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Multiwave mixing in semiconductor laser media
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This paper analyzes the interaction of a strong wave and one or two probe waves with an intrinsic
semiconductor medium which is partially inverted by an injection current. The many-body interac-
tions of the electron-hole excitations are described using recently developed generalized Bloch equa-

tions for semiconductors. Coupled-mode equations for the different light fields are derived and

solved, and predict that the gain and the coupling coefficients experience asymmetric dips. These

dips are generated by scattering of the strong field off carrier-density pulsations induced by the

pump-probe interference.

I. INTRODUCTION

In this paper we apply the generalized Maxwell-Bloch
equations of motion for semiconductors given by Lind-
berg and Koch' to the problem of two- and three-wave
mixing in a partially inverted semiconductor medium.
These generalized Bloch equations contain the many-
body effects of plasma screening, Coulomb enhancement,
band filling, and plasma-density-dependent renormaliza-
tion of the semiconductor band gap. Similar generalized
Bloch equations have also been derived in Refs. 2 and 3.
Considering fields that vary little in carrier-carrier and
carrier-phonon interaction times, we adopt the so-called
quasiequilibrium approximation where the intraband car-
rier distributions are given in terms of quasi-Fermi func-
tions. For room-temperature conditions and sufficiently
high carrier densities where the medium is partially in-
verted, the Coulomb enhancement becomes unimportant
in the gain regime and the generalized Bloch equations
can be simplified. However, in a consistent description
of the high-density electron-hole excitations one always
has to include the electronic band-gap renormalization
which leads to tuning of the semiconductor gain spectra.
Therefore our equations are a generalization of the semi-
conductor laser equations used by several authors.

To analyze the effects of multiwave mixing, we consid-
er the situation where the optical field consists of one or
two probe waves with intensities too small to change the
carrier density, and a strong wave whose intensity is lim-
ited only by the condition that its Rabi-Hopping frequen-
cy is small compared to the carrier-carrier scattering
rate. We use multimode Fourier expansion' to derive
the equations for the different field components. For the
case of one probe wave our analysis shows the appear-
ance of dips in the optical gain and transmission spectra.
The situation of two probe waves is relevant for the situa-
tion of nondegenerate phase conjugation in semiconduc-
tors. Our analysis shows that single-probe propagation is
described by Beer's law, and the two-probe propagation is
described by coupled-mode equations. The analysis is im-
portant for pump-probe spectroscopy, modulation spec-
troscopy, side-mode buildup in semiconductor lasers, and
many other wave-mixing phenomena in semiconductors.

In Sec. II of this paper we present our model for the
injection-pumped semiconductor interacting with the
multimode light field. We discuss the relevant many-
body effects in the electron-hole plasma and derive the
coupled equations for the carrier density and the medium
polarization. In Sec. III we present the multimode ex-
pansion of the equations and compute the coupling equa-
tions for the different field components and the probe ab-
sorption coefficient. In Sec. IV we evaluate our equations
numerically and show that the multiware mixing leads to
the occurrence of dips in the probe-absorption spectra.

II. PROBE POLARIZATION OF THE MEDIUM

We consider a semiconductor medium subjected to an
arbitrarily intense wave and one or two nonsaturating
waves. We assume that the saturating-wave intensity is
constant throughout the interaction region and ignore
transverse variations. We label the probe waves by the
indices 1 and 3 and the saturator wave by 2 as shown in
Fig. 1. As discussed in Ref. 10, this scenario can be ap-

u,

FIG. 1. Spectrum of three-wave field. Waves with frequen-
cies v& and v3 are taken to be weak (nonsaturating), while the v&

wave is allowed to be arbitrarily intense, provided that its Rabi
frequency is still small compared to the carrier-carrier scatter-
ing rate.
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plied for a large variety of multiwave mixing
configurations. Our electric field has the form

