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A new one-dimensional collisionless kinetic model is developed for the flow of ions to probing
structures in drifting plasmas. The cross-field flow into the presheath is modeled by accounting con-

sistently for particle exchange between the collection flux tube and the outer plasma. Numerical
solutions of the self-consistent plasma-sheath equations are obtained with arbitrary external ion

temperature and parallel plasma flow velocity. Results are presented of the spatial dependence of
the ion distribution function as well as its moments (density, particle Aux, temperature, and power
flux). The ion current to the probe is obtained and the ratio of the upstream to downstream

currents is found to be well represented by the form R =exp(Kud), where K —1.7 and ud is the drift
velocity in units of Q( T, /m, ). The results are in good agreement with comparable recent fluid cal-
culations but show substantial deviations from other models which ignore particle exchange out of
the presheath. No evidence is found of the formation of shocks in the downstream wake, contrary
to the implications of some fluid theories.

I. INTRODUCTION

The electrostatic probe is one of the fundamental tech-
niques for measuring the properties of plasrnas. In recent
years it has found increasing use in fusion research as
well as in more traditional applications, since it has been
realized that the edge conditions are of great importance
for magnetically confined plasmas. For example, the gen-
eration of impurities from the interaction of plasma with
material edge structures is a vital issue for the achieve-
ment of clean and stable plasmas. ' Also, edge conditions
can influence the central energy confinement directly.

One of the most important current applications is the
diagnosis of plasmas which are flowing. Significant ion
drift velocities can arise in the plasma-edge region of
tokamaks and other magnetic confinement devices, for
example, because of scrape-off flow toward a diverter
plate or limiter surfaces. Such plasma drifts may play an

important role in confinement-related phenomena such as

impurity transport, fluctuation levels, etc. , and in the
theory of divertors and limiters in fusion plasmas.

Many measurements have shown large asyrnmetries in
the ion saturation current drawn to probe faces parallel
and antiparallel to the magnetic field. ' These appear to
be caused primarily by the presence of plasma flow along
the field. When using diagnostic edge probes, such flows
introduce a complicating factor which must be accounted
for in probe data interpretation. More importantly, the
asymmetry can be used to measure the flow velocity pro-
vided that a trustworthy theory of probe operation is
available. It is the purpose of this work to contribute to
the establishment of such a theory.

In fact, the physics of plasma flow to the probes used
to measure edge plasma flows is largely the same as that
involved in the flows themselves. Thus the present theory
has relevance to the scrape-off physics itself as well as to
probe interpretation.

Another application to which this theory relates is the
interaction of rapidly moving bodies with plasmas. This
is, of course, a longstanding problem. Planetary objects
in the interplanetary plasma fall into this generic class.
More recently, increased attention has focussed on man-
made satellites, particularly in low-earth to ionospheric
orbits. If the objects are large then magnetic field effects
can be important and in some cases the present theory
could be directly applicable. But some of the general
features of our present approach are significant even for
the situation in which the magnetic field can be ignored.
Thus our theory may be applicable in part to many prob-
lems of the plasma "wake". The upstream "ram"'
tends to be less affected by the self-consistent electric
fields and hence a less difficult problem, from the plasma
viewpoint.

The theory of probe operation in magnetic fields is no-
toriously difficult. Bohm" obtained a criterion for stable
sheath formation, assuming that ions are monoenergetic,
and inferred a weak dependence of ion current upon ion
temperature for T, & T, . This analysis has become a
standard part of Langmuir probe theory. ' However, his
accompanying analysis of particle collection in magnet-
ized plasmas took the processes to be diffusive in all di-
mensions and hence excluded most situations of interest
where collisions are unimportant for parallel flow. San-
rnartin' performed an asymptotic analysis of particle
collection by spherical probes in a magnetic field for
T;/T, —1. He concentrated on the electron collection
and treated ion collection as unperturbed by the magnetic
field. Thus his theory, demonstrating the blurred knee in
the current-voltage characteristic, is really only
specifically relevant to cases where the ions are not
strongly magnetized. Laframboise and Rubinstein'
developed a theory of a cylindrical probe with an arbi-
trary angle to a uniform magnetic field for a completely
collisionless plasma for arbitrary ion temperatures. The
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FIG. 1. Schematic illustration of the geometry of the ion col-
lection region. Ions accelerate toward the probe inside the
presheath while the exchange of ions between the presheath and
the outer plasma acts as a {difrusive) source in the one-
dimensional equations of motion.

difficulty here is that cross-field effects in most situations
require some form of collisions for their proper modeling.

