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Lyapunov instability of dense Lennard-Jones fluids
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We present calculations of the full spectra of Lyapunov exponents for 8- and 32-particle systems
in three dimensions with periodic boundary conditions and interacting with the repulsive part of a
Lennard-Jones potential. A new algorithm is discussed which incorporates ideas from control
theory and constrained nonequilibrium molecular dynamics. Equilibrium and nonequilibrium

steady states are examined. The lattr are generated by the application of an external field F,
through which equal numbers of particles are accelerated in opposite directions, and by thermostat-
ting the system using Nose-Hoover or Gauss mechanics. In equilibrium (F, =O) the Lyapunov
spectra are symmetrical and may be understood in terms of a simple Debye model for vibrational
modes in solids. For nonequilibrium steady states (F,&0) the Lyapunov spectra are not symmetri-
cal and indicate a collapse of the phase-space density onto an attracting fractal subspace with an as-

sociated loss in dimensionality proportional to the square of the applied field. Because of this
attractor's vanishing volume in phase space and the instability of the corresponding repellor it is not
possible to observe trajectories violating the second law of thermodynamics in spite of the time-

reversal invariance of the equations of motion. Thus Nose-Hoover mechanics, of which Gauss s

isokinetic mechanics is a special case, resolves the reversibility paradox first stated by J. Loschmidt
[Sitzungsber. kais. Akad. Wiss. Wien 2. Abt. 73, 128 (1876)] for nonequilibrium steady-state sys-

tems.

I. INTRODUCTION

In recent years many chaotic continuous-time systems
have been studied, both experimentally and by computer
simulation. A useful way to characterize their stochastic
properties is the spectrum of Lyapunov characteristic ex-
ponents IA, ; J describing the mean exponential rates of
divergence and convergence of neighboring trajectories in
phase space. ' For chaotic systems the largest
Lyapunov exponent is positive, whereas regular motion
exhibiting fixed points, limit cycles, or Kolmogorov-
Arnol'd-Moser tori leads to Lyapunov exponents &0.
Furthermore, the sum of all positive Lyapunov exponents
is the Kolmogorov entropy.

For any ffow in M-dimensional phase space described

by the set of first-order differential equations,

trum and the fractal dimension of the strange attractor
have been conjectured by Kaplan and Yorke '8 and
Mori. However, if the flow (1.1) is derived from a Ham-
iltonian at constant interna1 energy, the spectrum of
Lyapunov exponents is symmetrical around zero,

i ~M —i+1 (1.3)
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and two of the exponents must vanish. Any further con-
stant of the motion (such as one component of linear
momentum) causes two of the remaining Lyapunov ex-
ponents to vanish.

In this paper we are concerned with the calculation of
the full Lyapunov spectrum of a system of N particles in-
teracting via a repulsive Lennard-Jones potential,

' ll ' 6

(1.2) 0, f)2 CT
+(r) = (1.4)

there are M Lyapunov exponents of which at least one
must vanish. In dissipative flows, such as the famous
Lorenz model of turbulence or the Navier-Stokes equa-
tions of continuum mechanics, the phase-space volume is
not conserved but shrinks, in the course of time, resulting
in the appearance of a strange attractor. As a result the
spectrum of Lyapunov exponents is not symmetrical
around zero and the sum of all exponents is negative.
Two different connections between the Lyapunov spec-

The total potential energy is assumed to be pairwise addi-
tive,

@=gP(r,
&
), .

where r, is the distance between particles i and j. Both
equilibrium and stationary nonequilibrium states are con-
sidered. Since the center-of-mass motion is conserved,
there are M =6(N —1) Lyapunov exponents and
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M(M + I ) first-order differential equations to be solved
simultaneously (see Sec. III). To keep this number below
a tolerable limit we treat the cases of X =8 and N =32
particles corresponding to 1806 and 34782 differential
equations, respectively. We find that in the equilibrium
liquid case the Lyapunov spectra have a very simple ap-
pearance and follow a power law in agreement with a pre-
vious model calculation for a somewhat simplified in-
teraction potential. ' " We defer the discussion of our
results to Secs. IV and V.

