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Limitations to squeezing in a parametric amplifier due to pump quantum fluctuations
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We perform discrete-mode calculations for a parametric amplifier with a quantum pump and dis-

cuss some of the limitations on calculations of this sort in quantum optics. We calculate corrections——2
to the squeezing due to pump quantum fluctuations to order N, for a pump initially in a coherent
state with average photon number N. We find that the limit to the variance of the squeezed quadra-——1/2
ture due to the quantum nature of the pump goes as N

I. INTRODUCTION

The parametric amplifier' (PA) is a basic device in

quantum optics and quantum electronics. It couples a
pump field at frequency co to signal modes at frequencies
near co=co /2. In this paper we are mainly interested in
the application of the PA for generating squeezed
states, i.e., quantum states for which one of a pair of
canonically conjugate variables has its quantum noise
(uncertainty) reduced below the vacuum level (zero point
noise). The main purpose of this paper is to show that
the ability of a PA to produce squeezed light is limited by
the initial phase noise in the pump.

When the signal modes are initially in vacuum states,
only the pump's phase can determine which quadrature
will be squeezed. If the pump's phase fluctuates, then
the quadrature chosen will have a slight admixture of its
conjugate quadrature —the noisy quadrature. This argu-
ment is treated more carefully in Sec. II for the case of
phase noise in a classical pump. Calculations of the
corrections to semiclassical order (i.e., to order 1/N in
the matrix elements, where N is the average photon num-
ber of the pump) have been previously performed for
both the one- and two-mode PA.

Hillery and Zubairy studied the one-mode PA with an
interaction Hamiltonian
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where it+ = (ct, + it 2 ) /v'2. They concluded that the
minimum variance obtainable by the two-mode PA
would be

tion in Eq. (1.1), and u =N ' tet is a dimensionless time.
This yields a minimum variance, and hence a limit to the
squeezing, of
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which is just what the argument of phase noise in the
classical pump gives (see Sec. II).

Scharf and Walls studied the two-mode PA whose in-
teraction Hamiltonian is (again up to a rotation of the
variables' phases)
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where 8, and &2 are the annihilation operators for the
two signal modes. They used an asymptotic method
developed by Scharf" ' to arrive at the dominant
correction to the variance of the Hermitian variable
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where x2 ———i(8 —a )/2 is the quadrature (analogous to
the position operator) which is squeezed by the interac-

(up to a phase rotation of the variables), where & and tt

are the annihilation operators for the signal and pump
modes, respectively, and ~ is a coupling constant which is
proportional to the second order nonlinear susceptibility
7' ' of the medium in which the interaction is taking
place. They used a path-integral technique to obtain
corrections at the semiclassical order. They did not
claim to get the full semiclassical correction, ' and the
dominant terms they obtained for the fluctuation in the
squeezed quadrature were

I+ = —(&, +&&),
1

2
(1.8a)
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then the interaction Hamiltonian may be written'

(1.8b)
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How can we compare these calculations? If one
rewrites Eq. (1.4) in terms of the variables
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If the pump is now treated classically then the &+ and

modes become completely independent, each de-

scribed by the one-mode PA Hamiltonian equation (1.1}.
Thus we might expect the same correction to the squeez-

ing due to a quantum pump as found by Hillery and Zu-

bairy [see Eq. (1.2)]. In fact, since the pump is allowed to
be quantum mechanical, the 8+ and & modes can in-

teract with each other by modifying their common pump.
Thus these modes cannot completely decouple. Even so,
Scharf and Walls's results of Eqs. (1.6) and (1.7) are
surprising; for a pump with %=10 there is a large
discrepancy

& b~ ~2& = + [1+(3—8u )e
4 64m

—(1+8u —8u )e "—3e "] .

Similarly, the exact semiclassical expression for the two-

mode PA is found to be
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The purpose of this paper is to resolve the apparent
discrepancy between these two calculations, first noted by
Caves and Crouch. ' We will use three different methods
to calculate the semiclassical corrections for the one- and
the two-mode PA.

This paper is divided into seven sections. Section II
justifies our use of discrete-mode calculations for a
traveling-wave device which in principle should be given
a full continuum treatment, and also reviews the argu-
ment for the contribution of phase noise in a classical
pump. In Sec. III we discuss the symmetries of the
discretized PA system and how they can be used to sim-

plify our calculations.
The first method of calculation (Sec. IV) involves in-

tegrating the Heisenberg equations for the quadrature-
phase amplitudes up to the required order. What is novel
about the approach presented here is that we work out
first the form of all the terms, and then we identify the
dominant terms and proceed to calculate only those
terms. This calculation yields the dominant terms up to
O(1/N ). By calculating these terms we can estimate
when the semiclassical correction breaks down. We find
that the semiclassical corrections [for instance, Eq. (1.2)]
are valid so long as they are much less than 1.

The second method (Sec. V} is numerical. However,
we are able to obtain analytic expressions for the full
corrections to O(1/N }. We can do this since the gen-
eral form of these corrections has already been worked
out in Sec. IV. This calculation uses a new algebra which
can be viewed as a semiclassical approximation to the or-
dinary commutator algebra for annihilation and creation
operators. This algebra is used in order to normal order
the annihilation and creation operators of the pump.

The third method (Sec. VI} uses the positive-P distribu-
tion' to derive Fokker-Planck equations for one- and
two-mode parametric amplifiers. Standard methods of
stochastic calculus' are then used to derive Ito stochas-
tic differential equations (SDE's) from the Fokker-Planck
equations. An approximate solution of the SDE's is ob-
tained by iteration, and the full semiclassical correction is
then calculated analytically.

These three methods agree with each other. The latter
two show that Hillery and Zubairy have in fact calculat-
ed the exact semiclassical corrections to the parametric
approximation for the one-mode PA, namely,

where Xz —— i(—it& —8 t2)/2 is the quadrature-phase

operator for the squeezed quadrature, and

(1.13)

The dominant corrections for the one- and two-mode cal-
culations are the same, and agree with the dominant
correction obtained by Caves and Crouch' from a con-
tinuum calculation.

II. DISCUSSION

The conventional approach to problems in quantum
optics typically makes use of a mode expansion to de-
scribe the electromagnetic field. Using this approach,
one can derive from an appropriate Hamiltonian tem-
poral differential equations for the modal creation and an-
nihilation operators, the spatial dependence being carried
by the mode functions. Such an approach is suitable for
cavity devices in which one has well defined standing-
wave modes (the eigenmodes of the cavity), but not for a
traveling-wave device in which such modes are nonex-
istent. One would like to derive spatial differential equa-
tions governing the evolution of the field operators
through the medium, in analogy with classical nonlinear
optics; the conventional approach is clearly unsuited to
this purpose. Tucker and Walls' and Lane etal. ' recog-
nized these problems with the conventional approach and
developed a continuum wave-packet formalism in an at-
tempt to deal with them.