Our theory is addressed primarily to the case where the
magnetic field is strong enough that the ion gyroradius is
substantially smaller than the probing object.
Specifically, we require that the ratio p;/a be much less
than 1, where p, =urn, T, ./ZeB (with standard nomen-
clature) and a is the transverse probe dimension (typically
the radius). For example, if T, =10 eV, B=4 T, and
a =1 mm, as might be typical of tokamak edge measure-
ments, then for protons p, /a =0.08 and the strong mag-
netic field condition is satisfied. In this case ion collec-
tion across the field is diffusive even if the parallel flow is
dominated by inertial effects. ' Thus the essential effect
of the strong magnetic field is to introduce strong anisot-
ropy in the ion dynamics.

As a result of the anisotropy, the quasineutral
presheath region, where the acceleration of the ions
occurs into the sheath, becomes highly elongated along
the field, until the cross-field diffusion is able to balance
the parallel collection flow. Figure 1 shows schematically
the physical situation under consideration. The parallel
collection flow velocity to the probe far exceeds the per-
pendicular diffusive flow. Therefore the detailed shape of
the probe is unimportant; only the area of its parallel pro-
jection matters. Moreover, the perpendicular com-
ponents of the momentum balance equation enter only
into determination of the diffusive exchange rate of parti-
cles across the field. We shall find that this rate is impor-
tant only in determining the presheath length. In view of
these facts, a major simplification is possible: to regard
the presheath as effectively one-dimensional. One can
then seek solutions satisfying Poisson's equation and the
Boltzmann equation in the parallel direction, treating the
perpendicular diffusion equation as a source term in the
parallel equations.

Theoretical treatments of the one-dimensional plasma

sheath have a long history. Tonks and Langmuir' de-
rived an integral equation for the potential variation in a
collisionless plasma with a Boltzmann distribution of
electrons. Harrison and Thompson' found an analytic
solution for the plasma region and demonstrated that the
sheath edge potential and current density are indepen-
dent of the spatial variation of the source term when ions
are born with zero energy.

Emmert et al. ' extended their analysis to the case of
finite ion temperature. They chose an energy-dependent
source distribution function which would give rise to a
Maxwellian ion distribution function if there were no
electric field in the plasma. Bissel and Johnson' have
solved same problem with different ion source distribu-
tion, corresponding to ionization of a Maxwellian distri-
bution of neutral species. These two treatments give rise
to noticeably different results, thus indicating the impor-
tance of the assumed source distribution. Besides, nei-
ther treatment gives results for the important situation of
a plasma with parallel flow, where distributions with an
appropriate flow velocity should be used.

Stangeby' has applied the kinetic calculation results of
Emmert et al. directly to the theory of magnetized
probes by assuming that cross-field transport can be
modeled as a source in the one-dimensional parallel equa-
tions. He has also given a one-dimensional fluid calcu-
lation which proves to be analytically integrable even
with plasma flow incorporated in the source. In either
case the ion source adopted corresponds to "birth" of
ions within the collection region considering only the
cross-field transport of ions "into" the flux tube.

Recently Hutchinson ' has investigated a fluid ap-
proach that uses a more physically appropriate source,
accounting not only for ions moving "into" the collection
region, but also for ions moving "out." In the context of
a one-dimensional model this implies a sink of ions
characteristic of the inner presheath as well as a source of
ions characteristic of the external plasma. As Hutchin-
son shows, this modification corresponds to adopting a
realistic value of ion viscosity rather than making it
effectively zero, as Stangeby's approach does. In a fur-
ther study, Hutchinson has explored the effects of
adopting different values of the viscosity and shown that
the results of Stangeby are in reality a singular case, not
relevant to any finite viscosity. In addition, this latter
work includes a two-dimensional calculation which
shows excellent agreement with the one-dimensional ap-
proximation.

These latest fluid analyses offer a substantially more ac-
curate and reliable basis for understanding the interac-
tion of probes with flowing magnetized plasmas. Howev-
er, they cover only the subsonic regime and approximate
the ion energy equation in a way that is rigorously accu-
rate only if the ions are isothermal, which they usually
are not. Naturally, also, they provide no information on
the ion distribution function or related important quanti-
ties such as heat flux within the presheath.

