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Flow between two horizontal coaxial cylinders with a partially filled gap is subject to several

types of centrifugal instabilities which lead to the formation of a variety of spatial patterns. An ex-
perimental investigation has shown that there are five distinct branches of primary instabilities
occurring in the system and that four codimension-2 points are easily reached. Theoretical predic-
tions are in qualitative agreement with the observations.

I. INTRODUCTION

The behavior of systems far from equilibrium has been
the subject of intense investigation over the last several
years. Of particular interest has been the manner in
which spatial patterns arise. Pattern formation may be
driven by a wide variety of mechanisms, including tem-
perature gradients, concentration gradients, and centrifu-
gal effects. Centrifugal instabilities' occur in flow with
curved streamlines, and they play an important role in
many problems of practical importance. Two of the best
known examples are the Taylor-Couette instabilities,
which occur in the flow between two concentric rotating
cylinders, and the Taylor-Gortler instabilities, which
occur in the boundary layer on a concave wall. The
Taylor-Couette and Taylor-Gortler instabilities have been
extensively investigated both theoretically and experi-
mentally (see Refs. 3—5 and references therein). Howev-
er, a third class, the Dean instabilities, which occur in
the presence of a pressure gradient along a curved chan-
nel (Poiseuille flow), has received much less attention.

Here, we present a simple system in which it is possible
to realize the main centrifugal instabilities by an ap-
propriate choice of control parameters. We consider two
horizontal coaxial cylinders of radii r; and r„which ro-
tate independently with angular velocities 0; and 0, for
the inner and the outer cylinder, respectively. When the
gap between the cylinders is completely filled with fluid,
we have the classical Taylor-Couette problem. When the
gap is partially filled and both cylinders rotate there ex-
ists a combination of Taylor-Couette flow (caused by the
differential rotation of the cylinders) and Poiseuille flow
(caused by the backflow induced by the presence of the
horizontal free surfaces). As the system control parame-
ters are varied, the base flow instabilities will change
from those associated with Taylor-Couette to those asso-
ciated with Dean. Under some conditions one might ex-
pect to see flow patterns that result from competition be-
tween instabilities. In other cases boundary layers on the

curved surfaces may give rise to Taylor-Gortler instabili-
ties. We will not discuss the last any further since
boundary layer instabilities are apparently not dominant
for the range of system parameters chosen. The relevant
control parameters are the ratio of angular velocities
p, =0, /0; and the Taylor number.

In Sec. II we will summarize the few related experi-
mental and theoretical results which have been reported
so far. En Sec. III we describe our experimental pro-
cedure and in Sec. IV we report the results obtained. Sec-
tion V is a comparison of the experimental results with
the present theory. Finally, we will conclude with sug-
gested directions for future work.

II. PREVIOUS WORK

The flow between two horizontal coaxial cylinders with
a partially filled gap was first investigated by Brewster
and Nissan in 1958. They deduced approximate velocity
fields for laminar flow with only the inner cylinder rotat-
ing, and they measured the critical angular velocity and
the wave number of the resulting rolls. In 1959, Brew-
ster, Grosberg, and Nissan considered the critical condi-
tions for the formation of vortices between the cylinders
in three cases: when the gap is filled with fluid and the
flow is caused by the rotation of the inner cylinder
(Taylor-Couette problem), when the flow is produced by
pumping around the annular space (Dean problem), and
when the liquid is driven by the rotation of the inner
cylinder and forced to reverse its flow at a free surface.
Their results for the Dean problem were in satisfactory
agreement with the theoretical values for the threshold of
the instability and the wave number of the vortices. They
considered also the combination of the pumping of fluid
around the annular space and the rotation of the inner
cylinder. They obtained the interesting result that, in the
neighborhood of a particular value of the ratio of the
pumping flow rate to the rotation flow rate, the critical
value of the control parameter has an abrupt change, and
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the wavelength of the vortices has a discontinuity. The
competition between the destabilization of the Couette
and Poiseuille layers in the basic flow was invoked to ex-
plain this anomalous behavior.