E(r, t)= —,
' g 6'„(r)e " " +c.c. ,

where the mode amplitudes 6„(r)are in general complex
and K„arethe wave propagation vectors. For simplicity
we take mode functions appropriate for a unidirectional
ring laser. The mode index equals 1, 2, or 3. The field (1)
induces the complex polarization

P(r, t)= ,' QP—„(r)e " " +c.c. , (2)

d ~ =i (IC/2eo)P„,
dz

(3)

where eO is the background dielectric constant of the host
medium. One might guess that the probe polarization is
simply a probe Lorentzian multiplied by a probability
difference saturated by the saturator wave. However, an
additional contribution enters due to probability pulsa-
tions. Specifically, the nonlinear probabilities respond to

1

where P„(r)is a complex polarization coefficient that
yields index and absorption and gain characteristics for
the side-mode and saturator waves. The polarization
P(r, t) in general has other components, but we are in-
terested only in those given by Eq. (2). In particular,
strong wave interactions induce components not only at
the frequencies v„v2,and vi but at v, +j(vz —v, ) as well,
where j is an integer.

The problem reduces to determining the probe polar-
ization P, (r), which drives the side-mode amplitude 8„
according to the propagation equation

the superposition of the modes to give pulsations at the
beat frequency h=v2 —v, . Since we suppose the probe
wave does not saturate, the pulsations occur only at +6,
a point proven below. These pulsations act as modula-
tors (or like Raman "shifters"), putting side bands onto
the medium's response to the v2 wave. One of these side
bands fall precisely at v&, yielding a contribution to the
probe-absorption coefficient. The other sideband
influences the polarization of the probe placed symmetri-
cally on the other side of the strong mode, namely, at the
frequency v2+v2 —v, . This side band provides the cou-
pling in three- and four-wave mixing.

The polarization (2) of the semiconductor medium can
be also written as

P(z, t)= V ' g pp, „+c.c.
k

(4)

where p is the electric-dipole matrix element which in

general is k-dependent, V is the volume of the medium,

p, „

is the off-diagonal element of the two-band density
matrix whose elements are functions of the carrier wave
vector k. The subscript c refers to the conduction band
and U to the valence band. The volume V cancels out
since it appears in the g&. Combining Eqs. (2) and (4),
we find the slowly varying complex polarization

P 2pe
—i(Kz vt)V —1—y p

k

The dynamic equations for p,„and the electron and
hale densities have been derived in Ref. 1. Here we
briefiy summarize the results that are relevant for the
semiconductor laser. In the two-band approximation the
Hamiltonian of the electron-hole system is

%= g [0, (k)a„a„+e'„(k)b„b„]
V(q)fa„+,a„,a„.a„.+b„+b„b„.b„—2a„+b„. b„a„]++(V„a„b„+V,„b„a„),1

k, k', q&0 k

(6)

where

V„=— 6(r, t)

describes the coupling to the multimode electric field
A(r, t) a& is th.e electron annihilation operator for the
wave vector k and b k is the hole-annihilation operator
for the wave vector —k. Note that we use electrons to
describe the carriers in the conduction band and holes to
describe the missing electrons in the valence band. The
energies e', (k} and e& (k) are the effective single-particle
energies of the electron and hole,

Ak
2me

fico, =e, (k)+ei, (k)+5eD,b,
e), (k)= + + g V(q)=—e), (k)+ g V(q),

2k 2 6g

2m' 2 0 q~0
(g) where

5eD b= y [ V, (q) —V(q)]
q~0

(10)
where m, and mz are the electron and hole effective

I

masses and e is the zero-field band-gap energy. We as-
sume that the Coulomb interaction conserves the number
of electrons in each band and we describe the dipole cou-
pling to the laser field C(t) in the rotating-wave approxi-
mation. It is straightforward to generalize this treatment
to include the quantum statistics of the laser light, by
quantizing the field.