It is the purpose of this work to analyze the problem
by using a one-dimensional collisionless kinetic analysis
but accounting correctly for the diffusive nature of the
ion source. In this way we obtain ion distribution infor-
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where f(z, u„t) is the one-dimensional ion distribution
function, z is position along the magnetic field, U, is the
parallel velocity of ions, a, is the acceleration of the ions
governed by the Lorentz force, Cf is the collision opera-
tor, and Sf is the volume source of ions. Assuming
steady state (8/Bt =0}, and ignoring collisions (Cf ——0},
the Boltzmann equation can be written as

v, —— f(z, u, )=Sf .
a qdya

(&)
Bz m dz Bv

Here m, q, and P are ion mass, ion charge, and electric
potential, while Sf will be taken as the ion source due to
cross-field transport. The energy equation, governing the
phase space orbits, is

—,'mu, +q(t(z) =E, (3)

where E is the constant total energy.
The electrons are assumed to be isothermal, described

by the Boltzmann relation

mation and provide an alternative formulation to com-
pare with the fluid calculations. We find in general very
satisfactory agreement with Hutchinson's fluid calcula-
tions at the subsonic plasma flow speeds for which they
are available. In addition, the present model gives clear
results well into the supersonic flow regime.

In Sec. II we set up the kinetic model which contains
"transport" source terms. Section III deals with the nu-
merical method used to solve the plasma-sheath equation.
In Sec. IV we present and discuss our results which, in
addition to the ion distribution function, include ion
current, temperature, fluid velocity, density, power flux,
and ratio of upstream to downstream current. Potential
variations are also included. Section V gives our con-
clusions.

II. MODEL

A. Governing equations

The one-dimensional governing equations of ions in the
presheath (including the sheath) can be described by the
Boltzmann equation, which is given by

a a a—+u, +a, f(z, u„t)=Cf+Sf
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FIG. 2. Illustration of the particle orbits and plasma poten-
tial variation. The potential can be considered as the indepen-
dent variable when plotting the particle orbits, which are then
parabolic. The task of the solution procedure is to find the spa-
tial variation of the potential that self-consistently satisfies the
equations.

comes

DW=
a

(7)

to D, the anomalous cross-field diffusion coefficient.

B. Nondimensionalization

If we assume that W(z, v) is independent of v, the equa-
tions can be nondimensionalized by using the following
transformations. We define a type of ion acoustic speed,
ignoring the ion pressure, by

ZT,
'"

V

Sf ——W(z, v)[f„(u)—f(z, u )] .

The first term on the right-hand side represents the ions
entering the collection flux tube from the outside. The
second term is the new term that we are introducing. It
represents ions being exchanged out of the collection flux
tube, as indicated schematically in Fig. 1. The exchange
rates (the W's) for these two processes are taken to be
equal, representing random migration of ions in either
direction. The rate is related via

n, (z) =n „e (4)
where Z =q/e, and then define a characteristic length as

where n „and T, are electron density and temperature,
and subscript infinity refers to values outside the
presheath.

The electron and ion densities are related by Poisson's
equation, i.e.,

2p

dz'
1

q f(z, u }du en, (z)—
4~

The expected variation in the plasma potential and corre-
sponding orbit is shown schematically in Fig. 2.

The cross-field transport is considered to be governed
by a frequency W(z, u), which gives the rate at which par-
ticles are exchanged between the presheath and the outer
plasma, so the source due to cross-field transport be-

V,

W(z)
(9)

W(z) vx= dz, 9:—
S $

T
'=

ZT

(10)

V, f (z, u),

This is the characteristic length of the presheath, but in
general varies with parallel position if 8' does. Then the
nondimensional forms of the parameters are
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where A,~ is the Debye length. In terms of these parame-
ters the equations become

get the ion density, current, fluid velocity, temperature,
and power flux as

u + g(x, u)=g„(u) —g(x, u),

dt's

Bx dx Bu

u

2
(12)

n(x)= fg(x, u)du,

J(x)=f ug(x, u)du,

V(x) =J(x)/n(x),

(22)

(23)

(24)

d'n =A, (x) =Z fg(x, u)du —e
dx

(13)

If the external ion distribution is Maxwellian with tem-
perature T, , shifted by a velocity Ud, then

1/2

T(x)= f [u —V(x)] g(x, u)du,
n (x)

P(x)= f ( —,'u )ug(x, u)du .