DiPrima, ' using a Galerkin method, calculated the
stability diagram for the combined Couette-Poiseuille
problem and introduced a parameter k which measures
the relative importance of the pumping flow compared to
the flow driven by the rotation of the inner cylinder. He
found that the neutral stability curve (using the principle
of exchange of stabilities, which assumes that the instabil-
ity that occurs is stationary) exhibits a discontinuity for
A. =A, ,= —3.667. Hughes and Reid" found, by numeri-

cally integrating the stability equations, that, in the vicin-
ity of A,

„

the marginal stability curve presents two mini-

ma with different values of wave numbers. Raney and
Chang' relaxed the restrictions of the principle of ex-
change of stabilities and found that, in the vicinity of A,

„

the marginal stability curve consisted of two stationary
loops connected by an oscillatory branch at the absolute
minimum of the control parameter. They came to the
conclusion that in the neighborhood of A,„anoscillatory
instability might occur. No experimental verification of
this result has been reported so far, perhaps because of
the diSculty of realizing a well-controlled flow with
external pumping.

Mutabazi, Peerhossaini, and Wesfreid have reported
experimental results for the case of a partially filled gap
with only the inner cylinder rotating. They emphasized
the oscillatory character of the observed structures and
found a lower value of the threshold of instability than
that claimed by Brewster and Nissan. In another paper
Mutabazi et al. ,

' describe the quantitative characteris-
tics of the oscillatory structures. Recently, Mutabazi,
Normand, Peerhossaini, and Wesfreid' have solved the
linear stability problem for axisymmetric perturbations in
the flow between two co-rotating cylinders with a partial-
ly filled gap. They found that at the instability threshold
in such a system it is possible to detect oscillatory or sta-
tionary rolls depending on the ratio of the angular veloci-
ties p. The intersection points (codimension-2 points} of
the oscillatory and stationary branches in the diagram
(p, T, ), where T, is the critical value of the Taylor nurn-

ber considered as the control parameter of the flow, were
predicted to be experimentally accessible, We report here
the results of an initial test of these predictions.

pumotor stepping motors with a rotation-rate resolution
of 0.001 Hz. The angular velocities 0; and 0, of the
inner and outer cylinders are scaled in terms of Reynolds
numbers R; =0;r;d/v and R, =Q, r, d/v, where v is the
kinematic viscosity of the working fluid. As shown in
Fig. 1, the gap is filled only about —, full with distilled wa-

ter to avoid communication between the two sides of the
system. The rotation of the cylinders typically induces
no significant film on the walls. The experiments were
performed in a controlled environment room; the fluid
temperature varied by no more than 0.1'C. Visualization
of the flow states has been accomplished with a mixture
of 1% by volume Kalliroscope AQ1000 in water. Inter-
pretation of structures observed in the flow with polymer-
ic flakes is based on the following: a dark area indicates
flow along the observer's line of sight, while a light area
indicates flow perpendicular to the line of sight. Howev-
er, the asymmetry between the radial inflow and outflow
boundaries can produce confusion between the wave-
length and roll size of patterns if one boundary is much
less distinct than the other.

Data acquisition involved two techniques. Flow fre-
quencies were determined from a single point time series
obtained with laser light reflected off the Kalliroscope
flakes onto a photodiode detector. The resulting signal
was digitized for processing with a fast Fourier transform
(FFT) routine. Spatial data were obtained by eye and by
using a 28-85-mm variable focal length lens to form an
image of the visualized flow on a 1024-pixel charge-
coupled device (CCD} linear array interfaced through
CAMAC to the computer. The line of 1024 pixels is
oriented parallel to the cylinder axis. The output consists
of intensity maxima and minima which correspond to the
centers of the rolls and inflow and outflow boundaries, re-
spectively. Analysis of the intensity plots yields the vor-
tex sizes and hence the wavelength of the structure.

nt
ce

III. EXPERIMENTAI. PARAMETERS
AND PROCEDURES

The system considered in our experiment has been pre-
viously used in the investigation of Taylor-Couette insta-
bilities and is described in Baxter and Andereck. " It
consists of two horizontal coaxial cylinders, the inner one
made of black Delrin plastic (radius r, =5.262 cm) and
the outer one made of polished Plexiglas (radius
r, =5.965 cm). So the radius ratio rI =0.882 and the gap
is given by d =r, —r; =0.703 cm. Teflon rings attached
to the outer cylinder define the left and right boundaries
for the liquid and produce an aspect ratio (working space
length/gap} I =68. The cylinders were driven by Com-