In this section we brieAy describe a discrete-mode ex-
pansion of the electromagnetic field in terms of mave-
packet modes that enable us to derive spatial equations of
motion for PA's. We assume that the wave packets are
short compared to the nonlinear medium through which
they propagate, so that they "fit" inside the medium, al-
lowing us to ignore boundary effects. Physically, the in-
dividual wave packet propagates from free space through
the entrance boundary on a time scale short compared to
the time it will spend inside the nonlinear medium; in this
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way the interaction is ' turned on." This method is
preferable to the technique often used in the conventional
approach in which the interaction is suddenly turned on
throughout all space, either at time t =0 or at some time
in the remote past. We also present a heuristic argument
for the dominant effect of pump quantum Auctuations on

I

the variance of the squeezed quadrature in a PA.
We will give a brief outline of the derivation of the

discrete wave-packet mode equations of motion for the
PA; details will be given elsewhere. The discrete-mode
expansions of the signal and pump magnetic field opera-
tors in a dispersionless medium are given by
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is the wave-packet envelope function. Here n, o is the in-
dex of refraction of the dispersionless medium, 0 =20 is

the pump frequency, and o. is a cross-sectional area we
use to account crudely for the transverse structure of the
field. The discrete-mode expansions described by Eqs.
(2.1a) and (2.1b) are obtained from a continuum descrip-
tion by dividing the signal and pump bandwidths into
"bins" of width hem, and hoop, respectively, with signal
center frequency ~„=0+n Ace and pump center frequen-
cy 0 =20. Each signal (pump) bin corresponds to a
train of wave packets (corresponding to different values
of k) in the time domain, each of approximate duration
T, =2m/b, co, (T~=2n/b, co ) wi.th envelope given by Eq.
(2.3).

By substituting Eqs. (2.1a) and (2.1b) into Maxwell's
equations, we obtain the spatia! equations of motion

dd„&(z) ";n (i, r I,r ~
sin[m. (kT, k'T )/T ]-

dz ~, „m(kT,k'T )/T— (2.4a)
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where the coupling constant K' is given by
' 1/2
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Assuming that the wave packets are narrow compared to
the scale of variation set by K', we can replace z by ct/no
and obtain the temporal equations of motion

Here we have assumed that he@~ &&hu, (or T~ && T, ) to
avoid coupling among energy nonconserving modes. By
restricting our observations to the region of spacetime
near t noz/c =0, we can disc—ard all wave packets (both
signal and pump) with k&0, since f (kT~ )=5& o With. .

8„0(z)=8„(z)and bo(z) =8 (z), we find

d'd„(t)
=a a (t)1 „(t), (2.7a)

ddt(t)
&„(r)8 „(t),

dt n= —M
(2.7b)

where Ir=ca'/no Equation. s (2.7a) and (2.7b) are identi-
cal to the Heisenberg equations of motion that are de-
rived from the multimode Hamiltonian

H =i g [a (t)d „(t)a „(t) a t(t)8„(t)a—„(t)]
2 n= —M

(2.8)

when the conventional approach is used.
The Hamiltonian equation (2.8) correctly describes the

interaction of a discrete pump mode with 2M+ 1 discrete
signal modes, but it does not provide a completely accu-
rate description of traveling-wave parametric amplifi-
cation, since it ignores the interaction of the pump wave
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where iso(t)—:&(t); two resulting equations of motion are
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packet k =0 with signal wave packets other than k =0.
Ignoring as it does interactions with these wave packets,
the Hamiltonian cannot correctly describe nonlinear
effects such as pump depletion; it does, however, correct-
ly describe the effect of the initial pump quantum fluctua-
tions on the signal modes. We will show, first by a
heuristic argument and then by the results of detailed cal-
culations using the Hamiltonian equation (2.8), that the
initial pump quantum fluctuations are responsible for the
dominant correction to the squeezing due to the quantum
nature of the pump. We also calculate higher-order
corrections. By the argument just given, the exact form
of these corrections cannot be related to the physical pa-
rameters of a traveling-wave PA; these corrections are of
physical interest, however, in showing how nonlinear
effects affect the squeezing, and of mathematical interest
in demonstrating the computational tools we have
developed to calculate them.

The wave-packet approach gives us a new and more
realistic way to deal with traveling-wave problems in
quantum optics; it also leads one to realize that the con-
ventional Hamiltonian approach can lead to misleading
results when used blindly. We will, however, ignore dis-
tinctions between the conventional and the wave-packet
approaches through much of this paper. The point we
wish to make is that the wave-packet modes are an ap-
propriate set of modes for describing the spatial evolution
of quantized electromagnetic fields in traveling-wave de-
vices without resorting to continuum calculations.

We will now give a heuristic argument for the effect of
pump quantum fluctuations on the squeezing produced
by a parametric amplifier. Our treatment of parametric
amplification has thus far treated the pump quantum
mechanically. Under certain circumstances, one can
treat the pump classically, in what is known as the para-
metric approximation; in this approximation, one re-

places the pump operator by a c number e =N e1/2

The interaction Hamiltonian for a one-mode PA, where
we ignore all modes in Eq. (2.8) except for n =0, is

the two sets being identical when il) =0. The two sets of
quadrature-phase amplitudes are related by the rotation

x, (t) =x ', (t) cos(P l2) —x 2(t) sin(g~ l2),
x2(t)=x z(t) cos(P l2)+x ', (t) sin(iI)z/2),

(2.13a)

(2.13b)

pictured in Fig. 1 for P /2=6, g. By substituting Eqs.
(2.12a) and (2.12b) in Eqs. (2.10a) and (2.10b), we see that
the quadrature-phase amplitudes x I(t) and x &(t) decou-
ple the equations of motion:

dx ', (t} =aN' x I(t) x I(u)=x I(0)e",
dt

(2.14a)

dx ~(t) aN' —x 2(t) x 2(u)=x z(0) e (2.14b)

where u =~N ' t is a dimensionless time. For a vacuum
input, one easily finds that

(ax', (u))= —,'e ",
(bx 2 (u)) = —,'e

(2.15a)

(2.15b)

(~y,') =(y,') = (2.17)

since we may choose without loss of generality (P ) =0.
2

P
Because N is large, (bP ) will be small; we can thus
approximate cos (Pz/2) by 1, sin (P~/2) by (i})~/4)
= 1/16N, and the variance of the x z quadrature by

(Ax z(u)) = —„'e "+ e " .
64N

(2.18)

The pump can be considered classical and the parametric
approximation valid when the correction term is small,
that is, when

the x 2 quadrature exhibits maximum squeezing when the
pump's phase is P . The corresponding noise in the
quadrature-phase amplitudes x, and x 2, from Eqs.
(2.13a), (2.13b), (2.15a), and (2.15b) is described by

(b,x f(u)) =—,'e "cos (P /2)+ —,'e "sin (P /2), (2.16a)

(b,x z(u)) =—,'e "cos (P~ /2) +,'e "si—n (iI)~/2) . (2.16b)

Suppose we allow the pump's phase to fluctuate. For
the quantized pump in a coherent state

i
N '~ ) with

mean photon number N, the phase fluctuations are
characterized by

We define two sets of quadrature-phase amplitudes, ' N ))—,', exp(4N '~ at), . (2.19)

and

x, (t)= [tt(t)+a t(t}]—,
2

x,(t)= ——[8(t}—tt (t)]
2

x '&(t) =—[it(t)e ' +8 (t)e ' ],1 /2 y itIp /2

2

x ~(t)= ——[a(t)e ' —a (t)e ' ],~ t —iP /2 g iP /2

2

(2.11a)

(2.11b)

(2.12a)
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where we have used the definition of u. The second term
of Eq. (2.18) is the dominant correction to the variance of
the squeezed quadrature due to pump quantum fluctua-
tions. Because of the quantum nature of the pump, phase
fluctuations are unavoidable; Fig. 1 illustrates their effect.
The solid ellipse represents squeezing with a classical
pump (i.e., the parametric approximation) with a well
defined phase P =0. When P &0, the ellipse is rotated
by an angle iI) /2, as demonstrated by Eqs. (2.13a) and
(2.13b}. Pump phase fluctuations cause the orientation of
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showing the correction terms in Eq. (2.18}to be the dom-
inant effect of pump quantum fluctuations on the squeez-
ing, independent of the number of signal modes.