When many electrons and holes exist in the semicon-
ductor, the effect of screening becomes increasingly im-
portant. This process can be treated by replacing the un-
screened potential V(q) by the screened one, V, (q),
which has a reduced interaction strength especially at
long distances. Screening leads to a renormalization of
the single-particle energies and of the transition energy
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The transition energies are again renormalized through
the screened exchange contribution, yielding the effective
transition energy

%co =e, ( k) +e„(k}+5@

with 5E'g given by

~e// ~eDcb y Vs ( q )f n e ( q )+nb ( q ))
q~O

(13)

where we have assumed a rigid, i.e., k-independent, band-
shift. In Eq. (12) we recognize a variety of many-body
contributions that have been discussed extensively in the
context of high-excitation semiconductor pump-probe
spectroscopy, " such as plasma screening (in V, ), band-
gap renormalization (in 5e ), as well as band and state
fillin (1 n„n,). A—s—limiting cases, our equations
reproduce well-known results from quantum optics and
semiconductor physics. If we neglect all Coulomb-
interaction terms, we obtain the undamped Bloch equa-
tions used in atomic spectroscopy of inhomogeneously
broadened systems. In semiconductors, the inhomogene-
ous broadening is an intrinsic consequence of the disper-

is the so-called Debye contribution to the electronic
band-gap reduction (Debye shift).

To describe laser action in semiconductors, we derive
the equations of motion for the expectation values

(Q„a/, &, {b /, b /, &, and {a/, b /, &, where {a/, ak &

=n, (k) is the probability of having electrons with the
wave vector k, and {b „b k & =n/, (k) is the probabihty
for holes, and {a/, b /, & =p,„gives the polarization of the
momentum state k. In the language of conventional laser
theory, these expressions are the diagonal and oC'-

diagonal terms of the density matrix, where we set
n, —=p„,which is the probability of having a conduction
electron in the state k, and nz =—1 —p„„,which is the
probability of having a hole in the state k. The total car-
rier density is given by

N(t) = V ' g n, = V ' g n„, (11)
k k

where V is the volume of the semiconductor. Since the

gk is proportional to V, the volume cancels out, leaving
a number density.

Using straightforward operator algebra, we obtain
equations of motion for the two-operator expectation
values in terms of themselves and of expectation values of
four-operator products. Reference 1 closes this set of
equations by quantum-mechanical projection-operator
techniques. In the present paper we are only interested in
the limit that the carrier-carrier scattering time y„'and
the dipole dephasing time y

' are much less than other
relaxation times and times during which the multimode
electric field envelope varies appreciably. For these cases
the polarization equation derived in Ref. 1 can be written
as

p,'", '= (i co+ y )p—,„(k)
+i V,„(z,t)+ g V, (q)p,„(k+q) (n,'"'+n/, "'—1} .

q&0

(12}

p,„=(—i to+ y )p„+i V,„(z,t)( n, + n/, —1 ), (15)

ri, =A,,—ywan, —I n, n/, ri, (, ,—(iV—,„p„,+c c ),. .

(16)

rih ——A/,
—yNan/, —I n„n/, —ri/, ~, ,—(i V,„p„,+c.c. ),

(17)

where P. , a=e or h, is the pump rate due to an injection
current, yNR is the nonradiative decay constant for the
electron and hole probabilities, I is the radiative recom-
bination rate constant, and ri ~, , is the carrier-carrier
scattering contribution. The rapid carrier-carrier intra-
band scattering drives the distribution n toward the
Fermi-Dirac distribution

1

i/[e (k) —p ]e +1
where P= 1!kt/T, k// is Boltzmann's constant, T is the
absolute temperature, and p is the carrier chemical po-
tential that yields a self-consistent total carrier density N.
In fact, the intraband scattering contribution vanishes
when n is given by a Fermi-Dirac distribution. While
rapidly suppressing deviations from the Fermi-Dirac dis-
tribution, the scattering does not change the total carrier
density N of Eq. (11). Hence summing either Eq. (16) or
(17), we find the equation of motion

I
N =A, —y NRN — y /t n/, — &cv g p„+c.c.

k

(19)

where the injection-current pump A, of Eq. (19) is given by

A, =qJ/ed; (20)

g is the efficiency that the injected carriers reach the ac-
tive region, J is the current density, e is the charge of an

sion of the single-particle energies. On the other hand,
for one electron, one hole, and a vanishing optical Beld,
we regain the %annier equation for the relative motion of
an electron-hole pair.