The nonequilibrium situation is realized by introducing
in the Hamiltonian a constant external field F, through
which half of the particles are accelerated towards oppo-
site directions. For this "color"-conductivity problem, to
achieve steady-state conditions a homogeneous Gauss
thermostat is used. ' ' In this method the equations of
motion of all particles are modified by the introduction of
a constraint force designed to keep the kinetic energy K
of the system equal to a constant value Ko,

q=p/m
I = p=F(q) —gp

exp[ —H ( I' ) lk T ]

fdI exp[ H(I )—lkT]
(1.10)

where the internal energy of the total system (including
the thermostat) is defined by

where F(q) is given by (1.7). Because of linear momen-
tum conservation and the inclusion of the thermostat
variable g as an independent variable, the phase-space di-
mension and consequently the number of Lyapunov ex-
ponents is 6(N —1)+1. K =gp /2m is the kinetic ener-

gy and K0=3NkT/2 its long-time-averaged value. In
thermostatted equilibrium (F, =0) the corresponding dis-
tribution function turns out to be canonical,

q=p/m
p=F(q) —4p (1.6) H(I') =K+rP+3NkTH( l2 .

Here q and p are the positions and momenta of the parti-
cles, respectively,

F(q) = — +cF,
Bq

is the total intrinsic force acting on a particle, and F, is
an external force, c being + 1 for half of the particles and
—1 for the other half. The constraint force term —(Gp
contains a thermostat variable gG identical for all parti-
cles and determined at any instant of time from

—QF(q) p
1

m (1.8)

(To simplify the notation we omit unambiguous summa-
tion indices. Any unspecified sum in the following means
a summation over all N particles of the system. ) In this
"isokinetic" simulation the phase-space dimension and
consequently the number of Lyapunov exponents is the
same as in Hamiltonian mechanics (gG =0). Since the ki-
netic energy is a constant of the motion, again two of the
exponents vanish in the equilibrium case (F, =0) as com-
pared to one in the nonequilibrium simulation (F,&0).
For the latter the sum of all Lyapunov exponents is found
to be negative. The consequences of this important
finding will be discussed in Sec. V.

An even more general modification of Harniltonian
mechanics has been recently invented by Nose' ' mak-
ing it possible to control independent thermodynamic
variables during a simulation of a dynamical system
through integral feedback both in equilibrium and none-
quilibrium states. ' In the formulation of
Hoover' ' ' the equations of motion generating iso-
thermal How assume the form

II. ONE-DIMENSIONAL "NOSE-HOOVER"
DYNAMICS OF A PARTICLE IN A CONSTANT FIELD

As a simple illustration of Nose-Hoover mechanics we
consider the one-dimensional motion of a particle in a
constant external field F, . Since the long-time-averaged
kinetic energy assumes the value Ko=kTl2, where T is
the temperature maintained by the Nose thermostat, the
equations of motion obtained from (1.8) are

j=p/I,
i =F, =CJ»

p2

kT

(2.1)

The friction variable g becomes more negative whenever
energy is to be fed into the system, and more positive
when energy is to be extracted. A projection of possible

~ is an unspecified parameter related to the response time
of the thermostat. In the limit of infinitely fast response
(v~0) Nose s isothermal dynamics becomes indistin-
guishable from Gaussian isokinetic fiow (1.6).

It is important to notice that both the Gauss and Nose
equations of motion are invariant with respect to time re-
versal. In Nose s original Hamiltonian the friction vari-
able g arises as a momentum variable and consequently
changes sign in the time-reversed motion as well as the
particle momenta p, whereas the coordinates q and forces
F(q) remain unchanged.