III. SYMMETRIES OF THE MULTIMODE PA

We shall begin our analysis by studying the symmetries
of the multimode PA, with the pump in a coherent state
and all signal modes initially in vacuum states. This will
allow us to concentrate on the few matrix elements that
are not constrained by symmetry. Since the multimode
PA combines the one- and two-mode PA's as subsystems,
we will be able to study the symmetries of these subsys-
tems along with those of the larger system.

From Eqs. (2.7a} and (2.7b}, the Heisenberg equations
of motion in the interaction picture are

FIG. 1. The effect of pump phase fluctuations on squeezing.
The ellipse with solid lines represents ideal squeezing, in which
the pump has a well defined phase. Phase fluctuations in the
pump cause the orientation of the ellipse to fluctuate about
/~=0, with the characteristic angle bg=l/(4N ' 2}, feeding
noise from the amplified quadrature into the squeezed quadra-
ture.

the ellipse to fluctuate about ((} =0 with the characteris-
tic angle b,(t)=((t)r/4)' =1/4X', as represented by
the dotted ellipse in Fig. 1, feeding noise from the
amplified quadrature into the squeezed quadrature. One
also sees why amplitude fluctuations are unimportant.
Amplitude fluctuations merely produce fluctuations in
the gain (or rate of squeezing); they do not couple noise in

the amplified quadrature into the squeezed quadrature.
The above argument is for a one-mode PA, but it is

easily extended to any number of modes; the same argu-
ment has been given for a continuum-mode PA, ' yield-
ing the same dominant correction as given by Eq. (2.18},
but with a bandwidth determined by phase mismatching
that allows one to relate N to the pump power. In the
parametric approximation, the signal modes interact in
pairs at frequencies 0+nhco and 0—nhco,'there are no
interactions among different pairs in this approximation,
and each pair can thus be considered separately. The
correction that we have been discussing is due to fluctua-
tions in the initial state of the pump, and has nothing to
do with back action from the signal modes —pump de-
pletion being one example of such back action —which
would depend on the number of signal modes. The initial
fluctuations act on each pair of modes in the same
manner as described in Eq. (2.18} for the one-mode PA,
yielding for each pair of modes a correction identical to
that of Eq. (2.18}. This correction is then independent of
the number of signal modes, justifying our one-mode
treatment.

The arguments given above are not rigorous; we have
cited quantum mechanics as the ultimate source of pump
phase fluctuations, yet we have treated their effect on
squeezing classically. What we have given is a plausibili-
ty argument for and a physical picture of the dominant
effect due to such fluctuations. The validity of our argu-
ments will be confirmed by our detailed calculations

d&~

=KGB' Idt
(3.1}

d&r

dt

M

&n ft n. —
n= —M

(3.2}

The quantities that are measured by a balanced homo-
dyne detector are the variances of the quadrature phase
amplitudes, '

~(n)1 (~n+~ —n } &

1
(3.3a}

5'(„)2————(a„—& „}. (3.3b}

Inverting these definitions gives

~n X(n)1 + l~ („)2

n =f(n)1 —12(n)2

and similar definitions for the pump yield

8 =ap+P&+iP2,

(3.4a}

(3.4b}

(3.5}

where the coherent amplitude ap of the pump has been
written explicitly (ao is chosen real for convenience). It is
worth noting that

l(„),—X'(' „),, (3.6}

and that P; and 5'(o); are both Hermitian. The equations
of motion [Eqs. (2.7}]in these new variables are

{n)1 1

du ao
~(n)1+ (~(n)1 1+X(n)2P2 } ~

d~(n )2 1
~(n)2+ (~(n)1 2 ~(n)2P)

du ao

dP1 1
M

X (~(n)1~ (n)1 ~(n)2~ (n)2}
du 2ao

„

(3.7a}

(3.7b}

(3.7c}

dP2

dQ

1
M

(n)1~ ( )2+n+( )2Xn(n)l
2ap

(3.7d}

where u =—~apt.
We are interested in symmetries of the time evolved
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~(n)1 ~(n)2

P2~ —P~,

(3.8a)

(3.8b)

(3.8c}

One consequence of this symmetry is that the squeezed
quadrature is simply the time-reversed amplified quadra-
ture,

&
~

bX'(„))(u)
~

) =&
~ ~(„)2(—u)

~

(ii) Reflection:

-P2

(3.9)

(3.10a)

(3.10b)

matrix elements. Thus we want symmetries which
preserve both the equations of motion and the initial state
of the system. The coherent part of the pump has been
subtracted out in our choice of variables [see Eq. (3.5)]; in
terms of the pump quadrature-phase amplitudes P, and

P2, the effective initial state of the pump is vacuum. As
any phase shift, reflection, or rotation of the quadratures
leaves the vacuum invariant, we seek such transforma-
tions which leave the equations of motion [Eq. (3.7)] in-
variant.

The symmetries may now be classed as follows. (i}
Time-reversal:

3 2 (~(1)2+~ (1)2}v'2 (3.15)

[Eqs. (1.5), (1.8), and (3.3)]. When the time stationary
noise and reflection symmetries are used one finds

2 & &~ (1)2 + &~ (1)2 + &~(l)2~ (1)2&...—&~2

(3.16)

We cannot apply this symmetry to the one-mode PA
(corresponding to n =0) since the quadratures X(p)) and
X (p)2 are Hermitian [see Eqs. (3.3)]. But we can say that
matrix elements like

&X', „„(u)X',„,(u) )

and

&X(„);(u)X'(„)(u)X'{ )), (u))

are identically zero for n&0. With a combination of the
above symmetries we may determine all quadratic matrix
elements given only

&
I
~+( )z I

&=&&( )2~( )2& ~ (3.14)

At this point it is worth asking how the quantity
& hy z) [Eq. (1.6)] calculated by Scharf and Walls is re-
lated to the quadrature-phase amplitudes. They con-
sidered the two-mode PA and the quantity

which tells us that

&~,„„(u) ) =&5',„„(u)) = &P (u ) &
—=0 . (3.11)

which is just the variance of the squeezed quadrature-
phase amplitude.

i8„
X'(„),(u)~e "J(„))(u),n&0,

i8„X'(„)2(u)~e "X(„)z(u), n&0 .

(3.13a)

(3.13b)

Hence the pump's phase does not drift, and the signal
modes do not acquire a coherent piece. A similar sym-
metry for the pump amplitude P, is absent because the

pump may, for example, become depleted. Another
consequence of this symmetry is that the conjugate quad-
ratures remain uncorrelated, e.g. ,

&f(n))(u )5'(„)2(u) ) =0 . (3.12)

(iii) Time stationary noise

IV. DOMINANT TERMS FOR THK MULTIMODK PA

In this section we shall determine the dominant time
behavior of the squeezed quadrature-phase amplitude due
to the quantum nature of the pump. As in Sec. III we
study the rnultimode PA, extracting the one- and two-
mode results at the end.

