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Near-threshold photoabsorption cross sections for nonhydrogenic ions
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Nonhydrogenic photoabsorption cross sections near threshold are well approximated by radial
dipole-matrix elements between phase-shift-modulated regular and irregular Coulomb continuum
and quantum-defect bound-state wave functions. Results based upon numerical quadratures are
inaccurate for high-Rydberg transitions, while previous analytical formulas are difficult to evaluate
near threshold. A simple analytic algorithm for the near-threshold region based on the analytic
properties of the Coulomb functions in the complex energy plane is presented.

I. INTRODUCTION

The computation of atomic photoabsorption cross sec-
tions arrd multiphoton excitations require a number of
electric dipole-matrix elements between nonhydrogenic
bound and continuum states. Expressions employing
quantum-defect wave functions' afford a good approxi-
mation because the major contribution to the radial ma-
trix element occurs outside of the core region. There the
single-electron potential is essentially Coulombic and the
wave functions are well approximated by certain linear
combinations of regular and irregular Coulomb func-
tions.

Using the Coulomb approximation, Burgess and
Seaton obtained matrix elements by numerical quadra-
ture. These were fix to simply parametrized forms. The
tabulated parameters, as extended by Peach, are ex-
tremely useful for transitions from low principle and or-
bital quantum number states. For high Rydberg excita-
tions the numerical quadratures are more difficult to per-
form accurately and the simple prescription for fitting the
results breaks down.

As shown by McGuire, and also by Dy and VanRe-
gemorter, analytic expressions for the matrix elements
are also available. These offer the advantage of being ful-

ly general and equally applicable to high Rydberg transi-
tions. However, the resulting hypergeometric functions
are difficult to evaluate at threshold, and for high Ryd-
berg excitations it is precisely in the region near thresh-
old where photoabsorption cross sections vary dramati-
cally.

T6 supplement the results of Dy and VanRegemorter,
we present in this paper analytic expressions for the pho-
toabsorption cross section valid near threshold. They are
based on the structure of Coulomb functions in the entire
(complex) energy plane as discussed by Humblet. Sim-
ple, efficient algorithms for its numerical evaluation are
presented.

II. BOUND-STATE WAVE FUNCTION

P„t(r)=Z' K(v, l)W„t+, t2(2Zr/v) .

W is the standard Whittaker function, Z is the net
charge of the parent ion, and the noninteger effective
principle quantum number v is determined from the ei-
genvalue as

E= —Z /0 (2)

We assume E is in Rydbergs and r is in Bohr. The nor-
malization factor is

N(v, l) =[v'r(v+i+ i)r(v —l)]-'" . (3)

For calculational purposes we shall employ a truncated
asymptotic expansion for the Whittaker function

v

2 e "~ g b, (v, l) j(Zr)' .
Zp'

Wv, I + 1 /2 2
V (=0

The coefficients satisfy a simple recursion relation

b( ———[1(1+1)—(v —t)(v t +1)]b, i—, bo ——1 .

The maximum index tF is the integer satisfying

v —l —1(tF (v —l

in oder that the wave function remain finite at the origin
and grow at least as fast as r ', a small relaxation of strict-
ly required boundary conditions.

III. CONTINUUM WAVE FUNCTION

2
mk

[F„,t. (r)costrp' —6„t (r)sintrp'],

where p' is the continuum generalization of the quantum
effect, F and G are the regular and irregular Coulomb
continuum wave functions of energy

The approximate energy normalized free radial wave
function is taken as

' 1/2

Unit-normalized bound wave functions, according to
the quantum-defect method, are given by
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defined by their asymptotic behavior at infinity where

G

sin lm

cos rr —g 1nSCr — +o,
2

v+ 1 —t —p/v1(1'+1 i—)

( '/2)'

and the Coulomb phase shift o.
l satisfies the equation

e '=I (!+1+i')/I (I+1 i—ri) .

By convention we take g to be negative for attractive po-
tentials.

Following the notation of Yost et al. , we may express
the regular and irregular functions in terms of the %hit-
taker function and its complex conjugate as

X W;„ I + i g2(2p/i ri')

l 'g V

V+l'g

a
l 'g

2

—m
I (a)1 (b)I (a —m)

I (a+b —m)

X2F, (a, b, a +b —m, z) .

can be integrated analytically to give

(15)

(16)

F = —,'(H" +H), 6 = —,'(H" H)—
where

For notational convenience we have introduced the vari-
ables

1/2
I (l +1+iq)
I (i+1 iri—

e +~'9/2e —I «2~ I + 1 ~ a =v+1'+3 —t,

X W, „(I+i~i)( 2iK—r) .