As a simple illustration of how Nose mechanics works
the one-dimensional problem of a particle in a constant
external field F, will be treated in Sec. II. In Sec. III
various methods for calculating the complete spectrum of
Lyapunov exponents for many-body equilibrium and
nonequilibrium systems are discussed. The results of our
calculations are presented in Sec. IV and are further dis-
cussed in Sec. V.
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FIG. 1. Projection of the flow (2.1) onto the pg plane for a re-
duced thermostat response time ~F, /&mk T = 1. p

*
p/v'mk—T and g

—=gr.

trajectories onto the pg plane is depicted in Fig. 1 for a
reduced thermostat response time r(F, /&mkT ) = 1.
The fiow equations (2.1) are time reversible with p and g
replaced by —p and —g in the time-reversed motion.
This corresponds to inversion through the origin in Fig.
1. The motion in q direction becomes uniform for t ~ 00

and is associated with a Lyapunov exponent A, , =O. The
stable fixed point (&mkT, F, /&mkT ) in pg space is an
attractor characterized by Lyapunov exponents
A,2 3

—— F, /2&mkT if—the thermostat response time
r(&SmkT /F, . Time-reversal transforms this attractor
into an unstable fixed point (—&mkT, F, /&mkT —)
which is called a repellor and which is characterized by
positive Lyapunov exponents. The flow in Fig. 1 is rem-
iniscent of a dollar sign, always leaving the vicinity of the
repellor and heading for the attractor. This is true both
in the original and the time-reversed case.

This simple example serves to introduce the concept of
a repellor as a set obtained from an attracting set by in-
voking a time-reversal transformation. We shall use it in
Sec. V to discuss the irreversible behavior of steady-state
nonequilibrium systems.

(3.3)

(5; is Kronecker's symbol and t denotes the transpose).
To achieve this, constraint "forces" must be introduced
into the evolution equations (3.1),

5, =D 5, —A, „5, ,

52 D 52 ~2151 ~2252 &

0

5M =D '5M ~M151 ~M252 MM M

(3.4)

is an M &(M matrix and couples the reference trajectory
to the various differential offset vectors 5i in "tangent
space. " An arbitrarily oriented set of orthonorrnal vec-
tors may be chosen as initial conditions for the M
different vectors 5&. However, as is well established for
chaotic systems, these vectors do not stay orthogonal to
each other for t )0 but start rotating into the direction of
maximum phase-space growth and eventually diverge.
To avoid this problem a Gram-Schmidt reorthonormali-
zation procedure may be repeatedly applied to the vector
frame (5i) after every few times steps. ' ' In this way
we obtain the results that, after some transient time, 5,
tends to point into the direction of phase space growing
most rapidly proportional to exp(A, ,t), that 5, , 52 span a
subspace whose area grows most rapidly proportional to
exp(A, , +A,2)t, and so forth. Generally, 5, , 52, . . . , 5& span
a subspace with maximum volume growth proportional
to exp( A, , +A,2+ +A,

&
)t F. rom this sequence

A, &, A,2, . . . , A,
&

may be obtained. Most determinations of
Lyapunov exponents have made use of this algorithm
which we shall refer to as "method A." ' ' As an alter-
native to the Gram-Schmidt reorthonormalization
scheme a matrix orthogonalization technique has been
proposed by Eckmann and co-workers (method 8).

We have recently introduced a third method, ' '

henceforth referred to as "method C," utilizing ideas
from control theory and constraint dynamics.

' This ap-
proach has been also suggested by Goldhirsch et al. In-
stead of allowing the linearized trajectories (3.1) to evolve
freely and calculating the Lyapunov exponents by period-
ically rescaling the differential offset vectors 5& in tangent
space as in method A, these vectors may be constrained
to stay normalized and orthogonal to each other at all
times,

III. COMPUTATIONAL METHODS

Basically two algorithms for the calculation of the
complete spectrum of Lyapunov exponents have been

proposed. ' ' ' ' In all these schemes —in addition to
the reference trajectory (1.1)—M further trajectories are
calculated, which are differentially separated from the
reference trajectory and which obey the set of linearized
equations of motion obtained by differentiating (1.1),

The magnitude of the constraint forces is governed by
Lagrange multipliers A, , - which may be calculated from
the requirements (3.3). For example, differentiating (3.3)
for i =j, we find

5,'.5; =0 .

Insertion of 5; from (3.4) gives for the main diagonal ele-

ments

—(5I )i =—5( D5, , 1=1,2, . . ——. , M .
dt

Here, the coeScient matrix

BG(1 )

ar

(3.1)

(3.2)

A.;;=5,' D 5;, i=1,2, . . . , M .