(25)

These are, of course, in normalized nondimensional form.

g„(u)= exp[ ZT, (—u —ud) /2T, ] . (14) III. NUMERICAL METHOD

The boundary conditions on the distribution function
are

To solve the preceding equations, we guess an initial
potential variation (q;). Along each energy orbit (e~),
velocity sets are obtained as

g(x=0, u &0)=0, g(x=ao, u)=g„(u), (15)
u, )

——+2(e, +g, ), (27)

which means that the probe has a perfectly absorbing
surface and the ion distribution has Maxwellian form
outside the presheath. Those on the potential are

ri(x =0)=ri, g(x = ~ ) =0 .

The operator of the Boltzmann equation (11) can be writ-
ten as

a dr/ a de a a
u + u +

ax dx au
=

dx a~ au

p; ~;,~g.;,, +[1 (1 e—)p; ~,J l—g;,J
'+' ' 1+gp, h;,

where

(2g)

where i is the position index (1 &i & Xz ) and j is the orbit
(energy) index (1 &j &N, ) with a total of X positions
and X, orbits.

We obtain the ion distribution function along the or-
bits by solving the kinetic equation with a semi-implicit
method, i.e.,

+de d'g a a
dx du 817 Bu

dg D
dx Du

s —1s;

(dq/ds) ~,
'

where D/Du is the convective derivative along the orbit
of constant total ion energy. Then the kinetic equation is

[g„(u)—g(x, u)] .Dg 1

Du dg dx
(17)

[g„(u)—g(s, u )],
Du d q/ds

(19)

2
1 d g

s~ ds

5 —1 dg
s 2~ —1 ds

=p(s), (20)

with

Since the ratio (A, ) of the Debye length to ion collection
length is typically && I, very fine resolution is needed
near the sheath region. To provide this without increas-
ing the number of mesh points excessively, we choose a
nonuniform meshing along the x direction like that of
Emmert et al. ' Putting

x=s (5&1),
Eqs (11)and (13) become

and g is a mixing parameter. (If it is equal to 1, 0.5, and
0, the scheme is implicit, semi-implicit, and explicit, re-
spectively. We use /=0. 5 throughout our calculations. )

The boundary conditions are

gz, j =g ~i,J ~

P'
(29)

Because of the shape of the orbits and the fixed posi-
tion grid, the velocity spacing between adjacent points on
an orbit is large near u =0. In order to minimize the nu-
merical error which otherwise arises in the orbit integra-
tion, we introduce an additional point on the orbit at
u =0. The value of potential there is appropriately inter-
polated between the adjacent points on the position mesh.
This greatly improves the accuracy of the distribution
function on the negative-velocity side. We obtain the ion
density by integrating the ion distribution over velocity
space at each position.

Since the Poisson equation [Eq. (20)] is an elliptic equa-
tion, we are able to solve it by the successive over-
relaxation method for nonuniform meshing in x (but
uniform mesh in s). The scheme for the potential is

p(s)=Z fg(s, u}du —e (21)
g4, +'=[ cO, A, g4+—

,'+(1 ru, )B;g4 n), C,—g4+,—

Then we use a mesh that is uniform in s.
By taking the moments of the ion distribution we can where

+co;p;]/B;, (30)
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B;=—2
6hs 2.

+ Q.Q

A, =C,. = ,'B—
, [—1+(5—1)s,bs I2] .

Here p; is charge density at position i, co, is a generalized
relaxation parameter which we take equal to 1.9A, ,
b,s =L I(N& —1), where L is the total length of the flux

tube, and p is an iteration index.
For the quasineutral case (A, =O), Eq. (20) can be used

to obtain the potential directly as +06

0.2
(b)

g", +'= —Z ln[n, (g", )] . (31) 0.2- (c)
-2-

However, direct iteration schemes of this type are usually
unstable. Instead, a relaxation scheme has been used,

riI'+'=ALII'+co ln(n, In, ), (32)

where co is a relaxation parameter, which we take to be
0.1.

We obtain self-consistent solutions for the potential
and the ion distribution function by iterating these pro-
cedures until they reach a convergence criterion

max
J

g", + ' —q",
J
(e,

where e is a small positive number. After getting the
self-consistent ion distribution and potential variation,
the moments of the ion distribution (density, flux, fluid
velocity, temperature, and power flux) are obtained by
Simpson-rule integration of the ion distribution over the
nonuniform velocity space.