IV. TRANSITION INTEGRAL

(12) b = I'+ 1 i ri',—

m =2l'+1,
(17}

R = ' (2/v)"i/2/m.
Z2

(
i )2l'+ le

—nv/

I (I'+ 1+iri') I (I'+. 1 i ri')—
( —i}x,, Xb, l, ,

2 t

1/2

(14)

The dipole-matrix element between the bound-state
wave function, Eq. (1), and the continuum wave function,
Eq. (7), can be obtained from the real and imaginary
parts of the radial integral

R = d» P„,~H (13)
0

The lower limit of the integrand is finite due to the trun-
cation of the bound-state expansion and the integral can
be written more explicitly as

v —t 7l'

v+i g'

By using a hypergeometric connection formula Eqs.
(14)-(16) can be shown to be equal to the expression
presented by Dy and VanRegemorter. ' For values of g'
not too large the hypergeometric function may be evalu-
ated using the rational (complex) polynomial approxima-
tion of Luke" (see Appendix}. As written here the ex-
pression is machine indeterminant at threshold energy (ri'
infinite) and algorithms for the direct evaluation of the
hypergeometric function break down in this regime.
However, in this limit the argument of the 2F& function
approaches unity as the inverse of g, and using a linear
transformation formula' results in an ascending power
series that can be analytically regrouped so as to remain
finite at threshold. The resulting expression is

I, =( —2) (1 iKv/Z)—
'a

v 1)m+1
I (a)I (a —m)g

1 iKv/Z— I (a —m)

(a)„ iL
( —2v)'g, (0) ln( —2v) —%(1+r)—%(l+r+m)+%(a+r)+%(b+r)+1n

o r!(r +m)! Z —ivE (18)

where we have defined the finite product

Z+iK(1'+1 —J+s) for t positive .
s=1 Z —iKV

(19)

This finite product is to be interpreted as unity for index
0. For negative index —j the product is taken over

s = 1, —2, . . . , —j. Note that at threshold Eq. (19)
reduces to unity. Also, the divergence of the logarithm
containing k is canceled by the last 4 function (however,
the result has only an asymptotic expansion about
K =0). As a consequence, the integral is proportional to
the irregular conAuent geometric function
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U(a, rn +1,—2v) . (20) with the starting condition

For high Rydberg states the argument is a large negative
number, and the straightforward summation of the series
is extremely slow to converge. Furthermore, the alternat-
ing signs in the series can result in severe cancellation er-
rors. At threshold one has recourse to known asymptotic
forms of the confluent hypergeometric function, but this
is no longer the case off threshold. For this reason we
turn to the alternative approach presented in Sec. III.

(I) ( I) i ( I)
cxoo = cK io = I cx i i

= I (26)

G 2 )2(+) g I+)
C((2))1 (2l +2)

The irregular Coulomb wave function is factorized as
(21'= —2) is positive for attraction)

V. ANALYTIC EXPRESSIONS NEAR THRESHOLD
X [h (21')P((2I')4(+P((ri')e(] . (27)

F =r(2I +2)C((2I)(Kr)'+'4(, (21)

where the Gamow factor C, is defined by (2) positive for
repulsion}

Using the results of Humblet, the regular and irregu-
lar Coulomb continuum wave functions may be factor-
ized, separating pieces which have no convergent Mclau-
rin series expansion in energy from those pieces which
are entire in energy. The latter may be expressed in
terms of an expansion in regular and irregular Bessel
functions. A simple algorithm exists for the computation
of the expansion coefficients, and we may analytically in-
tegrate term by term to obtain a convergent energy
power series for the dipole radial matrix elements.

The regular Coulomb wave function is expressed as

The function PI is a simple polynomial in energy,

P((21)=(1—I'21 ')[1+.(I —1)'21 '] . . (1+21 ') (28}

(unity for I =0) and 4( is the function entire in energy
defined above. Note that the function

h (2))= —,
) [4'(1 i g)+—%(1+i2I)]—in') (29)

is not single valued and has an essential singularity at
K =0. By its presence any expansion of the irregular
Coulomb wave function as a whole must be asymptotic.
By isolating its presence the remaining functions in r are
entire in energy. The remaining function may be expand-
ed as

21 —n g/2
C (21)= [r(1+1 lt/)r(I+—1+i2)}]'"

+
and the piece entire in energy is expanded as

(22)

4( —g ( —1)~g ~J„'"(Zr),
p=o

(23) —g ( —1) b J„"' (Zr)

where the generalized Bessel function is defined in terms
of common Bessel functions by the finite sum

J'"(Zr) = (2Zr) "
12'!

