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R. M. Potvliege and Robin Shakeshaft
Department ofPhysics, University ofSouthern California, Los Angeles, California 90089 0-484

(Received 8 February 1988)

We formulate a computationally feasible method for calculating multiphoton ionization rates for
atoms exposed to intense fields in the intensity regime where perturbation theory ceases to apply.
The method is based on the time-independent picture of ionization, which starts with the Floquet
ansatz. The question of the gauge of the radiation field is discussed in some detail. Various expres-
sions for the ionization amplitude are derived from a variational principle, with the radiation field

expressed in the velocity gauge. We consider in particular an approximation in which the wave vec-

tor developing from the initial state is replaced by a trial vector that is the Floquet expansion trun-

cated just below the threshold for ionization, and in which the wave vector developing into the final

state is replaced by a trial vector that is just the wave vector appearing in the Kroll-Watson low-

frequency approximation in scattering theory. We have applied this approximation to hydrogen
and we present some results for both nonresonant and resonant multiphoton ionization. We argue
that the experimentally observed resonance structure in the above-threshold peaks of the ionization
signal occurs through the electron jumping from one dressed-state energy-eigenvalue curve to
another.

I. INTRODUCTION

With the advent of high-power, low-frequency lasers it
has become possible to observe atomic electrons that ab-
sorb many photons, far more than the minimum number

No required for the atom to ionize. ' A variety of
theories have been introduced to describe the crude
features of the ionization process. However, a more so-
phisticated approach is required to account for the de-
tailed aspects of the atomic dynamics of multiphoton ion-
ization. (We are not concerned here with the macroscop-
ic, essentially classical, motion of the electron after it
leaves the atom and travels out through the laser focus. )

In the present paper we describe a fairly ambitious but
computationally feasible approach which is based on the
time-independent picture of multiphoton ionization. We
treat the radiation field as classical and spatially homo-
geneous, and we assume the atomic system to have only
one active electron. We aim at presenting a fairly
comprehensive, but certainly not exhaustive, prescription
within this framework.

In the time-independent picture, the ionization rate is
constant in time and the probability for the electron to
remain in the initial bound state follows the law of ex-
ponential decay. One cannot obtain detailed information
about the time evolution of the electron probability densi-
ty without numerically solving the time-dependent
Schrodinger equation. Significant progress toward that
end has been made by Kulander, who calculated the
time-dependent probability for electron loss from the
ground state of a hydrogen atom exposed to an intense
field. However, because of the limitation on computer
time, the size of the grid chosen for the calculation was
insufficient to obtain information about partial rates for
ionization into specific continuum channels. Other, pos-
sibly more powerful, methods are being developed for

solving the time-dependent Schrodinger equation, but the
computer time required for such calculations may still be
prohibitive, except in circumstances where complete ion-
ization takes place in a short time, less than, say, 100 cy-
cles; a time-independent approach is less costly.

To pass to a time-independent picture of multiphoton
ionization, we must assume that the radiation field is
monochromatic (frequency co) and that the electron has a
well-defined energy. The passage is accomplished by the
Floquet ansatz The exact wave vector

~

4;(t)), which
represents the electron initially bound in state i, is ap-
proximated by a trial state vector

~
F, ( t) ) =exp( i e; t lfi) g—; (r ) ),

where
~ @;( r ) ) is a periodic function of r = tot with

period 2m, and where c; is a complex quasienergy with a
negative imaginary part —I; /2. Although

~
F; ( t ) )

satisfies the time-dependent Schrodinger equation so long
as the Hamiltonian is harmonic, the harmonicity is dis-
rupted during the time that the radiation field is turned
on. Consequently,

~
F, (t) ) does not satisfy the boundary

condition that the electron is initially localized in state i.
In fact,

~
F;(t)) is nonnormalizable; more importantly,

(x
~
F, (t)) explodes e.xponentially as the radial electron

coordinate r =
~

x
~

increases. This is a consequence of
representing the electron as having a spectrum of discrete
energies E;+nA'cu. In reality, the electron has a spectrum
of real energies Re(e,