IV. RESULTS AND DISCUSSION

For the following results we use singly charged ions,
Z= 1, nonuniformity of distance, 5=2.5, convergence
criterion e-10, position mesh %~=51, and energy
mesh X, =100. The negative sign in ion fluid velocity,
current, and power flux denotes motion toward the probe
surface.

A. Drift-free plasma results

We give first some results when there is no ion drift
(ud ——0) for a case with T,„=T, . In Fig. 3 are shown the
variation versus nondimensional distance of the potential,
ion density, ion temperature, fluid velocity, power flux,
and ion current. Figure 4 shows the ion distribution at
different potentials and hence positions. These results are
essentially the direct analog of those of Emmert et al. '

and Bissel and Johnson. ' Because of our different treat-
ment, however, we find that the potentia1 perturbation is
noticeably larger in our case and consequently the density
falls off toward the probe more rapidly. These differences
are a consequence of the fact that our inclusion of ex-
change of partic1es out of the collection flux tube consti-
tutes a loss of momentum. In order to accelerate the ions
to enter the sheath at the sound speed then requires a
greater potential drop than if the momentum loss is ig-
nored.

(e)
2

0
I I -0,6 '- I

2 4
' 0 2 4

z z
FIG. 3. Overall ion parameters. (a) Potential variation; (b)

ion density; (c) temperature; (d) fluid velocity; (e) power flux; (f)

current along the flux tube for A, =0.001, ud ——0, T, „=T,,
7l =3.

I I
/
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ug = 0.0

0.2—

0

FIG. 4. Ion distribution functions at diff'erent potentiaIs,
g=3 (curve 1), 1.45, 0.87, 0.57, and 0 (curve 5) for X=0.001,
ud ——0, T, „=T„q„,=3. Curve 3 is the distribution at the
sheath.

In Fig. 5 we show the variation of the results with
different values of the ratio of Debye length to collection
length (A, ). These show, as expected, that cases with
small A, , e.g., 0.001, are indistinguishable from the
quasineutral case, except actually within the sheath. This
agreement is a useful verification of the two different
Poisson solver schemes used. The distribution functions
shown here are those at the sheath edge. For the
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FIG. 5. (a) Potential variations, (b) sheath ion distributions,
(c) power fluxes, (d) currents with different A, [=0.1 (curve 1),
0.01 (curve 2), 0.001 (curve 3), and 0 (curve 4)] for uq ——0,
T-=T. 7l. =3

FIG. 6. Ion distribution functions for different ion drift ve-

locities, (a) uz ——0.5, (b) uq ——0.5, (c) uz ——1.4, (d) uz ——2.0 when
1 1

A, =0.001, T;„=T„g =3.
g4- 4g, g5

——g„(subscripts 1-5 correspond to curves 1-5).

plasina-sheath equations (A, & 0},the sheat edge is defined
as the position where the ion fluid velocity [V(x}]is the
same as the ion acoustic velocity (C, ) toward the probe
surface, which is de6ned by

C, =Q(T, +T;, )I ,m, (33)

where T„ is the ion temperature at the point where
V(x) = V, ( =QT, lm; ). For the quasineutral case
(A, =O) the sheath edge is at the mesh-point adjacent to
the boundary. In our results hereafter we use either
)t, =0.001 or the quasineutral forms. These give essential-
ly identical results that are independent of the value as-
sumed for the wall potential, provided the wall is more
negative than the sheath-edge potential (ri & i), ).

9}along the flux tube. This kind of variation is cominon
to both plasma-sheath (A, & 0) and plasma-equation
(A, =O) treatments, and with different ion temperatures
outside the presheath (T;„=0.2, 1,2T, ). These oscilla-
tions are of uncertain physical significance and may in

part arise from the discreteness of our distribution-
function representation. Referring to Fig. 6, one can see
that there is a balance between the acceleration due to
the electric field, which draws the ions to the probe, and
the influx of ions with the external velocity distribution.
If the external flow is towards the probe, the distribution
tends to narrow. If it is away from the probe, so that the
external and internal flow velocities are opposite, the dis-
tribution tends to get wider. This change of the ion dis-

8. Drift velocity e8'ects: variation along the flux tube

We now give a series of results for T;„=T, with
different drift velocities of the external plasma. In Fig. 6
are shown the ion distributions at various points along
the collection flux tube for four different drift velocities,
u&

———0.5, 0.5, 1.4, 2.0. We also give the potentia1 varia-
tions (Fig. 7), ion currents (Fig. 8), ion temperatures
along the presheath (Fig. 9), power flux, and fiuid velocity
(Fig. 10) for subsonic and transonic ion drift velocities
( —1.4&u~ &2.5}. For cases with ions drifting toward
the probe (u„&0), the length of the collection region de-
creases. Parameters other than temperature vary
smoothly even with transonic drift.