The clear way to proceed in obtaining an expansion in

ap ' is to take the Heisenberg equations [Eq. (3.7)] and
iterate them. It is easier first to write them as integral
equations:

4

+( )1(u ) = e "&(.),(0)+ f "du ' -"'[&(.
)) (' )P) (')+&( )2(u }Pz(u }]

CX0 0

—Q

X'(„)2(u}=e "X'(„)2(0)+ f du'e" [X(„))(u')Pz(u')—f(„)z(u')P,(u')],
Dp 0

(4.1a)

(4.1b)

P, (u)=P)(0}— f du' g [X'(„),( )Ju(„),(u') —X(„)2(u'}X'(„)2(u')],
2CXp 0

PZ(u)=PZ(0) — f du' g [X(n))(u')X (n)2(u')+X(n)2(u')X(n))(u')] .
n = —hf

(4.1c)

(4.1d)

By substituting the quadrature-phase amplitudes correct to O(1/ap) into Eq. (4.1), we will obtain expressions for them
correct to O(1/ap+'). Although this procedure is easy up to O(1/N) [i.e., O(1/ap)], it becomes prohibitive in obtain-
ing even the O(1/N ) correction, this correction requiring around 1000 terms. Instead of keeping every term we shall
determine which terms can yield a dominant contribution and then calculate them.
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Our objective is to determine the time dependence of the various terms that appear at each order in the expansion.
Thus we start by keeping only information about time dependence in the integral equations (4.1). This leaves us with the
"equations"

ll

X)(u)=e"+ f du'e "[X((u')P)(u')+X2(u')P2(u')],
ap o

—M

X2(u)=e "+ f du'e" [X((u')p2(u')+X2(u')p)(u')],
ao o

P, (u)=1+ f "du'[X, (u')X, (u')+X, (u')X, (u')],
ao 0

(4.2a)

(4.2b)

(4.2c)

P2(u)=1+ f du'[X, (u')X2(u')+X2(u')X, (u')],
ao o

(4.2d)

where we have thrown away numerical coefficients and
sums over different modes. We shall even treat these
equations as c-number equations. Next we de6ne the
symbol

to O(1/ao4). Squaring this expression gives us the form of
the variance:

Q =—0 +Q + +u+1 (4.3)

to represent an arbitrary polynomial of order n in the
scaled time with all its coefficients suppressed. With
these simplifications Eqs. (4.2) become easy to iterate.
The information we are left with is the form of solution at
each order in the expansion; for instance, the squeezed
quadrature-phase amplitude has the form

&X2) =e '"+—(e'"+u+u 'e —'"+e —'")2 —2u 2u — —2 —2g

N

1+ (e "+u e "+u +u e
N

+u 2e —4u+ —6u)+ (4.5)

1 „„1X2=e "+ (e "+ue ")+ (e"+u e "+e ")
ao ap

1 (e'"+u e "+u 'e "+ue '")
ao'

+ (ue "+u e "+u e "+u e "+e ")+
ao4

(4.4)

The terms multiplied by an odd power of ao ' contain an
odd number of quadrature operators, and thus vanish by
the reAection symmetry. The dominant terms at each or-
der in 1/N are pure exponentials. Thus when we calcu-
late the dominant terms for the squeezed quadrature, we
may throw away any polynomial times an exponential if
the polynomial is nontrivial.

We now use these simplifications to iterate Eq. (4.1), re-
taining only the dominant term at each order:

3Q M

~( )) (u ) e X( ))(0) 2 X(u)) (0) g 2( ))(0)X ( ))(0)+0 ( 1 /a())
sap m = —M

30 M

E(n)2( u ) e X(„)2(0)+ X(„),(0)P2(0) —
3 X'(„),(0) Q X( ), (0)X ( ),(0)P2(0)+ 0 ( 1/a())2ao 16ao

2u M

P, (u)=P)(0) — g X( ), (0)X( ), (0)+O(1/ao),
4ap M

2u M
P2(u)=P2(0) — g X( ))(0)X(t ))(0)P2(0)+O(1/ao) .

4ao

This gives the variance for the quadrature X[„]2as

24
&

~
X,„„(.) ~') =.-'"&X,„„(0)Xt„„(0)),„.+ '

&X,„„(0)X,'„„(0)),„.&P,'(0))
4N

4u

64N
2X(„))(0)gX( )((0)X( ),(0)X(„),(0)+X(„),(0)X(„),(0) QX(„))(0)X(„),(0)

+ xx[ )i(0)xt )i(D)xt )i(0)Xi )i(0))(pp(0))+0((/N
m

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.7)
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Restricting this calculation to one mode (M =0; n =0
only) gives

—2Q

(bx i(u )) =
2Q

64N

3e 4Q

1024N
(4.8)

and for two modes (n =+1 only)
—2u 2u 4 4Q

& ~~f,(u)~')='
64N 1024N

When M )0 the full M-mode calculation gives

(4.9)

—2Q

( (
k3('i„g(u)

~
) = e2Q

+
64N

(3+4M)e "
(4 10)

1024N

2Q 16N
3+4M

(4.11)

This is similar to the restrictions for the one-mode PA
(i.e., M=0) calculations done by Hillery and Zubairy,
except that they need the added restriction on their re-
sults that u ~1.

Our result shows that so long as the condition in Eq.
(4.11) holds, the semiclassical approximation is sufficient
to determine the limit to the squeezing, and thus the
squeezing is limited by the pump phase noise. If the con-
dition of Eq. (4.11) does not hold, the semiclassical ap-
proximation breaks down, and only a full quantum treat-
ment to all orders can be relied upon.

V. SEMINUMKRICAL METHOD

The central theme of this paper is to determine the be-
havior of the squeezed quadrature's variance (

~
Wz

~
)

as a function of the scaled time u. Looking at Eq. (4.5),

which confirms our argument that the dominant semi-
classical correction is independent of the number of sig-
nal modes.

For the M-mode PA the dominant term at O(1/N )

(and higher orders) is small compared to the O(1/N)
term when

we can see that we have already derived the form of this
variance to O(1/N ), and in Eqs. (4.8) to (4.10) we have
also calculated the coefficients of the dominant terms to
this order. It is nonetheless worth calculating the
coefficients for the subdominant terms appearing in Eq.
(4.5), since this allows us to check directly whether or not
these terms have coefficients large enough to overcome
their smaller relative growth at times when the phase
noise begins to dominate. Further, we shall show that it
is relatively simple to derive the exact expression for
(

~
AXE

~
) to O(1/N ) (or higher) using a new algebra

and some numerical assistance. We hope that exposition
of this new technique will be an adequate motivation for
presenting the exact form of (

~
bX2

~
) to O(1/N ) for

the one- and the two-mode PA. In Sec. II we showed
how to discretize a continuum mode calculation. Clearly
the fineness of this discretization should not appear in
any physical quantities relevant to the continuum system.
We find, as we argued in Sec. II, that all but the dom-
inant correction at O(1/N) do depend in detail on the
discretization prescription. If ever these terms become
important, then the discrete-mode equations no longer
model accurately the continuum system.

