.0)
obtained using Eq. (106c) are plotted in Figs. 4(a) and
4(b). It should be noted that S(k, 8) is not simply the
Fourier transform of g (r, 8) From Fig. 4.we see that the
behavior of S(k, 8) is qualitatively similar for n =3 and
6, but that there is one important difference. For the
n =6 case, S(k, 8) becomes independent of 8 as k~0,
whereas for the ferroAuid the k =0 values are 0 depen-
dent. This difference can be easily understood if we con-
sider Eq. (106c) or (106b). As pointed out above (also see
Appendix 8) for short-range potentials c '(0) is nonzero
only for 1=0, and hence it is obvious from Eq. (106c)
that S(k, 8) will have no 8 dependence at k =0. On the
other hand, for the dipolar system F (0) is also nonzero
and the I =2 term therefore contributes to S(k, 8) [cf.
Eqs. (108)] leading to the observed dependence on 8 at
k =0.

The g(r, 8) and S(k, 8) results obtained for the



38 MOLECULAR THEO RYOFO RIENTATIONALLLY ORDERED. . . 4785
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FIG. 4. Strucructure factor S(k )
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fluids (e.g., the HNC, PY,MSA, etc. ) to be solved for the
orientationally ordered model. The approach followed is

closely related to that previously used ' in the theory
of isotropic fluids interacting with angle-dependent pair
interactions. The correlation functions are expanded in

an appropriate symmetry adopted basis set and the prob-
lem is reduced to a numerically tractable form.

The pressure and compressibility for particles interact-
ing with both short- and long-range (i.e., dipolar) poten-
tials are considered in detail. For the present anisotropic
systems the pair correlation function depends upon the
direction as well as the magnitude of the interparticle
vector r, and hence, a priori, the pressure and compressi-
bility are tensors. Although for fluids we know physical-
ly that these tensors must be isotropic (i.e., the pressure
exerted upon a container must be the same in all direc-
tions), the microscopic demonstration of this is a non-
trivial problem. In the present paper the compressibility
equation is used to prove microscopically that these ten-
sors are isotropic as expected.

We have also considered the virial expression for the
equation of state, and reducing the pressure tensor m to
tractable form proved to be a rather difficult but very in-

teresting and worthwhile exercise. Explicit expressions
for n~~ and n~ in terms of the coefficients of the g(12) ex-

pansion were obtained. The condition that n.
~~

——m.
~ was

then used to show that complex relationships exist be-
tween the coefficients in the g(12) expansion. In other
words, in orientationally ordered fluids the fact that the
pressure tensor must be isotropic imposes conditions
upon g(12). The expressions obtained for m.

~~

and n~ are
also important since the numerical evaluation of these
quantities provides a severe test of the theoretical approx-
imation applied. For example, for the models defined by
Eqs. (32) (with n =3 and 6) it is found that, except at low

density, the condition ~I~
——n.j is not satisfied by any of the

approximate theories (i.e., the HNC, RHNC, and RPY)
solved in the present paper.

For the orientationally ordered dipolar case expres-
sions were derived relating the elements of the dielectric
tensor e to the pair distribution function. At first sight it
may seem peculiar to think of a dielectric tensor in an
orientationally ordered dipolar fluid since the existence of
such a system presupposes the presence of a saturating
electric field. However, if one wishes one can simply
think of e as being the dielectric tensor governing the
response of an orientationally saturated system to the ap-
plication of an additional small perturbing field. For the
fluid of aligned dipoles electrostriction is linear in field
(rather than quadratic as is the case for isotropic dipolar
systems) and e~~ is found to be simply related to the iso-

thermal compressibility and consequently to the structure
factor at k=0. The component e~ is related to orienta-
tional fluctuations due to rotation about the fixed axis
and will differ from 1 only for models where p~ is

nonzero. It should also be mentioned that the present
formulation for e can be easily generalized to include the
usual nematic phase where an average half of the dipoles
are "up" and the other held are "down" (i.e., P =0 in the
absence of a field). This would permit the calculation of
e~» and e~ for relatively realistic model nematics and work

in this direction is underway.
Numerical results have been reported and discussed for

model ferrofluids and for a closely related system in
which the pair potential retains dipolar symmetry but is
short ranged varying radially as I/r . This latter model
is useful since comparing its properties with those of the
ferrofluid serves to demonstrate some of the features
unique to the long-range dipolar interaction. For exam-

ple, for the short-range potential the structure factor
S(k) becomes independent of the direction of k as 0 ~0,
whereas for the ferrofluid S(k) remains strongly depen-
dent upon orientation at k=0. For the short-range po-
tential the RHNC and RPY theories are found to give
similar thermodynamic and structural properties. For
the ferrofluid the HNC and RHNC equations were solved
at low and high density, respectively. The RPY was not
applied in the ferrofluid case since it is known' to be
very poor for the long-range dipolar interaction. Again
we note that at high density the condition

m~~
——~~ is not

satisfied by any of the theories considered.
Physically, the conclusions we draw from our numeri-

cal results are similar to those arrived at by earlier
works. Ferrofluids can develop a very anisotropic
structure driven by the tendency of the dipoles towards
alignment in order to form energetically, favorable chain-
like configurations. It is also interesting to note that for
ferrofluids at high density the internal energy is about five
times smaller in magnitude than the energy of an isotro-
pic fluid at the same dipole moment and temperature.
Unfortunately, for the ferrofluid problem the usefulness
of the integral equation techniques is limited by the fact
that with present numerical methods solutions cannot be
obtained in the physically interesting low-temperature re-
gion.