When uz & 0, the temperature variation along the flux
tube is monotonically increasing. However, with strong
drift away from the probe, it is mostly decreasing. Inter-
mediate cases have some oscillations (e.g., uz ——0.5 in Fig.

0
0 10

FIG. 7. Potential variations with different drift velocities,
uz ———1.4, —0.9, —0.5, 0.0, 0.5, 0.9, 1.4, 1.8, 2.2, and 2.5, for
X=O, T, „=T,, and g„, =5.
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FIG. 8. Ion current variations with different drift velocities,
u„= —1.4, —0.9, —0.5, 0.0, 0.5, 0.9, 1.4, 1.8, 2.2, and 2.5, for
A. =0, T, = T, , and g„,=5.

- (b) —10

tribution along the Aux tube with different ion drift veloc-
ities (Fig. 9) is what the ion temperature variation along
the flux tube is showing.

Fluid treatments generally show singularities, which
are interpreted as indicative of shock formation, when
the drift velocity exceeds the sound speed. In Figs. 7—10,
however, there is no evidence of a shock for the transonic
case and this remains true, as further code runs have
shown, even up to ud ——5. Substitution of our solutions
indicates that the theoretical necessary conditions for
rarefaction shock are not satisfied. Thus the absence
of shocks seems to be consistent, although we know of no
a priori argument why there should be none. It seems
likely that it is the damping inherent in a proper kinetic
treatment, which is absent from the fluid models, that
prevents shock formation. If so, then results for transon-
ic and supersonic velocities require a kinetic treatment
such as ours.

2

u~ ——2.2
~

~

ug = 1.4

~ ~

ug=P a

&g ———0.5
ug = —1.4

0

FIG. 9. Ion temperature with different drift velocities,
ud ———1.4, —0.5, 0.5, 1.4, and 2.2, for A. =O, T, „=T,, and
g„,=5.

-2
0

FIG. 10. (a) Power flux and (b) fluid velocity variation with
different drift velocities ud ———1.4 (curve 1), —0.9, —0.5, 0.0,
0.5, 0.9, 1.4, 1.8, 2.2, and 2.5 (curve 10), for A. =O, T, „=T„and

=5.

C. Drift-velocity effects: sheath parameters

For the purposes of interpreting the interaction of the
plasma with material objects it is the values of the param-
eters at the wall (material surface) that matter most.
However, some of these values are dependent on the wall
potential so it is diScult to give compact general results
for the wall value. Adopting a wall potential that gives
zero total electric current (the floating potential) is a spe-
cial value that is often adopted but by no means generally
appropriate. Our approach is to take advantage of the
fact that for A, &&1 the sources within the sheath are
negligible. Therefore the values of the ion parameters at
the wall are related to those at the sheath edge via a trivi-
al transformation: an energy- and flux-conserving fall
through a potential drop equal to the difference between
wall and sheath potential. This means, of course, that the
wall ion flux is the same as the flux at the sheath edge.
Other parameters for any wall potential (more negative
than the sheath potential) can be calculated from the
sheath values that we give.

Figure 11 shows ion distributions at sheath for
T; = T, with different drift velocities. The similarities in
shape for the different drift velocities are an indication of
the fact that the ions tend to flow into the sheath at the
sound speed, regardless of external flow. The different to-
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FIG. 11. Ion distributions at sheath with different drift veloc-

ities, ud ———0.9 (curve 2), 0.0 { curve 4), 0.9 (curve 6), and 1.8
(curve 8) for A, =O, T;„=T„and g =5. FIG. 13. Ratio of upstream to downstream current into the

sheath, for —1.4& ud &2.5, A, =O, T;„=0.2T, (curve 1), 1.0T,
(curve 2), 2.0T, (curve 3), and g =5.

tal heights show the density reduction when the external
drift is away from the probe. In Fig. 12 we show the ion
current flowing into the sheath as a function of external
drift velocity, for three values of ion temperature. The
dependence on T, is noticeable but not large.