In the remainder of this paper we simplify the equa-
tions by restricting ourselves to the situation of
suSciently high electron-hole densities well above the
Mott density, where bound electron-hole pairs (excitons)
are already ionized. In this regime it is a reasonable ap-
proximation to ignore the term

g V, (q)p„(k+q)
q&0

in comparison to V,„(z,t) in Eq. (12), since the Coulomb

potential is strongly screened. This approximation is

equivalent to replacing the Coulomb enhancement factor
by unity. It is shown in Ref. 4 that this is indeed a very

good approximation for room-temperature bulk semicon-
ductors if the generated carrier densities are high enough
for optical gain.

Our set of dynamic equations for the density-matrix
elements of rnomenturn state k becomes
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4me 2N
co I

—— ——16~Na o
cpm

cok =co I 1+ +
K

'2
E

2
Ak

2m

(22)

where C is a numerical constant usually chosen between 1

and 4 to approximate the continuum of pair excitations
in the Lindhard formula by an effective plasmon pole. "
With ao and Ez we denote the exciton Bohr radius and
Rydberg energy, respectively, and ~ is the inverse screen-
ing length

2 aoE„
g f d k f,(k)[l —f,(k)]

7T Qf

1/2

(23)

Using Eq. (22) one can analytically evaluate the Debye
contribution to the band-gap renormalizatian and the to-
tal band-gap shift becomes

electron, and d is the thickness of the active region.
Since the fields we consider vary little in the carrier-

carrier scattering time and the Rabi-Aopping periods are
much larger than this scattering time, we approximate n

by f in the remainder of this paper. The chemical po-
tential p in Eq. (18) is determined from

N=V 'gf, =V 'gfi, . (21)
k k

In our calculations we use the single-plasmon-pole
(SPP) approximation to describe the intraband plasma
screening of the Coulomb interaction

2
4me

V (k)= 1—
@ok

where we choose the z direction to be along the probe at
frequency v&. The electron and hole probabilities n, and
nI, have the corresponding Fourier expansions

ij[(K2—Kl) r —bt]
n =gn e ' ', a=e, h .

J
(27}

ij[(K2—K() r hr]—
2 (

j
J

(28)

where d, =n,j +ni, —5,o. The carrier number density
N(t) has the expansion

ij [(K~—K, ) r —«]
J

(29)

and the Fermi-Dirac distributions have the expansions

f (k, t)=g f (k)e
J

a=e, h . (30)

We can approximate the f„(k)by noting that the Fermi
distributions f are functions of their respective chemical
potentials p, that is, f =f [(L( (N)]. Hence we have

fa[(ua(No +AN) ]=fa [((ta(No ) +kN Bpa Ir)No ]

dna ()fao
=f~[p, (No)]+bN

No (M

Taking the small deviation hN to be

i [(K2—K~ ) r —«]
N&e

' ' +c c.

It is also convenient to define the probability difference
D (k, r, t) with the expansion

D(k, r, t):—n, ( kr, t) +ni( k, r, t) —1

2E, (a,K)
5e =—

1+C' (aoK)
Acopl

—g V, (e}[f,(e}+f~(q}1.