Finally, we remark that the techniques described in
this paper will likely prove most useful in the study of the
thermodynamic, dielectric, and structural properties of
nematic liquid crystals. Numerical calculations for
several such models are currently being carried out.
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APPENDIX A

The purpose of this Appendix is to derive expressions
for the elements of the pressure tensor defined by Eq.
(28). We begin with Eq. (29) and expand g and u on the
basis set P "' [cf. Eq. (5b)] to obtain
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PP g fmnlf m'n'I' f dr »2gmnl
0

d+1 d+2 ~ (m' —m )X i (n' —n)X
Y

—(m+n) (II )rV[ m'n'l'(
) Y

—(m'+n')(II
2~ 2~

'
(A 1)

g f "f " f drr g
"' (r)(1, »n —n —lrVu "(r)ll', —m n) .— (A2)

In order to evaluate the matrix element in (A2) it is convenient to introduce the spherical components of
V((3„q =0,+ I) and r(», =&4~/3» Yf) from which one can construct two irreducible tensors of rank 0 and 2, respective-

ly
27

T(0)= g rq'dq ——r V (A3a)

and

T(2,M)= Q r () (lqlq'
l

112M) .
q, q'

(A3b)

&n' being a symmetric tensor of rank two can be expressed entirely in terms of T(0) and T(2). In fact, since Qm has
only two independent components only T(0) and the M =0 component of T(2)

T(2, 0)= — 3z —ra
V6 Bz dr

need be considered. Thus

(A4)

Tr—5m =2A + A
P II

f "'f "'f dr r g
"' (r)(1, —m n

l
T(0)

l
1—', —m n&u —"'(r) (A5a)

and

3
P

—Tr—bF=2( A
~(

—A i )

zz

f "f " f drr g
"' (r)(l, —m —n l&6T(2,0)ll', —»n —n)u "(r) .

As (1,—m n
l
T(0—)

l

1',—m n) =r—(dl)3»)5(l, Eq. (ASa) leads immediately to Eq. (31a). In order to evaluate the
matrix element in (A5b) we apply the Wigner-Eckart theorem

(1, »n n
l

T—(2—,0)
l
1', —m n) =( ——1)™+n I 2 I'

m+n 0 —m n— (A6a)

and use the relations

1 1 2
(lllT(2)ill') =&5(—1)'+' g '1,

1 J '(lllrllJ)(JllVlll'), (A6b)

I 1 J
(lllrllJ) =r( —I)'&(21+1)(2J+1) (A6c)

and

& JIIV Ill'& =fJ, l +)+1'+1

I'+ 1—5J, )&1' +
Br r

(A6d)

where (
. . ) and l

. .
I denote the usual 3-j and 6-j

symbols of Wigner. Substitution of (A6) into (A5) leads
to the desired Eq. (31b).

APPENDIX B

In this appendix the relationship (gl) between H~~ (0)
and H~ (0) is derived from the OZ equation. Using the
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form given by Eq. (18) and putting m =n =0 we have

H (k)=C (k)+p g H (k)C (k),
p = —oo

(Bl)

From Eq. (Bl) it follows that

1+p lim H (k)= 1

1 —p lim C (k)
k~O

where [cf. Eq. (16)]

Ct'o(k) = g &4n./(21+1)c '(k) Yt (Ok) .
I

(B2)

If we make the assumption that c(12)~—Pu(12) as
r ~ ~, with u (12) given by (52), it is clear that in the
limit k~p the only nonzero contributions to (B2) will be

1
(B5)

1 —pc (0)+6yIIP2(k. z)

Applying Eq. (B5) with k z= 1 and k z=p and recalling
the definitions of HII (0) and H~ (0) given in (77) and
(80) we obtain

—p 00( p )
—000

( p )g

c~ (0)= — 5 o,p, o

and consequently

(B3a)

(B3b) and

'+p
II

' '=
000

1 —pc (0}+6y
II

1+pH~ (0)=
1 —pc (0)—3y

II

(B6a)

(B6b)

ltmC~ (k)= c (0)— P2(k z) 5 o .
k~O P

(B4) Elimination of c (0} from these equations immediately
leads to Eq. (81), which is the desired result.
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