Similarly, we find for i &j,

(3.5)
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A,, =5,' D 5, +5,' D.5, . (3.6)

(3.7)

The time evolution of 5&, 52, . . . , 5' is a rotation in

tangent space where an arbitrarily oriented set of ortho-
normal vectors may serve ap an initial condition for the
set I5&(0)J. The Lyapunov exponents are given by the
time-averaged diagonal elements of the Lagrange multi-

pliers,

ponent A,~ may become extremely large, making it
difficult for the algorithm to keep 5' normalized and or-
thogonal to all the other vectors 5„.. . , 5~,. If this
happens Gram-Schmidt reorthonormalization must be
used every few time steps to prevent the solution for A, M

from becoming unstable. For the 32-body fluids also re-
ported in Sec. IV only method A has been used.

IV. LYAPUNOV SPEC.I'RA

OF 8- AND 32-BODY FLUIDS

The theoretical merits of method C are that the
Lyapunov exponents are evaluated directly from the evo-
lution equations (3.4) with their symmetry properties
with respect to time-reversal explicitly displayed. In this
connection it is useful to recognize that the dynamical be-
havior of the orthonormal set I 5& J is local in phase space.
By this we mean that the Lagrange multipliers A, ;J and
consequently the angular velocities mi of the rotating unit
vectors depend only on the instantaneous phase point
I'(t) They .may be generated by starting at I'(t) and in-

tegrating the reference trajectory (1.1) backward in time
for a time interval b, t. At t —ht an arbitrarily oriented
set of orthonormal unit vectors [51(t ht )—I may be used
as initial condition for a subsequent integration forward
in time of both (1.1) and (3.4) to find the current (51(t)],
A,;, and col at I'(t). For large enough time intervals b, t
the result will be independent of the initial conditions for
t5, I at t —b, t. The local frequencies col may become use-

ful for semiclassical path-integral methods introduced re-
cently.

There are, however, some problems in a practical im-
plementation of method C. The extensive vector-matrix
operations in (3.5) and (3.6) necessary at each time step
decrease the calculation speed on a VAX-750 computer
by a factor of 4 as compared to method A for the calcula-
tion of the full Lyapunov spectrum of an 8-particle sys-
tem in three-dimensions (M =42). Another minor prob-
lem arises from the restricted computational accuracy.
Minor deviations are magnified in the course of time re-
sulting in a noticeable violation of condition (3.3) after a
certain number of time steps. However, this can be easily
remedied by a periodic application of the Gram-Schmidt
reorthonormalization scheme with negligible expense in
computer time.

In a practical realization of method C a convenient
way of performing the time averages over the Lyapunov
exponents (3.7) or of any other dynamical quantities, such
as the potential energy 4, is to add these quantities to the
list of variables II,5„.. . , 5MI integrated by the in-

tegration method in use. For all our simulation results
reported in Sec. IV a fourth-order Runge-Kutta integra-
tion with a reduced time step of 0.001 was exnployed. Re-
duced units with m, cr, and c acting as units of mass,
length, and energy together with periodic boundary con-
ditions are used. The Lyapunov spectra obtained by
methods A and C for the 8-particle systems agreed to
better than 5% if in both runs the trajectories were fol-
lowed for 10 time steps. It is interesting to note that in
very stiff systems the off-diagonal Lagrange multipliers

associated with the most negative Lyapunov ex-

Figure 2 shows Lyapunov spectra for three thermo-
dynamic states of an equilibrium (isoenergetic) 8-body
system obeying Hamiltonian equations of motion and
periodic boundary conditions. All data are in reduced
units. Only positive exponents are calculated and indi-
cated by the symbols in this figure. The negative ex-
ponents can be easily obtained from the symmetry condi-
tion (1.3), where M=42. The exponents are arranged
such that the index n =(M/2) i, i =—1,2, . . . , M/2
denotes the number of positive Lyapunov exponents less
than or equal to a given exponent A,(n). The spectra have
a very simple appearance and do not exhibit any fine

structure. They can be approximated well by a power
law

A(n)=an~, (4.1)

as shown by the smooth curves in Fig. 2, which are ex-
tended also to the full range of negative Lyapunov ex-
ponents. The fit parameters a and P are collected in

Table I together with relevant thermodynamic informa-
tion on the states considered.