1/2

(24)

and identifying coeScients of e — ' with those in Eq. (29),
we find

faj=&,ga (31)

where the normalized derivative g of the Fermi-Dirac
distribution f is given by

q&p

III. MULTIMODE EXPANSION

To derive the coupling equations of the multimode field
components and to compute the probe absorption we per-
form now a systematic multimode Fourier expansion of
our coupled set of equations. The interaction energy ma-
trix element V,

„

for the multimode field of Eq. (1}in the
rotating-wave approximation is expanded as

V,„=— g @„(r)e (25)
n

where we assume that the electric-dipole matrix element

y varies little over the range of k values that interact. To
determine the response of the medium to this interaction
energy, we Fourier analyze both the polarization corn-
ponent p„ofthe density matrix as well as the number
probabilities. We have

(3pa r)fao
ga==aN, a~.

2PaoEt(
K =Ko+

2 y y f d'k f .(k)[1—2f~(k)]
7T j+p

ij[(K2—Kl) r —At]
Xe

where

Kp=

' 1/2

g f d k f o(k)[1—f~(k)]
7T

f~(f~ —1}
(32)

V 'Xf~(f o
—1}

k

Note that here we assume that the carrier temperature
does not vary significantly due to the field-envelope
modulation caused by the probe waves.

Using Eqs. (23}and (30), the inverse screening length K

is expanded as

i(K(z —v(r) im [(K2—K& ) r —h, t]
pcu e pm + le (26) Since the band-gap shift 5e, Eq. (24), also depends on

the excitation density, it has to be expanded as
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ii[(K&—K]] r —i]t}

J

(34) saturating mode by neglecting the nonsaturating probe
fields. We find for the m = 1 term in Eq. (26)

5e —=5e p+(5e ]e

As discussed below, our final results include only the
terms with j =0,+1 of the expansion (34). Therefore we

truncate the expansion (34) at j=+1,
i [(K~—K ) r —ht] +c.c. ),

—l Vi»]2 = —(l o]p+ y )p2 —l ( p 6'2/26)dp

which gives

p, = —(p /2]]])bp)2dp (38)

where

&& 0=-
g

2Ett (apKQ)

1+C' (aolto)
'Rcopi

1/2
2 y+l (Cop —V2)

(39)

where for notational simplicity we have defined the com-
plex denominator

—X 1;(q) I N=N [f 0(q)+fho(q)]
q

5egDebo+ 5egsxo &

5' i =56'gDeb]+5E'gsx] =]]]5to N]
(35)

g fd'k g (k)[1—2f~(k)]
1 a

N1
2 g fd k f~(k)[1—f~(k)]

i[(K&—K&) r —Lit]o]—=o]p+5co(N]e ' ' +c.c.),
with

A top ee(k)+el, (k)+5egp .

(36)

From Eq. (36) we see that the efFective transition energy
is modulated by the carrier density, thus giving a contri-
bution to the multiwave mixing in semiconductors.

We substitute the expansions (25} through (36) into the
density-matrix dipole equation of motion (15) and identi-

fy coefficients of common exponential frequency factors.
We assume that the probe amplitudes A'] and @& do not
saturate, i.e., appear only once. We show that in this ap-
proximation only p &, p2, and p3 occur in the polarization
expansion (26), and that only j =0,+1 appear in the
probability expansions (27)—(29). Physically this sim-
plification occurs because a product of 6'] and 82 creates
the pulsations like d+, , and from then on only 62 can in-
teract. One obtains the polarization side bands of v2 at
frequencies v, and v3, which subsequently combine with

v2 only to give back d+& components.
We calculate the coefficient of exp(iK2 r —i v2t) for the

5egsx] =X ~s (q)
I N =N,

q

I f o(q}+fio(q) l(apso�)

(ap]tp) Cfi q
(8iraoER ) 1+

128m mNoa pEt]

g fd k g (k)[1—2f ]](k)]
a

g fd k f~(k}[1—f~(k)]
a

—X ~.(q) I N =N, [g,(q)+g], (q) ]N]
q

Hence, the effective transition energy of Eq. (13) can be
written as

Equation (38) is simply the single-mode density-matrix
element in which we include a subscript 2 to specify the
saturator wave and have factored out the rapidly varying
time-space factor exp(i K2 r i.vt—)