Let us see how we might proceed in finding the un-
known coefficients in Eq. (4.5). To O(N ) there is 1

coefficient, to O(l/N') there are 7, and to O(1/N )

there are 17. We can calculate the first terms in a
power-series expansion of (

~
W2

~

) in the scaled time
u; similarly we can do a power-series expansion of the
form given in Eq. (4.5) with a set of unknown coefficients.
By equating the coefficients of u and N in these expan-
sions, we can obtain sufficient simultaneous equations to
solve for the unknown coefficients of Eq. (4.5).

Since at O(1/N ) we must find 17 unknown
coefficients, we will need an expansion of (

~

bÃ2
~

2)
= (

~

X'z
~

) to O(u ' ). To avoid repetition we shall de-
scribe the calculation only for the one-mode PA with in-
teraction Hamiltonian 8;„,=i'(a b ab")/2; the—vari-
ance of the evolving quadrature-phase amplitude may be
written

= 0;ao x 2+iu

(0;ao i
x z(u) ( 0;ao) = (0;ao i exp(iuPi„,/irao)x &exp( —iuPi„,/mao)

~
0;ao)

X 2
mao 2 mao

'
mao

2
, x2 + Oao (5.1)

where the scaled time is u =scaot, and

~
0;ao) =

~

0)s
~
ao) is the initial state (vacuum for the

signal mode and coherent state for the pump mode). The
signal and pump mode annihilation operators are a and b,
respectively. Since the signal mode is in vacuum its an-
nihilation and creation operators may be treated directly
as ladder operators on a number state. For the pump
mode we need to normal order its annihilation and
creation operators.

Our first simplification comes from only needing the
next to semiclassical approximation, i.e., O(1/N ), for
the calculation. Thus when we are normal ordering the &P~b 'b'b"b'b b ~P) . (5.2)

pump mode operators we may throw away all terms gen-
erated by more than two applications of the commutation
relation [b, b ]=1. This can be done automatically by
using a new algebra which we now present. For sirnplici-
ty we start with a description of this algebra good to
semiclassical order [i.e., O(1/N )].

Let us start with more general considerations: many
calculations in quantum optics require the expectation
value of a product of creation and annihilation operators
in a coherent state, e.g. ,
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If we are interested only in calculating this to semiclassi-
cal order, then we need only keep the terms up to
O(l/

I P I
) times the dominant ("classical" ) term. The

dominant term is given by replacing the operators b and
b with the c numbers P and P', respectively. For the
semiclassical correction we need only perform the first of
a series of commutation relations —never performing
more than one for each term [since we are only interested
in terms to order fi or equivalently O(1/

I P I
) times the

classical piece]. To do this we make use of the commuta-
tion relation

where

(m, n)=m (m —1)n (n —1)/2 . (5.11)

This extended algebra allows us, for example, to deter-
mine the 0( I PI ) term in Eq. (5.7) tobe 8P P .

In calculating &x 2), rather than proceeding precisely
as suggested by Eq. (5.1), we used this "Balgebra" to ob-
tain instead the time evolved state of the system

[b, b ]=1
and the notation

Bo bfnbm+ btn —ibm —1

n, m=

the creation and annihilation operators are written as

(5.3)

(5.4)

exp[u(a b ab—)/2]
I
0;ao)

=
I
0'ao&+

2 Bo,'i I
2'ao&

&2u oo

Q+ (v'4!Bo'2 I4;ao) —2Bi'i IO;ao))+ ' '

B1 O=b0

B01=b

(s.sa)

(5.5b)

(5.12)

To semiclassical order in the amplitude
I P I

the follow-
ing relation allows us to normal order any expansion:

n, m n', m' n+n', m+m' (5.6)

Clearly m X n
' is just the number of times the commuta-

tion relation is required in order to pass m annihilation
operators from Bn past the n' creation operators in

Bn . As an example, the evaluation of the matrix ele-
ment in Eq. (5.2) can be worked out to semiclassical order
in the coherent state of complex amplitude P:

&Plb b b b b b IP)= &PIB32B, 2B, , IP)

(5.7)

Boo=b0;0

BO;0

(5.9a)

(5.9b)

After some calculation we find

Bo+a'+mn', ~+ ~'+oo'+o(m —1)n'+o'm(n' —1)+(m, n')
n+n, m+m

(5.10)
I

For calculations at next to semiclassical order, we sim-

ply extend the algebra to be good to O(1/N2). In this
case we modify the notation so

Bn; b'tnbm+ b1'n —ibm —i+ btn 2bm —2 (5 8—)
7

Here
I
n;ao) =

I
n)

I
ao) is the outer product of a

number state for the signal with the pump's initial
coherent state. Equation (5.12) shows us the first terms in
a power-series expansion in u, although we actually re-
tained the first 17 terms. To get & x 2) we need only

wedge the operator x z between pairs of the time evolved
states given by Eq. (5.12).

Even after these simplifications the calculation would
still be very tedious to do by hand, so we calculated Eq.
(5.12) on a computer. The evolved state was represented
by a multidimensional array, and numbers were calculat-
ed with limited accuracy. This allowed us to generate the
power-series expansion of &x 2) and hence the coeffi-
cients of Eq. (4.5) up to the accuracy used in the compu-
tations.

The final step comes in estimating the accuracy neces-
sary to reproduce the rational coefficients that should ap-
pear in Eq. (4.5). That they are indeed rational can be
seen by looking at how they would arise if we were to
iterate the Heisenberg equations [Eq. (4.1)] in full. This
also allows us to estimate an upper bound on the numera-
tors and denominators for each fraction. In the worst
case, to O(1/N), the numerator could come from all of
the 16 terms that appear at that order, and the denomina-
tor from the factors of 2 in the definition of the quadra-
ture phase amplitudes and from factors due to the time
integrations. An unambiguous calculation of this worst
case rational number requires only about four significant
figures in the final answer. Similarly at O(1/N 2) we need
to keep ten significant figures in the final coefficients.

For the one-mode PA we find at next to semiclassical
order that

—2Q

&bx,'&= ' 2Q

+ [1+(3—8u )e "—(1+8u —8u )e "—3e "]
64+

[3e "—(19/4 —24u+32u )e "+60—112u —(80+58u —48u —128u /3+32u )e
1024%

+(33+48u+96u )e "—45e "/4] . (5.13)
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For the two-mode PA the same technique yields a next to semiclassical result

2Q

+ [1+(4—8u )e "—(1+12u —8u }e "—4e 6"]
64m

[4e "—(5 —28u+40u )e "+96—160u —(105+112u—48u —224u /3+32u )e
1024K

+(28+32u+128u }e "—18e "] . (5.14)

VI. STOCHASTIC DIFFERENTIAL EQUATIONS

A. The one-mode PA

The dynamic evolution of a one-mode PA is described
by von Neumann's equation in the interaction picture

(6.1)

where the interaction Hamiltonian 8;„,(t) is given by Eq.
(1.1). All operators are now in the interaction picture.
We will assume that initially the signal mode is in the
vacuum state, and the pump is in a coherent state of real
amplitude aQ..

daz ———
—,'a dr,2

dP = ,'P'd—r,—
(6.6c)