Qis

-4 l I

1Q n 2Q
FIG. 2. Lyapunov spectra for an 8-body fluid in isoenergetic

equilibrium for three thermodynamic states I, II, and III
specified in Table I. Only positive exponents are calculated and
indicated by the symbols. The smooth curves represent a fit of
(4.1) to these data and are extended also to the full range of neg-

ative exponents. All quantities are in reduced units, with the
potential parameters c, and o. of (1.4) and the mass m acting as
units of energy, length and mass, respectively.
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TABLE I. Parameters characterizing the isoenergetic 8-body
system studied in Fig. 2. All quantities are given in reduced
units. Vis the volume, T is the temperature, K is the kinetic en-

ergy, 4 is the potential energy, and E is the total energy. t,„ is
the time for which the trajectory was followed after the decay of
transients. a and P are obtained by fitting (4.1) to the positive
Lyapunov exponents. vD is an estimate for the Debye frequen-

cy, and A, ,„ is the maximum Lyapunov exponent. hx ——Q~, OA,

is the sum over all positive exponents.

I I I I I I I

lJ

State

V
kT

(~&
&E&

tmax

a

Vg)

~max

~ac

16.0
0.85

10.20
1.80

12.00
150

1.33
0.32
3.22
3.52

54.2

16.0
0.70
8.40
1.42
9.82

100
1.22
0.32
3.03
3.30

50.1

'The center-of-mass velocity is kept constant.

22.87
0.684
8.21
0.79
9.00

100
1.02
0.31
3.01
2.70

40.4

I I I I I I I I

FIG. 4. Lyapunov spectrum for an isokinetic 32-body fluid at
equilibrium (F,=0). Thermodynamic state parameters are list-
ed in Table II. Simulation results are indicated by squares,
whereas the smooth line is a fit of (4.1) to the positive exponents.
All quantities are in reduced units.

A very similar result has been found by us already for a
simpler, but also purely repulsive pair potential. ' '"
Table I shows that the exponent P is close to —,

' in all

cases, which is precisely the value derived from a Debye
model for the distribution of vibrational frequencies in a
solid. In such a model the number of modes dn between
frequencies v and v+dv is proportional to v . Integrat-
ing this relation one finds A,(n)~n', which is of the
form (4.1) with PD,b„,———,'. As may be verified from Table
I, the maximum Lyapunov exponent A, ,„ is also close in
value to the Debye frequency vD. The latter may be es-

timated from the second derivative of the pair potential
P"(R) calculated at the particle separation R for which
P(R) =kT,

2m vD ——[P"(R )/m ]'~ (4.2)

In Figs. 3-5 analogous spectra are shown for thermos-
tatted isokinetic 8- and 32-body systems, where Gauss's
equations of tnotion (1.6) have been applied. Let us dis-
cuss the case of field-free equilibrium first (F, =0 in Figs.
3 and 4). The power law (4.1) provides a good fit of the

I I I

10 0 20
FIG. 3. Full Lyapunov spectra for an isokinetic 8-body fluid

for various reduced external fields F„as indicated by the labels.
The simulation results are shown as symbols, whereas the
smooth line is a fit of (4.1) to the positive exponents for the equi-
librium case (F, =O). Thermodynamic states and relevant pa-
rameters are listed in Table II. All quantities are in reduced
units.

I I I I

0
FIG. 5. Full Lyapunov spectra for an isokinetic 32-body fluid

for various reduced external fields F„as indicated by the labels.
The simulation results are shown as symbols. The solid curve is
a fit of (4.1) to the positive exponents for the equilibrium case
(F, =0) depicted in Fig. 4. Thermodynamic and related infor-
mation is given in Table III. All quantities are in reduced units.
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TABLE II. Parameters for the isokinetic 8-body simulations for various external fields F,. All quan-
tities are given in reduced units. In addition to the symbols explained in Table I, dL denotes the
Lyapunov dimension, ~ denotes the conductivity, and gA. denotes the sum over all Lyapunov ex-
ponents. T is the "current" temperature defined in the Appendix and ( A ) is calculated from (5.6).