The diagnosis of plasma flow via "Mach" probes' re-
quires interpretation of the ratio of the ion collection
currents to the upstream and downstream faces of the
probe. Therefore in Fig. 13 we give this ratio; it increases
as

~
ud

~

and T;„get larger. The values obtained follow
curves which are remarkably straight on the log-linear
plot of Fig. 13. Thus the ratio can be expressed as

Up KQdR= =e
Jdown

(&4)

where E —1.9, 1.7, 1.3 for T; „=0.2T„1.0T„2.0T„re-
spectively. For ion drift beyond the range of Fig. 13, up
to 5, the ratio values were found to rise slightly above the
straight-line fits.

Figure 14 gives the other parameters of interest at the
sheath edge. The sheath potential is important in

1.2
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FIG. 14. Sheath {a) potential, (curve 3) (b) temperature, (c)
power Aux, and (d) density, for —1.4 & ud & 2.5, A, =0,
T, =0.2T,, (curve 1), 1.0T, (curve 2), 2.0T,, (curve 3), and

q„, =5.

FIG. 12. Sheath current for —1.4&ud &2.5, A, =O, when

T;„=0.2T, (curve 1), 1.0T, (curve 2)„2.0T, (curve 3), and
=5.

defining the sheath potential drop for given wall potential
(relative to the plasma). At zero drift velocity, it proves
to be only weakly dependent on the external ion tempera-
ture, with a value quite close to the Harrison and Thomp-
son' value, 0.854. For subsonic ion drift flows
(

~
ud

~
& 1), the ion temperature at the sheath has smaller

values than outside the presheath. This is an interesting
result because most previous fluid treatments assume that
there is no temperature gradient along the presheath.
Our results show that this is a bad approximation. The
temperature appears to satisfy approximately an adiabat-
ic law: pn ~=const, with y =2—2. 5.

For transonic ion drift away from the probe, sheath ion
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temperature increases again, as we have previously dis-
cussed. This effect for large drift is stronger when T, is
small. When the ion temperature outside the Aux tube is
0.2T„ the sheath temperature is larger than that of 1.0T,
and 2.0T, for the largest drift velocities.

As an example of a transonic flow case, the variation
with position along the Aux tube of potential, density,
temperature, fluid velocity, power flux, and current are
given in Fig. 15 for T, =0.2T„1.0T„and 2.0T„with
ud ——2. 5.

Figure 16 shows an expansion of the temperature vari-
ations near the sheath and their corresponding ion distri-
butions. For low ion temperature and large ion drift
(e.g. , T, „=0.2T, and ud ——2. 5), there appears a double-
humped ion distribution near the sheath. Clearly the
significance of attaching a temperature to such pathologi-
cal distributions is doubtful.

4

2

2
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~ CKl

0.2
0-
-6 0

6
I I

'. 0T,

D. Comparison of sheath currents with other treatments
0' 0-6

----- T, = 0.2T
T, = ].OT,

= 2.OT,

0.8

004

Figure 17 shows a comparison of the results of different
kinetic analyses. "' ' Since ours are really the first re-
sults to include ion drift we show only results for zero ion
drift. With the exception of Bohm s finite-ion-energy cal-
culation, which is for a spherical probe, the models are
one-dimensional plane-geometry cases. As anticipated,
our model gives somewhat lower currents than the other
models, because we have included the ion momentum loss
due to particle exchange. [Note: In the original papers
of Emmert et al. and Bissel and Johnson, the current was
normalized by

n „+2T,„lmm,

FIG. 16. (a) Temperature variation and (b) —(d) correspond-
ing ion distributions near sheath for ud ——2. 5, A, =O, g„,=5, and
three external temperatures (b) T, „=0.2(b), (d) T, „=1T,, and
(c) T, „=2 T, . Positions 1 to 6 are as follows: x I

——0,
x2 ——0.0032, x3 ——0.018, x4 ——0.05, x~ ——0. 1, and x~ ——0. 18.

and

n „Q(T,„+T, )lm;,

respectively. In their normalization their results show a
decrease of current with T; „.However, the currents are
increasing with T; „when they are normalized by our
definition of ion sound speed ( V, =Q T, Im; ) ].