(I)(2Z }
—[2(+)+@+).]/2& ~&p~

A, =o

XJ2(+)+„+((2+2zr ) . (24)

(25)

The coefficients needed to calculate the generalized Bessel
function are given by a simple three-term recursion rela-
tion

(30)

where the generalized irregular Bessel function is defined
analogously to Eq. (24) by replacing regular by irregular
common Bessel functions. The coefficients b are given
in terms of Bernoulli numbers

bo —0, b =
I
a2

I
g2~ (31)

and arise in connection with the asymptotic expansion of
Eq. (29). Note that although they grow quite rapidly
with increasing order, they enter here only through a
finite sum.

Upon integrating over the bound-state wave function
[Eqs. (1)—(6)] one can write the dipole radial matrix ele-
ments for the regular and irregular Coulomb continuum
wave function as

R„=AD+
P

4v

'9 r=o &
(32)

D„
4v

P

P((g') g —, ~Y„',+h (21')J„',—g( —1)' J„'
r=o ~ (2v) ' (33)
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respectively. For notational convenience we have defined
the quantities

and

, (+3 X(v, I) ~
Z2

(34)

I (2l'+2}CI.(g')
] /2'] (35)

The quantity J„', is defined by the integral over the regu-
lar generalized Bessel function [Eq. (24)]

Jl 1
dx e "x" '+'+ J'"(2&2vx )

(2 )2P 0 P (36)

The quantity Y„', is the integral defined analogously to
Eq. (36) but involving the irregular generalized Bessel
function.

Equations (32) and (33) are the main result of this sec-
tion. The utility of using such an expression for evaluat-
ing dipole matrix elements lies in the ability to simply
and efficiently calculate J„', and Y„', for all indices p, t
needed in the summations. To demonstrate this we
proceed as follows.

The integral Y„', can be found in Gradshteyn and
Ryzhik' or evaluated from the standard definition of the
irregular Bessel function as a L-Hospital limit of regular
Bessel functions and known Laplace transforms of regu-
lar Bessel functions. ' (The result in McGuire's paper' is
in error. ) However, the expression obtained is undefined
for an integer (bound-state) principle quantum number
without a cancellation and limiting procedure. To obtain
an analytic form explicitly finite for all v one must em-

ploy connection formulas for the conAuent hyper-
geometric functions. ' One obtains

I (I +1+~) w „, ,F, (t +1+Ir,21+2+p, —2v)
Y', =

12@ ! JLLjA I (2l +2+p)

1)»+z+~
+ I (tc I —p)U—(l +1+@',21+2+p, —2v) (37)

where for notational convenience we have defined

z=v —t+2+2p, p—=p+~ . (38}

Note that the imaginary part is implicitly cancelled out.
The quantity J„, can also be evaluated analytically'

to yield

r(I+I+~)
12"p!

„, ,F)(l +1+a., 21+2+p, —2v)

I (2I +2+p} (39)

g (x,y):— I (1+x —y) U(x, y, —2v)
( —1)»

(40)

Note that both J„', and Y„', can be obtained solely in
terms of the real and imaginary parts of the complex ir-
regular conAuent hypergeometric function

to 2u, „,u, „, the maximum term of the Mclaurin ex-
pansion in energy to be computed. Only indices j greater
than i are needed, and j,„ is limited by the number of
terms retained in the expansion of the bound-state wave
function plus i,„. To limit cancellation errors the finite
sums are computed using a nesting algorithm.

Essentially only two hypergeametric function evalua-
tions are needed to generate matrix elements for a range
of energies. These may be calculated rapidly using the
ascending-series representation, ' even in double-
precision arithmetic, by employing certain expansions for
the inverse of the I function' and rational polynomial
approximations for the 0 function. '

TABLE I. Five-term expansion for the 12P-to-S continuum
dipole radial matrix element.

and that all terms required for each sum that occurs in
Eqs. (32) and (33), (37) and (39) can be obtained from the

simple recursion relations

g (x +2,y}= [(2x + 2 —y —2v)g (x + l,y)

—(1+x —y)g (x,y)]/(x + 1),
(41)

g (x + l,y + 1)= [g (x + l,y) —g (x,y) ]/( —2v) .

The calculational procedure is to start with values

g (x;„,y;„) and g (x;„+l,y;„) and recursively com-
pute the matrix of values g(x;„+j,y,„+i) for all i up

X =(nk/z)'

0.0
0.005
0.010
0.020
0.040
0.080
0.160
0.320
0.640

'Reference 2.