FIG. 1. Schematic cross section of the apparatus. The "front
face" is defined to mean that the observer sees the inner cylinder
rotating upward as shown. The outer cylinder can rotate in ei-
ther direction. Qualitative pictures of the flow near the free sur-

faces are shown, along with the fully developed velocity profile

away from these surfaces.
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IV. RESULTS

The transitions from unperturbed flow to the various
critical states are summarized in Fig. 2. The observations
were made from the front face (as defined in Fig. 1), while
the rear face was viewed simultaneously, when needed, by
a video camera and monitor. The system control param-
eters are the Reynolds numbers R; and R, (defined
above), respectively, for the inner and the outer cylinders

[the base flow may also be specified by the angular veloci-
ties ratio p and the Taylor number defined as
T =(Q, r, d/v)(d/r; ), ' ~ but the first pair of parameters
has the advantage of being more easily controlled in an
experiment]. For our experiments the two sets of param-
eters are related as follows: p =0.882R, /R, and
T =0.366R; (or R;=2.736T and R, =3.102pT). In
presenting our results we will scale wavelengths by d, ve-
locities by v/d, and frequencies by v/d .
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FIG. 2. (a) Diagram of primary flow transitions in the (RO, R, ) space. (b) Diagram of primary flow transitions in the (p, T) space.
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A. Base flow

The fully developed base flow between two infinite hor-
izontal coaxial cylinders with a partially filled gap is az-
imuthal (except in the neighborhood of the free surfaces)
if the entrance angle 0, is small compared to the filling

angle Of(=47r/3 for our experiment). The entrance an-

gle is given, for @=0, by' 8, =A, d /9m v=2f;/9m,
where f; is the scaled frequency of rotation of the inner

cylinder. Then the condition for assuming fully

developed azimuthal base flow is f; «f, =9~Of /2. For
our experimental case f, =67.1. We have worked in the
range 0. 5 & f; & 15.5, with f, & 7.2 for all the transitions.
At these rotation frequencies we can consider our base
flow to be essentially azimuthal. The azimuthal velocity
profile is given by' V(r) = Ar lnr +Br + C/r, where
A =(1/2pv)BPIBO is related to the azimuthal pressure
gradient and the coefficients 8 and C are obtained from
the boundary conditions on the cylindrical walls. The
flow rate conservation across a given radial section
(8=constant plane) gives the value of A. We get

2[2(Q; —Q, )r; r, ln(r, /r; )+(Q,,r, Q, r, )(r—~ —r~)]
A=

(r, r; ) 4—r; r, [ln—(r, /r, )]

(Q, r, 0;r; ) —A(r, ln—r, r, lnr;)—
2 2r —r0

[0;—0, + A ln(r, /r, )]r~r~
C=

r —r.2 2
0

(2)

(3)

V(x) =3(R, +R, )x —2(2R;+R, }x +R; . (4)

This profile possesses up to two nodal surfaces (surfaces
of zero azimuthal velocity) between the two cylinders sit-
uated at

2R;+R,+QR; +R;R, +R,
3(R;+R, )

Figure 3 gives the velocity profiles for different values of
the parameters R; and R, . Examination of these base
flows reveals the possibility for centrifugal instabilities.
To a first approximation the centrifugally unstable re-
gions will be those in which the inviscid Rayleigh circula-
tion criterion (d/dr

~

Or
~

&0) holds, as noted in the
figure. The presence of viscosity modifies this simple pic-
ture, but the basic instabilities remain. These have been
examined numerically by Mutabazi et al. '

B. Stationary patterns

For R, in the ranges of —257 ——35 and 160—257, the
base flow is typically unstable to formation of a pattern of
time-independent vortices. (The behavior near R;=0 is
rather different and will be discussed at length in Sec.
IVE.) They have no significant azimuthal variation, ex-

The coefficient A in V(r) is zero in the classical Couette
problem (fully filled gap). The velocity profile is a super-
position of the Couette flow imposed by the rotation and
the Poiseuille flow in a curved channel produced by the
azimuthal pressure gradient. This superposition is well
seen in the small-gap approximation. For the purposes of
our experiment, we will use the small-gap approximation
(ri~ 1 ) and introduce a characteristic velocity v/d to ob-
tain the quadratic trinomial in x [with x =(r r; ) Id]—:

I

cept very near the free surfaces, and are of uniform size
along the cylinder, with a dimensionless wavelength of
the vortex pairs (defined as kid) of about 2 4 in the co-
rotating case and approximately 2.45 in the counter-
rotating flows [see Figs. 4(a) and 4(b)]. The patterns for
—257 & R, & —175 and for 160 & R, & 270 are clearly ob-
served and therefore are most likely forming near the
outer cylinder. The analysis of the approximate base flow
profile suggests that these are Dean rolls. ' For
—257&R, & —170, Rayleigh's criterion applied to the
profile of Fig. 3(a) shows that the potentially unstable lay-
er in the gap is contained within the Poiseuille flow re-
gion, which will therefore give rise to Dean rolls. For
160&R, &270 numerical results' show that the rolls
should be confined to the outer unstable layer, which
again is part of a Poiseuille flow region, indicating these
are also Dean rolls. Slightly beyond the onset of the in-
stability, subharmonics intervene, leading to rather com-
plex patterns.

For —170 & R, & —35, the rolls are difficult to observe,
being apparently localized near the inner cylinder, and
they do not strengthen significantly as R; is increased.
These are probably Taylor-Couette vortices [Fig. 4(c)] be-
cause the destabilized layer near the inner cylinder has a
velocity profile [see Fig. 3(c}]which is Couette-like rather
than Poiseuille-like. The transition between these
theoretical profiles occurs near the experimental
codirnension-2 point at R, =197 and R, =166. For R,
from —175 to —170, the rolls appear first in the rear
face. This branch has been explored in two ways, both by
fixing R, and changing R;, and by fixing R; and changing
R„and the results were essentially the same. The Dean
rolls and Taylor-Couette rolls are both unstable to time-
dependent patterns (traveling inclined rolls; see Sec. IV B)
when R; is increased for fixed R„except,of course, for
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R, from 150 to 200, in which case the base flow is re-

gained before traveling rolls form.

C. Time-dependent patterns

Traveling spirals (or, technically, traveling inclined
cells, since a complete spiral is not really possible owing

to the presence of the free surfaces) [Fig. 4(c)] appear at
threshold for R, in the ranges —30—210 and 265 —300.
They form at an angle of about 20' with the vertical and
propagate along the cylinder axis with a constant veloci-
ty. The dimensionless roll propagation velocity, scaled
by v/d, is approximately 29 (0.4 cm/sec). Figure 5 shows

P

C

Jt
t

C

FIG. 4. States observed for different values of control parameters: (a) Dean rolls, R, =220, R;=195, (b) Taylor-Couette rolls,
R, = —136, R, =252, (c) inclined traveling rolls, R, =70, R, =280, (d) Dean rolls for only the outer cylinder rotating, R, =320,
R; =0, (e) coexisting inclined and Dean rolls, R, = —45, R; =265.



4758 MUTABAZI, HEGSETH, ANDERECK, AND WESFREID 38

35

lo

25

4
0
4

20
4

12 )3

FIG. 5. The frequency o of traveling inclined rolls vs p the ratio of the angular velocities of the two cylinders. o is the measured
frequency in Hertz scaled by d'/v. The region between the two branches corresponds to the stationary patterns. The ends of the two
branches correspond to the codimension-2 points.

the frequency as a function of the angular velocities ratio
p. It is interesting that there is no preferred propagation
direction for the rolls; they may move from either left to
right or right to left, but the relationship of the tilt direc-
tion to the direction of propagation is always the same.
Occasionally there may be inclined ro11s with opposite tilt
and propagation direction existing simultaneously in
different regions along the cylinder. Usually one will oc-
cupy almost the entire length with the other confined
near one end. Although in principle standing waves
formed by counterpropagating rolls may exist we have
not yet observed this effect. The inclined rolls become
much weaker partway around the cylinder, with greatest
strength near the front face. It is possible that the pres-
ence of the free surfaces accounts for this by imposing an
entrance length region on the fully developed Couette
and Poiseuille profile. Above threshold the rolls become
clearly visible all the way from the front to the back free
surface, corresponding to a decrease of the entrance
length.