In Fig. 18 we compare the sheath currents calculated
here with those of Auid models, ' ' which give results
with finite ion drift. The Auid results are expressed in

1.6

Bohm et al.
Emmert et al.
Harrison and Thompson

p Bissel and Johnson
~ Present Results

0-

0.8— 0

10
0.4—

0
a

o ~

I I I

6z 10
I

2 10

FIG. 15. (a) Potential, (b) density, (c) temperature, (d) veloci-
ty, (e) power Aux, and (f) current as a function of position for
ud ——2. 5, A, =O, T, „=0.21T,„1T,, 2T, , and g„,=5.

FIG. 17. Sheath-current variations with zero drift (ud ——0)
for 0 & T, /T, , & 3 from various theories.
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FIG. 18. Sheath-current variations with drift ( —1.4
& ud (2.5), for T,„=T, Curve 1, present results; curve 2, Auid

model of Hutchinson; curve 3, quid model of Stangeby.

units normalized by the "ion acoustic velocity. " This is
not the same as our parameter V„which includes only T,
not T, [see Eq. (8)]. Thus there is a degree of ambiguity

in the comparison, since the effective acoustic velocity in

the fluid treatments is

FIG. 19. Comparison of the upstream to downstream ratio of
sheath currents from various models, for r, „=T,. Curve 1,

Stangeby; curve 2, Proudfoot et al. ; curve 3, present results;
curve 4, Hutchinson; curve 5, Mott-Smith and Langmuir.

summarized in the form of a single slope K, in
R = exp(Kud), as Mott-Smith and Langmuir, K-2.7;
Proudfoot et a/. , K —1.2; Stangeby, K-O. S; Hutchin-
son, E—1.75; and our present calculation, K -1.7.

C, =—

]/2
ZT. +y T

V. CONCLUSION

and it is not obvious what to take for either y or T;. For
the purposes of Figs. 18 and 19 we show our kinetic re-
sults when T, „=T, and scale the fluid results by taking

C, =&2V, This means that the fiuid results, which are
limited to

~

v
~

&C„range over —&2&ud &&2. One
can think of this assumption as being that y = 1 and the
relevant ion temperature is the external value. However,
the physics is probably much closer to the case of y of or-
der 2-2. 5 and the effective ion temperature being
0.4—0.5 times T,

On this basis, our results agree well with those from
the fluid calculation of Hutchinson ' (and disagree with
those of Stangeby ). This is perhaps not surprising since
Hutchinson's assumptions are essentially the fluid
equivalents of the present kinetic model. The kinetic cal-
culation gives slightly larger current, although not very
significantly, in view of the uncertainties in the compar-
ison. The present results extend to the supersonic case,
while the fluid treatments do not.

In Fig. 19 we compare the ratio of upstream to down-
stream ion sheath current versus flow velocity with
several other theories. We include the fluid theories of
Hutchinson and of Stangeby and also the naive particle
model of Harbour and Proudfoot (essentially equivalent
to that of Mott-Smith and Langmuir, which takes the
ion distributions at the probe to be drifted Maxwellians
and ignores the presheath field effects). Also shown is the
ad hoc empirical model of Proudfoot et al. , which in
our present normalization is R = exp(1. 2ud ). The ion

temperature is taken equal to the electron temperature.
All these results give remarkably straight lines on a

log-linear plot, as Fig. 19 shows. They may therefore be

We have developed a one-dimensional kinetic model
for the flow of plasma ions to a probing object in a strong
magnetic field. We use a new type of source term that
treats consistently the diffusive cross-field fluxes. Ion pa-
rameters such as current, ratio of upstream to down-
stream current, density, fluid velocity, power flux, and
potential variation along the presheath have been ob-
tained. Our results agree well with Hutchinson's '

fluid model, which incorporates diffusivity and viscosity,
but give considerable additional information. The ion
temperature variation along the flux tube is substantial
and may be expressed as approximately adiabatic with

y =2—2.5.
Our results extend the drift velocity from subsonic to

supersonic. The parameters show a smooth change from
subsonic to transonic cases. There is no evidence of a
shock in the wake even for the case of low ion tempera-
ture and large drift velocity (T;„=0.2T„and up to
ud ——5). However, it must be recalled that we are treating
a very simplified one-dimensional model. Multidimen-
sional effects in the wake may reveal much more complex
physical structures.

The ratio of upstream to downstream sheath current
can be expressed as an exponential of drift velocity [i.e.,

J„„/Jd„„„=exp( Ku d ) ], where K is —1.7 for T, „=T,
This result provides a calibration for the measurement of
plasma flow using Mach probes.
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