In the quasiequilibrium Fermi-Dirac approximation,
the dc probability difference do is given by

do =f o+f] o (40)

The coefficient of exp(iE]z i v, t}—for the probe wave

[m =0 term in Eq. (26)] includes an extra term 62d
and the tuning term 5co,

—]v]»]] = —(io]o+y)p] i ( p/2—A)[@]do+62d ] ]

—i 5o]N i»]2 ~—
g1v1ng

P i
—— l ( P /2—R)2)2[@]dp+@id ] t @2dp5t—o SzN i ],

(41)

pi —— i (p/2]]])2)i—[6'idp+62d] i @2dp5cog)2N—] ], (42)

while p 3 vanishes since d, would be involved.
We have the probability pulsation contributions

d ]=f., ]+fi,, i (43)

and d, =d* ]. Our calculation is self-consistent, since

only do and d+, can obtain nonzero values from p„p2,
p3, and vice versa.

To find the dc contribution Xo, we seek the steady-
state solution of Eq. (19) written in the absence of probes
as

I l
N=" yNRN —Vgfe—of],o+ 2~V &» 2 +c.c

k k

1
yNRN —g fed—']—

,o

(44)

where in this paper we use Xlz instead of the usual S]
since the difference 5= v2 —v& has a much smaller magni-
tude than the dipole decay constant y. The 6zd ] term
gives the scattering of Cz into the 8] mode by the
probability-pulsation component d &. The polarization
component po remains zero when only dp and d+, are
nonzero, since it is proportional to 8&d „which in-
volves at least two 8]'s. Similarly, the component p, has

the nonzero value
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FIG. 2. Real part of a;„„in units of ao as given by Eq. (55),
vs pump detuning fiv2 —(eg+5eg ) for bulk GaAs at T =293 K.
The carrier density is No ——3)(10' cm, fiI =0.0007 meV,

AyN& ——0.000 12 meV, Ay =4 meV, m, =0.0665mo,
mI, ——0.52mo, where mo is the free-electron mass, Ip -=3 A, the

pump rate X=0.004 meV/ao E'p=12. 35, ao ——1.243&10 cm,
and E& ——4.2 meV. For these parameters, the medium has gain

up to —=84.7 meV.

(b)
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This may be solved numerically using the expansion

N(N) =N(NQ )+(N No ) =—(N No )—
dN

(45)

where N(NQ) =0. Calculating dN/dN from Eq. (44) and
using the g's defined by Eq. (32), we have

dNQ(N)

dN
(46)

1 l=l i+ I
p@2/&l'(2yV) 'g& (g, +g ) (47)

k

and the carrier-density decay constant I
&

is given by

I
&

——yNR+1 V ' g (n, ogh+n&og, ) .
k

(4g)

where the power-broadened carrier-density decay con-
stant I 2 is given by

-0.1
-0.04 -0.02 0 0.02

hu, — hu, (meV)
0.04

FIG. 3. (a) Real part of a&, in units of aoas given by Eq. (52),
vs probe-pump detuning Ah for pump detunings Av2 —(E'g

+5eg ) =0 (solid line, at band gap), 33 meV (dashed line, above
band gap), 66 meV (dot-dashed line), and 99 meV (dotted line)

for the same parameters as Fig. 2 and
~ phd ~

=0.5 me Y, which

corresponds to a pump intensity of =—1.3 MW/cm'. (b) Imagi-

nary part of a, corresponding to the real-part curves in (a).

Hence by interating the equation

N, =N+(r', )-'N (49)

we find the steady-state carrier density No and the decay
constants I

&
and I &.