V
kT
kT
Ko'
(~)
(E)
tmax

a

VD

~max

h~

K

0.0

16.0
1.0
1.0

12.0
2.21

14.21
220

1.27
0.37
3.40
3.79

57.6
0
0

42

1.0

16.0
1.0
0.99

12.0
2.20

14.20
56

3.72
56.4

—1.3
—1.4
41.64
0.094+0.013

F, (reduced units)
2.0

16.0
1.0
0.95

12.0
2.22

14.22
350

3.67
53.8

—5.9
—5.8
40.51
0.099+0.004

3.0

16.0
1.0
0.86

12.0
1.99

13.99
88

3.37
47.5

—14.3
—14.3

38.3
0.10820.007

'The center-of-mass velocity is kept constant.

numerical Lyapunov spectra. The fit parameters and fur-
ther relevant information for these systems are collected
in Tables II and III, respectively. The exponent P is
again in quite good agreement with the Debye result 3,
and the maximum Lyapunov exponent seems to agree
satisfactorily with the estimation of vD based on (4.2). At
first the rather close agreement of the Lyapunov spectra
with predictions derived from a simple Debye model is
surprising. In hindsight it appears plausible in view of
the fact that the coefficient matrix (3.2} is formally similar
to the expansion coefficients of the potential energy 4 in
powers of atomic lattice site displacements used in the
theory of lattice dynamics of harmonic solids. Howev-

er, a close inspection of Fig. 3 reveals systematic devia-
tions of the numerically obtained points from the fit par-
ticularly at small values of A, and n. These deviations also
persist whether method A or method C is used for the
simulation of the spectra. It remains to be seen whether
the inclusion of an attractive part to the pair potential
has a noticeable influence on the shape of the Lyapunov
spectra.

Nonequilibrium steady-state results are shown in Figs.
3 and 5. As expected, the application of an external field

F,&0 destroys the symmetry of the Lyapunov spectra.
They are not shifted uniformly to more negative values of
A, , but the positive branch of the spectra decreases more

TABLE III. Parameters for the isokinetic 32-body simulations for various external fields F,. All
quantities are given in reduced units and are explained in Tables II and III.

V
kT
kT
Ko'

&E)
tmax

a

VD

~max

h~

&A)

I

0.0

64.0
1.0
1.0

48.0
8.33

56.33
5.8
0.634
0.385
3.40
3.66

242
0
0

186.0

1.0

64.0
1.0
0.98

48.0
8.87

56.87
26.0

3.66
238
—6.8
—6.8
184.2

0.108+0.005

F, (reduced units)
2.0

64.0
1.0
0.94

48.00
8.99

56.99
10.4

3.57
225

—27.1

—27.3
178.9

0.109+0.005

3.0

64.0
1.0
0.86

48.00
8.59

56.59
14.0

3.33
203

—60.8
—60.3
169.8

0.107+0.004

'The center-of-mass velocity is kept constant.
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strongly than the negative one. In Tables II and III we
also list the sum over all Lyapunov exponents which is
equal to the phase-space "compressibility" averaged over
the nonequilibrium ensemble,

M
&A&—= Jdrf(r, r) „r(r,r)=g), .

i=1
(4.3)

Here, f( I, t ) is the distribution function obeying the gen-
eral Liouville equation

+ (fr)=0.
t

(4.4)

Tables II and III also contain the Kolrnogorov entropy
hz, which according to Pesin is the sum over all positive
Lyapunov exponents,

J=gcp/m, (4.6)

where c =El is the color introduced in (1.7). We have
measured this quantity from which a steady-state color
conductivity may be derived according to

&J&=VLF, . (4.7)

K is also collected in the tables. The error bars for K are
estimated from the numerical noise for the components
of & J & perpendicular to F, which theoretically should be
zero.