(6.6d)

where, in the Ito calculus,

Fokker-Plane k equation with positive-semidefinite
diffusion. Using the standard methods of stochastic cal-
culus, ' this eight-dimensional Fokker-Planck equation
yields a set of eight real, first-order Ito stochastic
differential equations (SDE's). When written in complex
notation, the resulting SDE's are

da=a Pdr+Qa dW, , (6.6a)

dP= a@ d r+ QP d W2, (6.6b)

)( d~ad~a d~Pd~P (6.3)

where the operator A is given by

To solve Eq. (6.1), it is convenient to project the densi-

ty operator pt(t) onto a suitable set of basis states. The
positive-P representation' is an off-diagonal representa-
tion obtained from an expansion on a coherent state
basis:

pt(t)= f f f f P(a, a,P,P, t)A(a, a,P,P )

dW, =dWz ——dr . (6.6e)

The Wiener increments dW, and dW2 are real and in-

dependent.
Although we cannot solve Eqs. (6.6) analytically, an

approximate solution is possible for a nearly classical
pump. We assume that the stochastic pump mode vari-
ables az and P consist of a mean amplitude ao (chosen to
be real) plus fluctuations ha and bP:

~
a;a, )(O', 13' ~

A(a, ap, 13,P~ ) —=P' ' P p .p
—(aP+a P ) aB +a 8=e P P e

X
i
0;0) (0;0

i
e

& =~o+

Pp
=ao+ ~&—

(6.4) We define new variables x„p,, x2, and p2 by

(6.7a)

(6.7b)

By substituting Eqs. (1.1), (6.3), and (6.4) into Eq. (6.1)
and integrating by parts, we find the Fokker-Planck equa-
tion

x, = —,'(a+P), x2 ————(a —P), (6.8a)

p, = ,'(ba+bP), p, = ———(ba—bP) . (6.8b)

It is convenient to change variables once again. We
define the variables z, and z2 by

where r=~t and P =P(a, a~,P,P~,
—r) .

In its present form, Eq. (6.5) is a complex eight-
dimensional Fokker-Planck equation. The analyticity of
A=A(a, a~,P,P ), however, allows us some freedom of
choice in interpreting the derivatives. ' By properly inter-
preting the derivatives in Eq. (6.5), we obtain a real

—Mz, =x, e

ll
Z2 =X2e

where u =uQ~. The resulting SDE's are

(6.9a)

(6.9b)
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1
dz, = (z,p, +zzpie ~"}du

ap
' 1/2

1. P1+ lP2+—e " 1+
2 ap

1
dpi = (zie —zie )du

2ap

1
dP2 ——— z1z2 du,

ap

(6.10c)

(6.10d)

P1 —lP2
+ 1+

ap

dzz —— (z,pie —zzp, ) du
1 2Q

ap

1/2

d Vz, (6.10a)

P1+'P2
1+ P1 lP2

2ap ap

where dVi ——Q(zodWi and de ——QaodWz.
%'e use an iterative procedure to obtain an approxi-

mate solution of Eqs. (6.10}. The square roots are ex-
panded in a Taylor series:

1/2

ap

l u P1+ lP2——e" 1+
2

1/2

dv, '6 11)
ap

P1 —lP21+
ap

1/2

d Vq, (6.10b)
Substituting Eq. (6.11) into Eqs. (6.10) and integrating
formally, we find

zi(u)=zi(0)+ Q

ap 0
[zi(x)pi(x}+zi(x)p&(x)e '")dx+ f e dV+ —p (x)dV+ —p (x)deaf

2 o (zo 2 2 2

u

z " = &(0}+ [zi(x)pz(x)e "—z&(x)pi(x)]dx — —f e" dW+ —p (x)d~+ i
p (x)dVap &2 o (zo 2P

(6.12a)

Qpi(")=pi(0)+ f [zz(x)e " zi(x)—e "]dx,
2ap p

1 u
pz(u)=pz(0) — f z, (x)zz(x) dx .a, p

(6.12b)

(6.12c)

(6.12d)

Here we have defined two new independent Wiener incre-
ments

e= y a,-" ei"'.
n=0

(6.14)

d Vi (x)+d Vz(x )
d V(x)=

v'2

d V, (x)—d Vi(x)
dW(x)= v'2

(6.13a)

(6.13b)

By substituting the expansion Eq. (6.14} into the formal
solution Eqs. (6.12) and equating equal powers of ao ", we
obtain an approximate solution to the set of SDE's: (i) to
zeroth order,

The new Wiener increments defined in Eqs. (6.13}corre-
spond to a rotation of the old Wiener increments, d V,
and d V2, and hence retain the same correlation matrix. '

We can ignore the initial values z, (0)=x,(0},
zz(0)=xi(0), p, (0) and pz(0) in subsequent calculations
because all moments involving these quantities are zero.
To see this, we observe that the P function gives normally
ordered averages for all moments a" and P", and all nor-
mally ordered averages are initially zero for the case
studied here. By extension, all moments involving the in-
itial values x, (0), xi(0), pi(0), and pz(0) are zero.

The formal solution [Eqs. (6.12)] yields an approximate
solution, valid for short interaction times and large pump
amplitude, when the stochastic variables are expanded in
a perturbation series in the reciprocal of the pump ampli-
tude:

z',"(u)= f "e—"dv,
v'2 o

z'i '(u)= — —f e'dW,
v'2 o

pi (u)=p2 (u)=0 '

(ii) to first order,

z', "(u)=z,"'(u) =0,
p', "(u)=—' [zz ' (x)e "—z i

' (x)e ")dx
2 p

p"'(u)= —f z', '(x}z' '(x)dx;
0

and (iii) to second order,

(6.15a)

(6.15b)

(6.15c)

(6.16a)

(6.16b)

(6.16c)
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Q

z, (u)= [z', '(x)p'i"(x)+z2 '(x)p2" (x)e "]dx+ — e "[p"'(x)dV+ "'( ) dW],

Q

z2 (u)= [z) '(x)p2"(x)e "—z2 '(x)p', "(x))dx — e"[p"'(x)dW+
' "'( ) dV],

(6.17a)

(6.17b)

p',"(u)=p',"(u)=0 .

(0)dzP) = e-"dv,
2

(6.18a}

The SDE's corresponding to the zeroth-order solutions
z', (u) andz2 '(u) are

&z,' '(u)z', '(U)z',"(w)z',"(z))
„

=(" (.).,"'(.) ),„&","(w)","(.) ),
„

+ &.,"'(.}" ( ) &.„(","(.).,"'(.) &.,
+(z'"(u)z',"(z)&,„(z,"'(U)z,"'(w) ),„,(6.22b)

dz(2 ' ——— e"dW .[0) ~ u

v'2

We define the new variables

A, (u)=z', '(u)e"

A2(u) =iz2(0) (u) e-",
with the resulting SDE's

(6.18b)

(6.19a)

(6.19b)

where ( ),„denotes an average in the positive-P repre-
sentation.