Imaginary
[Eq. {13)]

—101.152
—100.315
—99.488
—97.869
—94.754
—88.984
—79.046
—64.692
—68.102

Real
[Eq. {13)]

125.283
124.246
123.222
121.214
117.350
110.185
97.809
79.767
81.254

Burgess'

125.283
124.247
123.223
121.213
117.350
110.184
97.771
78.717
54.589
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VI. RESULTS TABLE III. High-energy results for the 12P-to-S continuum
dipole radial matrix element.

By setting the effective principle quantum number to
an integer, the method outlined in Sec. V can be tested
directly. The truncated expansion of the bound state
reduces exactly to a hydrogenic wave function, and the
real part of the matrix element [Eq. (13)], that is, the
dipole-matrix element with the regular Coulomb continu-
um wave function equals hydrogenic values computed by
the method of Burgess. Table I presents values for the
transition 12P to the continuum S state for the selected
energies

X=n K /z

0.160
0.320
0.640
1.280
2.560
5.120

10.240
20.480

'Reference 2.

Imaginary
[Eq. (13)]

—78.358 44
—63.758 18
—44.509 81
—25.845 20
—12.424 32
—5.111974
—1.888 483
—0.651 760 6

Real
[Eq. (13)]

97.287 51
78.716 39
54.588 79
31.185 79
14.508 89
5.649 164
1.924 000
0.594 566 6

Burgess'

97.771
78.717
54.589
31.186
14.509
5.6492
1.9240
0.594 56

given directly in Burgess's paper. We list the real and
imaginary parts of Eq. (13) obtained by our method (after
multiplying by &n/2 to convert to the continuum wave
function normalization of Burgess), and the real part is
compared directly to the values given by Burgess. Re-
sults for the present method were calculated by summing
terms 0 to @=4 [see Eqs. (23) and (30)]. The results agree
extremely well for near threshold values

X(—,
' .

Although the expansions are [Eqs. (23) and (30)] absolute-
ly convergent for all energies, the series for the dipole-
matrix element converges extremely slowly outside this
region. Table II appends the results for the last three
values of Table I upon extending the summation to terms
@=7.

Instead, for X & —,', the analytic results of Dy and Van-

Regemorter, should be used. In that region the hyper-
geometric function of their Eq. (15) can be brought to a
form which is an absolutely convergent power series (see
the Appendix}. A very fast evaluation is afforded by
Luke's algorithm, " which analytically continues results
into the region X & —,'. Table II presents values using the
Luke algorithm including some values for X & 3.

VII. CONCLUSION

Algorithms for computing bound-free dipole-matrix
elements using a quantum-defect wave function (i.e.,
noninteger principle quantum number n) were presented
for the near-threshold region, n K /Z & —,', and the

high-energy region, n K /Z & —,'. The near-threshold al-

gorithm is particularly efficient because energy-
independent coe%cients are employed for repeated calcu-

TABLE II. Eight-term expansion for the 12P-to-S continuum

dipole radial matrix element.

lations at differing energies. The high-energy algorithm
employs an efficient accurate rational polynomial approx-
imation to the Kummer hypergeometric function which
analytically continues results into the near-threshold re-
gion. Because of their speed, accuracy, and generality
these algorithms are ideally suited for calculations which
require large amounts of photoabsorption data from Ryd-
berg like states.
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APPENDIX

Using a hypergeometric connection formula' Eq. (15)
of the text is brought to the form

a

I (b +m)1 (a +m)I (a)

zF, (a, b, a +b+m, x)
I (a+6+m)

with a, b, m, x given by Eq. (17). A further use of the con-
nection formula [Eq. 15.3.5) of Ref. 10] results in

'a —b

I (a)I (a +m)I (b +m) . g, ,V+ k'g l Yf +V

(A2)

where

2F&(b, b +m, a +b +m;y)
I (a+b+m}

X =(nK/z)

0.160
0.320
0.640

'Reference 2.

Imaginary
[Eq. (13)]

79.013
63.716
35.897

Real
[Eq. (13)]

97.771
78.673
45.705

Burgess'

97.771
78.717
54.589

and

V —l'g
3' =

2v
(A3)

Note that the series representation of g, is convergent for

g & v'3v, and that by the recursion relation [Eq. (15.2.12)
of Ref. 10]
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(y —1)g, + [a + b +m —(2a +m + 1)y]g, + &
of b, and I, are large and of varying sign. Instead the
nesting procedure

+(a +m +1)(a +1)yg, +z ——0 . (A4)

Evaluating the sum
b]I) b~I2

boI, 1+ 1+ ( 1+
boIo b i I

(A6)

gb, I( ——boIo+ b, I) +b2I2+ . (A5)

of Eq. (14) can result in cancellation error because values

using only ratios which are smaller in value, and can be
found easily from the recursion relation for the b, [Eq.
(5)] and for I, [(A2)—(A4)].
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