The carrier-density pulsation component is given by

(yNR+&~)N t
= g[l (f—P—„,+fzQ, , ) f(p/2A)(D g,"—+D~,' —N*p —@*p )]

k

1= —
V X f'N (f,og +A+. )-

k

2+ +2( p/ ~) [(@1@2+ @2@3)do+ I @2 I
N —i(g, +gh )[1—&rodo2(roo —v2)y '&2])

y

Solving for N, , we get

2y '(p/2') (@,82+@263 ) V ' QX2do
N

where

r', +r.+~a
k'

(50)

&„=~p@/&~ (yV) '5 g( — )y X(g+g )d
k'

Substituting Eqs. (50) and (43) into (41), setting P&
——2p V ' gk p &, and using Eq. (3), we find the coupled probe equa-
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tion of motion

] =a,6, +g, D3,
dz

where the gain coefficient a, is given by

(g, +gl, )2y-'
I
0@2/2'

I
V XX2do(1 i—5r0$2do)

k'
rr t

=pro + 7'2)z do-
k I")+1„+i6

with dp =f p+f), p 1, and the coupling coefficient X, is given by

(g +gg )2p ( p C2/212) V g 22dp( 1 —i 5cu2)ado )
k'

&t = r—o X r&2
k r', +r„+is

(51}

(52}

(53)

Here the P& implicitly includes a phase-mismatch factor
exp[2i(K2 —K, ).r]. If this is significant, the X, term in

Eq. (51) averages to zero, leaving behind a simple Beer's
law equation for the probe wave 8t alone. For perfect
phase matching, the gain coefficient a, can be written in

terms of X, as

d63
dz

=a3 b3 +73 6, , (56)

Similar to Eq. (51) the coupled probe amplitude 83 obeys
the equation

a1 =aine+ +1

where the incoherent gain coefficient is given by

rro g Y&2dp
k

(54}

(55)

where the coefficients a3 and 73 are given by a& and X&,

respectively, by interchanging the subscripts 1 and 3
(note this implies replacing b, by —5).

The carrier-density decay constant I", of Eq. (47} is not
a function of k. The remaining sums over k produce
various multiplicative constants. Hence it is clear from
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FIG. 4. (a) Same as Fig. 3(a) but for
~ phd ~

=0.3 meV corre-
sponding to a pump intensity =480 kW/cm . (b) Imaginary
part of al corresponding to the real-part curves in (a).
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FIG. 5. (a) Same as Fig. 3(a) but for
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=0. I meV corre-
sponding to a pump intensity =50 kW/cm'. (b) Imaginary part
of ai corresponding to the real-part curves in (a).
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the work of Sargent' ' that the a, and X, of Eqs. (52)
and (53) lead to coherent dips in pump-probe and modu-
lation spectroscopy. They furthermore lead to narrow-
band retroreflection in phase conjugation by nondegen-
erate four-wave mixing. '

IV. NUMERICAL RESULTS AND DISCUSSION

As illustration, we evaluate our equations for the ex-
ample of bulk GaAs at room temperature. We concen-
trate on the situation where we have the strong wave at
Av2 and only one side mode. The case of two side modes
will be analyzed in subsequent publications. For later
reference we first evaluate the real part of the incoherent
gain coefficient, Eq. (55). Figure 2 shows the resulting
gain spectrum for the carrier density N =3)&10' cm
We see that the gain regime covers the spectral region be-
tween the renormalized band gap and the chemical po-
tential. A closer inspection shows that actually the gain
extends somewhat below the renormalized gap as a
consequence of the finite linewidth y.