The squeezing in the signal mode is easily calculated by
the repeated application of (i) and (ii). The signal-mode
quadrature-phase amplitudes are defined by Eqs. (2.11),
and the pump mode quadrature-phase amplitudes are
defined by Eq. (3.5), or more explicitly by

dAi ——Ai du+ —dV
1

t (6.20a)
P, =)(0„+&), P2 ————(& —&t) .

s (6.23)

dA2 ———A2 du+ —d8' .1

v'2 (6.20b)

Equations (6.20) describe two independent Ornstein-
Uhlenbeck processes, each with zero mean. Thus z' '(u)

(0)
Z) Q

and z2 '(u), apart from the exponential factors e" and
e ", respectively, are themselves Ornstein-Uhlenbeck
processes. They are Gaussian variables; all higher-order
moments can be expressed in terms of second-order mo-
ments. With this in mind, we can formulate a pair of
rules to guide us through the remaining calculations: (i) a
rule for quadratic moments,

&~",&=-,'+& ', (.)&.,=-,'+("( )& ""
&~"',) =-,'+& ',(.) &.„=-,'+&"(.}& .-'"

(6.24a)

(6.24b)

We see from Eqs (6.24) that x, and x2 are the c-number
equivalents of the quadrature-phase amplitudes x and

&
an

x2, respectively. To second order in n0 ', the uncertain-
ties are

The expectation values of the signal-mode quadrature-
phase amplitudes x& and x2 are zero when the signal is
initially vacuum, as shown by Eq. (3.11). We then find
that the uncertainties in x, and x2 are

(zI )(u)z) '(w)),„=—,'(1 —e ) u )w,

(z2 '(u)z2 '(w)),„=——,'(e —1) u )w,

&z',"(u)z',"(w) &.„=0,

(6.21a)

(6.21b)

(6.21c)

&
~" ', & =-,'+ &","'(.) &,„""

(2zI )(u)z' '(u)),„e"
a0

&~-', &=-'+&";"(.}) .-'"2 ave

(2z(0)(u)z(2)(u) ) —2u

CK0

(6.25a)

(6.25b)

and (ii) a rule for quartic moments,

(z',"(u }z',"(U)z", (w)z', "(z)&,
„

= & z',"(u) ',"(U) &,„&z',"(w)z', "(z)&,
„

+&z(,o)(u)z(,0)(w)&.„((,0)( ) ',"( )&,
„

+ &z' '(u)z', '(z) &,„&z','(U)z', '(w) &,„,(6.22a)

Application of (i) yields the ideal squeezing:

&&"',&;„„=-,'+& ',"'( )&,„'"=—,
'

(Ax 2);d„i———,'+(z2 ' (u)),„e "=
—,
' e

(6.26a)

(6.26b)

Repeated applications of (i) and (ii) yield the quadrature
variances correct to semiclassical order o. =N0

(g~ 2) ) 2u 2 2u 2u[u e +u(e +1)—(3sinh u+2)sinhu e"—sinh u],2

8N
(6.27a)

(g~ 2) ) —2u 2 —2u —2u[u e —u(e +1)+(3sinh u+2)sinhu e "—sinh u],2

8N
(6.27b)
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which are exactly the results obtained by Hillery and Zu-
bairy. Equation (6.27a) also agrees to O(X ') with the
result calculated via the seminumerical method [Eq.
(5.13)]. The variance of the squeezed quadrature, includ-
ing the dominant correction for at best moderate squeez-
ing only, is

(b,x', ) =-,' e '"+ e'"1

64K
(6.28)

which agrees with Eq. (2.18), validating our heuristic pic-
ture of the effects of pump fluctuations on squeezing.

B.The two-mode PA

The analysis of the two-mode PA is similar to that of
the one-mode PA. The equation of motion is again von
Neumann's equation in the interaction representation,
Eq. (6.1), with the two-mode interaction Hamiltonian
8;„,(t) given by Eq. (1.4). Initially, we assume the signal
modes are in vacuum states, and the pump mode is in a
coherent state:

du, =P2a dr+ Qa d W, ,

da& ——P&a» dr++a» dW&

dP) a——g» dr+ QP d Wq,

dPz ——a,P» dr++f3 dWq

da~ = —a,az d~,

dp» = —p,p2dr .

(6.31a)

(6.31b)

(6.31c)

(6.31d)

(6.3 le)

(6.31f)

d W)„+idW,»d 8'i ——
v'2

d W2„+idWz
d 8'2 ——

v'2

(6.32a)

(6.32b)

where dW,„,dW, », dW2„, and de» are independent,
real Wiener increments, and, in the Ito calculus,

The comp/ex Wiener increments d Wt and d W2 are
defined by

p(0)=p (0)= ~0;0; )(0;0; (6.29)
d8 )s= deeps =d (6.32c)

By substituting the two-mode versions of Eqs. (6.3) and
(6.4) into Eq. (6.1) and integrating by parts, we find the
Fokker-Planck equation for the two-mode PA:

The complex pump amplitudes a and P are again as-
sumed to consist of a large, real mean value ao plus small
fluctuations, as in Eqs. (6.7). We define the new variables
X„Y,, X,, Y„P,, and P, by

ap a
a,

= a a a—Q 213» a P)Q» ——cx gP»
l

X, =—,'(a, +P~), Xz = ——(a, —P~), (6.33a)

a 2

+a,az
a

+P,Pz a~
+a

ap a, az

az
+ » ap, ap,

(6.30)

I
Y, = —,'(a2+P)), Y2 ————(ap —P(),

P, = —,'(ha+bP), P2 = ——(ha —4P) .

It is convenient to change variables one more time:

(6.33b)

(6.33c)

where r=at and P:P(a„a2,a»—,P&,132,P», r) .
Proceeding as in the one-mode case, we can derive a

set of Ito SDE's from the Fokker-Planck equation, Eq.
(6.30):

U) ——X)e ", Uz ——Xze ",
Z&

——Y&e ", Zz ——Yze",

where u =acr. The resulting SDE's are

(6.34a)

(6.34b)

dU, = (U P +UzPze ")du+ —e " 1+
ap

P, +iP2

ap

' 1/2
P) —iP2

dVt+ 1+
Qp

(6.35a)

1
dZ, = (Z, Pt+Z2P2e ")du+ —e

ap 2

P)+iP2
1+ '

ap

1/2
P& —iPz

dV) + 1+
ap

dV2 (6.35b)

1
dU2 =

ap
( U/Ppe'" U2P/ ) du ——e"—1+

2

' 1/2P)+iP2
ap

dV2
ap

' 1/2
P) —iP2

d V) — 1+ (6.35c)

' 1/2P)+iP2
dZ2= (Z, P2e " ZzP, )du ——e" —1+ dV2

ap

' 1/2
P) —iP2

1+ (6.35d)

dP, = (U2Z~e "—U, Z, e ")du,
ap

1
(U, Z, +U,Z, }du,

ap

(6.35e)

(6.35f)
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Uto'(u)= —,
' f e "(dS, +idSz),

Z' '(u)=U' "(u)

Uzo'(u) = —,
' f "

e "(dS3 id—S4),

Z,"'(u) = —U',"'(u),

(6.36a)

(6.36b)

(6.36c)

(6.36d)

where dV, =QaodIV, and dVz ——QaodW'z.
We can obtain an approximate solution to Eqs. (6.35)

just as we did in the one-mode case; we formally integrate
Eqs. (6.35), expand the square roots, and substitute the
expansion Eq. (6.14) . We have found the approximate
solution up to second order in ao ': (i) to zeroth order,