V. IRREVERSIBILITY IN NONEQUILIBRIUM
STEADY-STATE SYSTEMS

The internal energy of the system is defined by

H(r}=c+g p
2m

(5.1)

For Gaussian mechanics its rate of change is given by

H(r)=r . = —2K g +J(t) F, ,r (5.2)

where (1.6) and (1.7) have been used and J is the dissipa-
tive flux defined in (4.6). The steady-state condition
& H & =0 therefore gives

A, )0

hx is the mean rate at which information about the sys-
tem is lost in the course of time.

With the external field F, applied, the system experi-
ences also a dissipative flux in the direction of the field,
the color current, defined by

ae= —3(N —1)gG — g p.
2K0 ()q

1 JF, ,
0

(5.4)

where 3(N —1) gives the dimension of momentum space.
Upon averaging, the second term in (5.4) vanishes and we
find

(5.5)

Combining this equation with (5.3) yields

& A & = —[3(N —1)+1] zF, .
0

(5.6)

Since & A & in (4.3) is equal to the sum of all Lyapunov ex-
ponents, (5.6} provides a convenient test of the numerical
consistency of the data. As indicated in the tables, we
find very good agreement of &A&, calculated from (5.6)
with the parameters taken from Tables II and III, respec-
tively, with gA. .

For nonvanishing external fields the time-averaged sum
of Lyapunov exponents gA, = & A & is always negative and
varies according to (5.6) with the square of the applied
field. This result has extremely interesting consequences
and provides an understanding of the irreversible behav-
ior of nonequilibrium steady-state systems in spite of the
time-reversal invariance of the equations of motion. '
It means that an arbitrary hypervolume in phase-space
centered on a trajectory shrinks in the course of time and
develops into a very complicated fractal-like object. That
systems in nonequilibriurn steady states develop into
"strange attractors" has been first observed in simula-
tions of a periodic two-dimensional classical Lorentz gas
driven by an external field and of a single-body, one-
dimensional Frenkel-Kontorova model for isothermal
electronic conduction. The self-similar, sheetlike struc-
ture of these fractal attractors is clearly visible for the
problems mentioned above involving a phase space of
only three dimensions. For the high-dimensional phase
spaces treated in this paper it is obviously not possible to
generate similar plots. We proceed by evaluating the
dimensionality of the strange attractors.

The Lyapunov dimension dL may be estimated accord-
ing to Kaplan and Yorke ' from

&gG&= &J& F, = tcF, &0,
2K ' 2K

(5.3}

i=1
dl =j+

I ~, +i I

where the integer j is determined from the conditions

(5.7)

where in the second step we have used (4.7). The long-
time average of gG acts as a positive friction coefficient
removing the energy from the system which is continu-
ously supphed by the external field.

For the phase-space compressibility we find

gk, ;&0, QA, , (0. (5.8)

The results for dL are also listed in Tables II and III. It
has been argued that the dimensionality loss of the
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phase-space attractors with respect to the equilibrium
system [for which dL (0)=M] is approximately given by

hdi =dL(F, ) d—
L (0)=SIk&,„,

where

(5.9)

(5.10)

is the information theory entropy. S is the rate of irrever-
sible entropy production and may be easily calculat-
d 35,22

S/k = —fdl lnf

= —fdI'inf

(5.11)

The first step follows from the normalization of f, the
second from inserting the Liouville equation (4.4). The
final steps follow from partial integration and the use of
(5.4). We conclude that

g~i~max (5.12)

This prediction is verified by our numerical results for
not too large external fields F, & 2. Obviously the dimen-
sionality loss is an extensive quantity and persists in the
thermodynamic limit.

The fact that nonequilibrium systems quickly collapse
onto a fractal subspace of the complete equilibrium phase
space with an associated loss in dimensionality is a gen-
eral phenomenon. In addition to the problems mentioned
previously it has been observed also by Morriss in a study
of planar two-body shear fiow.