Figures 3—5 illustrate the real and imaginary parts of
the full gain coefficient a„Eq.(52), for different intensi-
ties of the strong field and for a number of detunings.
The comparison with Fig. 2 shows that all of the chosen
detunings except one are in the gain regime (do & 0). All
curves of Re(a, ) reveal partly asymmetric dips versus
probe-pump beat frequency h. The magnitude of the
dips increases with increasing intensity of the strong field
at Av2. The asymmetry of the dips is a consequence of
the mixing of the real and imaginary parts of the complex
Lorentzian I/(I", + I „+ih)due to the integrals over the
complex Lorentzian 2)2. The X„have similar probe-
tuning dependences, but are displaced uniformly since ac-

cording to Eq. (54) they do not contain a;„,.
Using the parameters specified in the caption of Fig. 2

we estimate the Rabi frequency to vary between
=2.4&10" and 2.4&&10' Hz when the strong-field in-
tensity varies between 1.3 and 0.05 MW/cm, respective-
ly. Hence the corresponding flopping times are still long
in comparison to the carrier-carrier intraband scattering
time which is less than 100 fs in typical semiconductor
lasers. '

In conclusion, we presented the semiclassical theory of
multiwave mixing in semiconductor media with optical
gain. We illustrated the theory numerically for the case
of only one side mode to study the development of dips
generated by scattering of the strong field off carrier-
density pulsations induced by the two-beam interference.
These results allow one to measure the power-broadened
decay rate constant I",. They also reveal that modes
spaced on the order of I

&
are coupled through probabili-

ty pulsations. ' We are presently analyzing the case of
more than one side mode. Moreover, a related treat-
ment' for a quantized probe field shows that the spec-
trum of resonance fluorescence also features coherent-dip
phenomena in the vicinity of the pump wave frequency.

ACKNOWLEDGMENTS

We thank Sungyuck An, Weng Chow, Hartmut Haug,
and Markus Lindberg for helpful discussions. The work
is supported in part by the U.S. Army Research Office
and the U.S. Air Force Office of Scientific Research
(JSOP), in part by the U.S. Office of Naval Research, and
in part by the Optical Circuitry Cooperative at the Opti-
cal Sciences Center.

'Also at the Department of Physics, University of Arizona,
Tucson, AZ 85721.

M. Lindberg and S. W. Koch, Phys. Rev. B 38, 3342 {1988);S.
W. Koch, N. Peyghambarian, and M. Lindberg, J. Phys. C {to
be published).

H. Haug, in Optical Nonlinearities and Instabilities in Semicon-
ductors, edited by H. Haug (Academic, New York, 1988); J.
Muller, R. Mewis and H. Haug, Z. Phys. B 69, 231 (1987).

3A. Stahl and I. Balslev, in Electrodynamics of the Semiconduc
tor Bandedge, Vol. 110 of Springer Tracts in Modern Physics
(Springer, Berlin, 1987).

4H. Haug and S. W. Koch (unpublished).
5H. Haug, Phys. Rev. 184, 338 (1969), Z. Phys. 194, 482 (1966);

195, 74 (1966).
6W. W. Chow, G. C. Dente, and D. Depatie, IEEE J. Quantum

Electron. E-23, 1314 (1987).
7For a review see, e.g., G. P. Agarwal and N. K. Dutta, Long-

Wavelength Semiconductor Lasers (Van Nostrand, New York,
1986).

sA. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York,
1975).

9G. H. B. Thompson, Physics of Semiconductor Laser Deuices

{Wiley, New York, 1980).
' M. Sargent III, Phys. Rep. 43, 223 (1978); for a more pedagog-

ical derivation of a simpler two-level model, see R. W. Boyd
and M. Sargent III, J. Opt. Soc. B 5, 99 (1988).

i'H. Haug and S. Schmitt-Rink, Prog. Quantum Electron. 9, 3
(1984).

' M. Sargent III, J. Opt. Soc. B 5, 987 (1988).
T. Fu and M. Sargent III, Opt. Lett. 4, 366 (1979).

' M. P. Kessler and E. P. Ippen, Appl. Phys. Lett. 51, 1765
(1987).

'5G. P. Agrawal, J. Opt. Soc. B 5, 147 (1988) discusses effects of
population pulsations in semiconductors using a homogene-
ously broadened two-level-atom theory.
M. Lindberg, S. An, M. Sargent III, and S. W. Koch (unpub-
lished).