PI '(u)=Pz '(u)=0;

(ii) to first order,

U', "(u)=Z', "(u)=O,
U"'(u) =Z"'(u) =0,
P', "(u)= f [U' '(x)Z' '(x)e

0

(6.36e)

(6.37a)

(6.37b)

(6.37c)

(6.37d)

and (iii) to second order,

—U', '(x)Z', '(x}e "]dx,
P"'(u)= —f [U', '(x)Z' '(x)+U' '(x)Z', '(x)]dx;

0

U', z'(u) = f [UIo'(x)PI" (x)+ Uz '(x)Pz" (x)e "]dx+ ,' f —e "[P',"(x)(dS, + idSz ) —Pz" (x)(dS3 —idS4)],0 0

ZI" (u) = f "[ZI"(x)PI"(x)+Z~z 'P~z" (x)e "]dx+ —' f e "[P"'(x)(dS& idSz)+—Pz" (x)(dS3+idS4)],
0 0

U'z '(u) = f"[UI '(x)Pz" (x)e "—U~z '(x)PI" (x)]dx+ —,
' f "

e "[PI"(x)(dS3 idS4—)+P~z" (x)(dS, +idSz )],
0 0

Zz '(u)= f [ZI '(x)Pz" (x)e "—Zz '(x)P', "(x)]dx——,
' f e"[PI"(x)(dS3+idS~) —Pz" (x)(dS& idSz)]—,

0 0

P' '(u)=P' '(u)=0.

(6.38a)

(6.38b)

(6.38c)

(6.38d)

(6.38e)

Notice that in Eqs. (6.36} and Eqs. (6.38) we have re-

placed the complex noise increments by the real Wiener
increments dS, , dSz, dS3, and dS4, where, using Eqs.
(6.32),

d8 ]x +d8 2x d8 ]y
—d&2y

dS( —— —,dS2 ——
v'2

(6.39a)

d IV, +d IVzy d $V)„—d 8'~„
(6.39b)

v'2 2
Also note that, as in the one-mode case, we have dropped
all contributions arising from the initial conditions.

By comparing Eqs. (6.36) with Eqs. (6.15), we see that
the zeroth-order solutions UI '(u), ZP'(u), Uz '(u), and
Z z

'
( u ) have real and imaginary parts that are Gaussian

variables. Let

dS4 ——dS3 ——

U', '(u)=ZI '*(u)=Q, (u)+iQz(u), (6.4Oa)

Uz '(u)= —Zz "(u)=Q3(u)+iQ4(u), (6.40b)

where Qt(u), Qz(u), Q3(u), and Q4(u) are independent
Gaussian variables with zero mean. We can use Eqs.
(6.40) to generalize the one-mode rules [Eqs. (6.21) and
Eqs. (6.22)] to the two-mode case: (i) a rule for quadratic
moments,

& Q, (u)Q, (w) ),„=& Q, (u)Q, (w) ),
„

& Q;(u)Q, (u) ),„=0,i ~j
and (ii) a rule for quartic moments,

&Q (u)Q (U)Q, (w)Q, (z)),
„

= & Q, (u)Q, (U) ),„&Q, (w}Q, (z) ),
„

+ & Q, (u )Q, ( w) ),„&Q, ( U)Q, (z) ),
„

+&Q (u)Q (z)),„&Q,(U)Q, (w)),„,
& Qz(u)Qz(v)Qz(w)Qz(z) ),„

(6.41c)

(6.42a)

=&Q (u)Q (U)),„&Q(w)Q (z)),
„

+&Q,(.}Q,(».„&Q,(.)Q, (.».
„

+&Q (u)Q (z)),„&Q(U)Q (w)),„,
& Q, (u)Q, (U)Q, (w)Q4(z) ),

„

(6.42c)

=&Q, ( )Q, ( )Q, ( )Q, ( )&,„.(6.42d)

We can calculate the two-mode squeezing by repeated
application of (i) and (ii). The two-mode quadrature-
phase amplitudes are defined by

=&Qi(u)Qi(U)Q, (w)Q&(z)),„,(642b)

& Q3 (u )Q3( U)Q3 ( w)Q3 (z) )~„

= —,'(1—e ), u) w,

& Q, (u)Q, ( ) ),„=& Q (u)Q, (w) ),
„

= —,'(e —1), u )w,

(6.41a)

(6.41b)

7

X, =—(&, +I z), Xz= ——(&, —& z),
2 2

P= —(8+8 ) P= ——(& —& ).s

(6.43a)

(6.43b)
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(
~
5X,

~
& =—,'+ (X, Y, &,„—(X, &,„(Y, &,„,

(
~
~J, ~'&=-,'+(X, Y, &.„—(X, &.„(Y,&„.

(6.44a)

(6.44b)

The two-mode signal quadrature-phase amplitudes are
not Hermitian operators. In terms of the stochastic c
numbers, the mean-square uncertainties in the two-mode
quadrature-phase amplitudes are given by

From Eq. (1.13) and Eqs. (6.44) we see that X, and Y& are
the c-number equivalents of the operators f, and its Her-
mitian conjugate J t, respectively, and X2 and Y2 are the
c-number equivalents of the operators X2 and its Hermi-
tian conjugate X 2. Substituting Eqs. (6.14), (6.36), (6.37),
and (6.38) into Eqs. (6.44), we have to second order in—1
CXp

(
~

bX',
~

& =—'+ ( UI '(u)Z' '(u) & e "+( UI '(u)ZI '(u)+ U' '(u)ZI '(u) & e "

( i EX2
~

& = —,'+ ( Uz '(u)Z2 '(u) &» e "+ ( U2 '(u)Z' '(u)+ U' '(u)Zz '(u) &,„e
ap

(6.45a)

(6.45b)

since the expectation values of X] Y& X2 and Y2 are zero.
Repeated application of the two-mode rules (i) and (ii) yield the mean-squared uncertainties correct to semiclassical

order ap ——N

(
~

AX'
~

&=—,'e "+ [u e "+u( —,'e "+1)—(4sinh u+ —,')sinhu e"——', sinh u], (6.46a)

1
(

~
AXE

~

&=—,'e "+ [u e "—u( —,'e "+1)+(4sinh u+ —,') sinhu e "——,'sinh u], (6.46b)

(
~

gg'2
~

& = ' e
1

64N
(6.47)

which is the same as the dominant correction found for
the one-mode case, Eq.(6.28), in contrast to the result ob-
tained by Scharf and Walls.

VII. CONCLUSION

We have calculated, for the one- and the two-mode
PA, the explicit corrections for squeezing to order I /N,
due to a quantum pump in a coherent state with an aver-
age photon number N. We found that the pump's phase

which is slightly different from the one-mode result, Eqs.
(6.27), and agrees to O(N ') with the result calculated
via the seminumerical method [Eq. (5.14)]. When the
dominant correction only is kept, the uncertainty in the
squeezed quadrature is

noise is responsible for the dominant contribution to the
limitations on squeezing for any number of signal modes.
We also briefly discuss when traveling-wave calculations
can be treated by Hamiltonian methods in the most
direct way. This was done by discretizing the continuum
problem. Finally, the limitation to squeezing in the
discrete-mode calculations we performed was shown to
be insensitive to the details of our discretization process.
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