The consequences of this important result with respect
to the second law of thermodynamics has been estab-
lished very recently: ' ' Only trajectories which on

the average convert heat into work and which are charac-
terized by a negative friction (g) (or (gG ) ) will violate
the second law. In view of the time-reversal invariance of
the Nose H-oover or Gauss equations of motion (1.9) and
(1.6), respectively, these trajectories must be precisely on
the associated repellor and must be propagated backward
in time. The repellor states are obtained from the strange
attractor by the time-reversal transformation q~q,
p~ —p, g~ —g {or gG~ —gG) and consequently form
again a fractal object with a dimensiona]tty dL less than
the complete phase-space dimension M. Since time-
reversal also means a sign change for the Lyapunov ex-
ponents the repellor states are characterized by a positive
sum of Lyapunov exponents and a positive phase-space
compressibility ( A ) . It follows that the repellor is unsta-
ble: The slightest deviation will blow up very quickly and
the trajectory will end up on the attractor again. One
concludes (a) that an exact localization of the repellor is
impossible because of its vanishing phase-space volume
and (b) that any approximate effort to localize and follow
a time-reversed trajectory on the repellor is impossible
because of its inherent instability. Thus trajectories
violating the second law do not occur in spite of the time
reversal invariance of the equations of motion. Nose-
Hoover mechanics (1.9)—including Gauss s isokinetic
equations (1.6) as a special case —therefore resolves the
famous reversibility paradox first stated by Loschmidt in
1876 (Ref. 38) and discussed further by Boltzmann for
the special case of nonequilibrium steady or periodically
varying states.
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APPENDIX

We should emphasize that the definition of "tempera-
ture" in a nonequilibrium system is not unambiguous.
Strong one-dimensional shock waves have distinct longi-
tudinal, transverse, nuclear, electronic, and radiation
temperatures. Any definition must be clear and must
reduce to the equilibrium one at equilibrium. In our sys-
tem with two moving currents one can imagine two alter-
native definitions. The first, which we use in this paper,
bases T on the mean squared velocity v=p/m relative to
a fixed laboratory frame (vL ——0),

QI

3kT=(m(v —vL ) ) (A 1)

An alternative, favored by other authors, uses two
separate thermometers. These move with velocity
u= (J) /N either in the direction of the external force F,
(for particles with c =+1) or in the opposite direction
(c = —1) and detect only the velocities of the appropriate
comoving subset of particles. Assuming steady-state con-
ditions this "current"-temperature T is

N

3kT =—g m(v; —c;u)
N,

50
FIG. 6. Full Lyapunov spectra for an isokinetic 32-body Quid

with comoving "moving-frame" thermostats for various re-

duced external fields F„as indicated by the labels. The simula-

tion results are shown as symbols. The solid curve is a fit of
(4.1) to the positive exponents for the equilibrium case (F, =0).
A11 quantities are in reduced units.

(aF, )=3kT —mu2= 3kT —m
(N/V)'

(A2)
Here,

P=P Ng P
2

(A5)

T is also included in Tables II and III. Our constraint
equations of motion (1.7) are designed to control the "lab-
oratory" temperature T. Methods of incorporating
comoving thermostats into the equations of motion have
been discussed by Evans and co-workers.

To investigate the effect of the moving-frame thermos-
tat on the Lyapunov spectrum, we have carried out a
series of simulations for the 32-particle system using a
moving-frame Gaussian thermodstat with fixed tempera-
ture T. Instead of (1.6)-(1.8) the equations of motion
are4'

F(q)=F(q) ——g'(F(q) x)x (A6)

where x is a unit vector in the direction of the external
field F, . For the constant temperature T we have

is the momentum of a particle relative to the center of
mass of the comoving subset of N/2 particles [over
which the sum g' in (A5) has to be performed]. Similar-

ly,

q=
(A3)

2Eo 3NkT= —gP——p .
m

(A7)

p=F(q) —4 P

where the Gaussian friction coefficient gG is given by

—QF(q).P
1

m
(A4)

Our results are summarized in Table IV and Fig. 6 and
confirm all our conclusions reached with the fixed-frame
laboratory thermostat in Secs. IV and V. The only new
feature is that the branch of negative Lyapunov ex-
ponents for the largest external field F,=3 is shifted
more strongly to more negative values than the positive
branch.
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