D. Laminar state-inclined rolls-laminar
state-stationary patterns transition

There are two bands of R, values (from 155 to 210 and
from 257 to 300) for which the instability differs as R; is
increased. In the first band, when R, is increased from
about 160, the instability sets in as stationary axisym-
metric rolls, but at higher R, they disappear and the flow
becomes laminar, without any structures. At still higher
values of R, inclined rolls form. In the second band the
instability sets in as a traveling pattern. Upon increasing
R; the pattern disappears and the base laminar flow reap-
pears. At still larger R, stationary axisymmetric rolls
form in the flow. The ro11 size is the same as that for the

stationary patterns for R, in the range 160-257. It is in-
teresting to notice that if we plot the phase diagram [Fig.
2(a)] in terms of the parameters T and p, [Fig. 2(b)], the
transition, for fixed p and increasing T, is directly from
the base state to inclined rolls or to the stationary Dean
rolls.

K. Codimension-2 points

The traveling inclined roll state and the stationary
state branches intersect at three oscillatory-stationary
codimension-2 points. Preliminary inspections of the
neighborhoods of these points have proved quite interest-
ing. There are often mixed states of stationary and trav-
eling rolls, Sometimes the traveling rolls are near the
right end and the stationary rolls are near the left end (or
vice versa), or the traveling rolls may coexist with the sta-
tionary rolls in the same region [see Fig. 4(e)]. The Dean
and Taylor-Couette branches intersect in another
codimension-2 point (stationary-stationary). Near that
point rolls which were clearly visible at the outer cylinder
wall become less distinct as the unstable region develops
near the inner cylinder wall.

In all cases the system was brought to just beyond the
instability threshold and then allowed to settle for many
gap diffusion times d /v, following which the process
was repeated. It might be possible that these states near
the codimension-2 points are transients: waiting for a
very long time, the system may pass to a pure state like
those prevailing further from the immediate neighbor-
hood of the codimension-2 point, but this has not been es-
tablished, owing to practical difficulties with Kalliroscope
solution lifetime limits. Further work will be necessary
to achieve a coherent picture of these complex flows.
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F. Inner cylinder at rest, outer cylinder rotating

When the inner cylinder is at rest and the outer
cylinder is rotating, there is some difficulty in establishing
the onset of the instability. End effects dominate the
flow. Large spiral-like vortices propagating away from
each end virtually fill the system. They are most prom-
inent on the side with the outer cylinder moving upward.
On the other side at R, =257 weak stationary Dean rolls

form and coexist with the end-effect rolls. Increasing R,
to 300 establishes Dean rolls on both sides of the system,
and the end effects become less apparent [Fig. 4(d)]. It is

then possible to decrease R, to 272 and retain the ax-

isymmetric state. After establishing Dean rolls
throughout, one can then increase R; slowly and observe
various transitions. Two cases arise: when the cylinders
are counter-rotating, these rolls persist but become weak-

er in the back face. For co-rotating cylinders, the Dean
rolls are observed to be asymmetric, weaker in the front
face than in the back, until R; = 12, at which point travel-

ing inclined rolls appear in the front face. The transition
between Dean rolls and inclined rolls in this region has
not been thoroughly explored.

V. DISCUSSION OF RESULTS

The stationary states of the diagram (R„R,) may be
understood at least qualitatively if one applies the Ray-
leigh stability criterion to the base flow velocity profile.
In fact, from Fig. 3, one sees that the velocity profile may
be considered as a superposition of linear Couette and
Poiseuille profiles. Depending on the critical Reynolds
number for the different sublayers, the onset of instability
for the whole system will begin in that sublayer with the
minimal critical value. The inclined roll states might be
understood as the result of the competition between the
mechanisms of destabilization of the Couette and
Poiseuille sublayers. In fact, we see in Fig. 3 that the in-
clined rolls exist for those values of R; and R, for which
the base velocity field has two potentially unstable sub-
layers, while the stationary states develop for the case
when the base velocity profile has only one potentially
unstable sublayer. The Dean rolls which emerge for R,
in the range 160-300 appear to be an exception to this
and they may be seen as intermediate between the in-
clined roll and laminar states. It is also interesting to re-
mark that the system is always linearly unstable with ei-
ther the inner or the outer cylinder at rest, while for the
classical Taylor-Couette system the flow is linearly stable
when the inner cylinder is at rest. The result obtained for
the case with only the inner cylinder rotating agrees with
the results found previously and reported in Refs. 7 and
13.

The presence of an oscillatory branch in between two
distinct stationary branches has been predicted, ' but the
observed critical values were quite different from those
calculated. In particular, the oscillatory branch was pre-
dicted to exist between the codimension-2 points at
R, =142, R, =483 and R, =216, R, =489. (Theoretical
critical values have been omitted from Fig. 2 since they
are quite large compared with the experimental values. )

Several assumptions were made in developing the initial
theory, among which are the small gap approximation,
the infinite cylinder length, and the axisymmetric pertur-
bations (even though the system itself breaks the azimu-
thal symmetry). Nevertheless, the predicted frequency is
of the same order as that observed in the experiment.
For stationary states, axisymmetric perturbations may
still suffice to describe the behavior far from the free sur-
faces. However, the use of axisymmetric perturbations
for the oscillatory states appears to cause more serious
difficulties. In fact, in this case we observe nonaxisym-
metric patterns with angular wave number m [from per-
turbations in expi(st+qz+m8)] different from zero.
An important feature in this kind of system is that nonin-
teger values for m are allowed, in contrast to the classical
Taylor-Couette case when propagating nonaxisymmetric
structures arise. If we define

r, +r;
tana

(6)

then we find that the experimental value for m is approxi-
mately 14 for p=0, corresponding to an inclination angle
a=19' and a wavelength A. =1.22 (0.86 cm). For @=0.22
the experimental value for m is 13A. We note that the A,

we have used is equal to the distance along the axis be-
tween successive dark boundaries. We are so far unable
to distinguish inflow from outflow boundaries owing to
the weak nature of the fiows, and this presents us with an
ambiguity. The observed boundaries in most cases are
equally dark (as determined visually and with image
analysis), which is indicative that they may be of the
same type, i.e., all inflow or all outflow. In a few cases a
set of very weak dark lines can just be detected, apparent-
ly revealing that the wavelength is only half that given by
the strong dark lines. We are led to the tentative con-
clusion that either one boundary is much weaker than the
other and is thus normally not visible, or that there may
exist unobserved weak counter-rotating cells existing next
to the inner cylinder. This is a matter that will await
resolution in future experiments. It is possible that the
value of m may change with both the values of R; and R,
and the filling volume ratio. Indeed, preliminary experi-
ments' have shown that m decreases slightly with a con-
tinuous increase of the filling fraction, although the criti-
cal Taylor number is unchanged. The Ekman cells in-

duced by the Tefion end rings have a nonaxisymmetric
profile and will affect, as a perturbation, the bulk flow.
This influence is probably more important near the line

p= —1 (where the velocity gradients are larger) and

lower at the line p=1. The entry length near the free
surfaces, caused by the growth of a boundary layer, may
be affecting the inclined rolls since near threshold they
are most prominent on only one side, but evidently this is

not so important for the Dean or Taylor-Couette rolls.
We emphasize that further transitions have been ob-

served in the system for values of the parameters R, and

R, beyond the instability thresholds, but they have not

yet been quantitatively characterized.
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VI. CONCLUSION

%'e have shown that the flow between two horizontal
coaxial rotating cylinders with a partially filled gap is
very rich in nonequilibrium patterns. We have found a
variety of different structures extending over wide ranges
of the external control parameters R, and R;. Five pri-
mary instability branches and four codimension-2 points
have been directly observed. Approximate characteris-
tics of the states (threshold control parameter values, fre-
quency of inclined rolls at threshold, and wavelengths)
have been determined. However, our results indicate the
need for further, more extensive, investigations. Theoret-
ically, account must be taken of nonaxisymmetric pertur-
bations, a finite gap, and nonlinearities. The last is no
doubt important in the vicinity of the codimension-2
points, where mixed-mode patterns have been observed.
It may also be important to explore the effect of radius
ratio changes. Experimentally it would be desirable to es-
tablish the details of the flows in the codimension-2 point
neighborhoods, ' search for possible changes in tilt and
propagation velocity of the inclined rolls as functions of

R, and R;, ' and explore the behavior of the various
flows as the system is driven beyond threshold into chaot-
ic or weakly turbulent states. The last is potentially quite
interesting since this system breaks the rotational symme-
try of the circular Couette flow, thus undoubtedly chang-
ing the dynamics in a profound way, even for the flows
bifurcating from the Taylor-like rolls.
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