)+nocto

that are broadened with an
induced width I, . The electron should be represented by
a normalized wave packet that initially describes the elec-
tron as localized in a bound state, and that at large times
is peaked in energy space at the points Re(c.;)+nocto,
with each peak having a width at least equal to I;. If I,-

could simply be set to zero, ( x
~

~F, (t) ) would not explode
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as r increases. However, we are not free to choose c;; it is
an eigenvalue, and

~ P, (r) } is the solution to a homo-
geneous eigenvalue equation. To circumvent this prob-
lem, we introduce a source term into the equation
satisfied by

~ g, (~)}; this permits us to replace e; by
Re(e, ). The modified

~
F;(t)}does not explode exponen-

tially; rather, (x
~
F;(t)} now behaves as a physically

meaningful superposition of outgoing waves as r in-
creases, prouided that the radiation /&id is represented in
the uelocity gauge Note that

~
F;(t) } contains no infor-

mation about how the field was turned on, and so the
normalization of

~
F, (t) },which in fact depends on the

gauge, must be fixed by the state of the electron just after
the field has been turned on. We show how this is done.
To derive the N-photon ionization amplitude we start
from a variational principle. We derive (in the velocity
gauge) two different expressions for this amplitude, based
on approximating

~

qi, (t) }by the modified trial
~
F, (t) }.

We also derive further approximations that result from
truncating the harmonic expansion of

~
g;(r) }. In par-

ticular, we reformulate an approximation that we intro-
duced earlier, " the "threshold-truncated approximation"
(TTA), and we present results of nonperturbative calcula-
tions based on this approximation.

The TTA starts with the replacement of
~
%,(t) } by

~
F;(t)} and the subsequent truncation of the harmonic

expansion of
~ g, (r) },whose nth term represents the ab-

sorption of n photons. We truncate this series at the
(No —l)th term, that is, just below the threshold for ion-
ization. While this is a fairly severe approximation, the
resulting trial wave function is normalizable (in the veloc-
ity gauge) and therefore easy to handle. Moreover, we at-
tempt to compensate for the error in this trial wave func-
tion by choosing a reasonable trial approximation to the
electron state vector

~ %I( t ) }, which develops into the
final unbound scattering state where the electron has ab-
sorbed N )No photons. The radiation field is taken to be
a low-frequency field that oscillates slowly, and we sup-
pose that the atomic scattering time is short compared to
the cycle time of the field. Thus the electron scatters
from the atomic potential as if the field is absent; the field
acts only in the asymptotic region where the electron
moves as a free particle with an instantaneous mechanical
momentum that oscillates. In the length gauge the
canonical momentum of a free particle in a field is just
the instantaneous mechanical momentum, and therefore
in this gauge we can, at each time t, approximate

0 f ( t ) } by a scattering state eigenvector of the atomic
Hamiltonian which at asymptotically large distances ap-
proaches the state vector of an otherwise free electron
inoving through the field. (The corresponding wave vec-
tor in the velocity gauge may be obtained from a gauge
transformation. ) This approximation is equivalent to the
low-frequency approximation made by Kroll and Watson
in their classic paper' on potential scattering in a laser
field. In our picture of the N-photon ionization process
the electron first climbs the Floquet ladder to the
(No —1)th step, through the evolution of our approxi-
mate

~

'p; (t) };it then absorbs a single photon and jumps
into the continuum, after which it absorbs a further
N —No photons through the evolution of our approxi-

mate
~

%'&(t) }. Our approximate N-photon ionization
amplitude is just the time average (over one cycle) of the
matrix element for the electron to jurnp into a specific
continuum channel from the (No —1)th step of the Flo-
quet ladder [see Eq. (4.40)]. We previously calculated
generalized cross sections, in the length gauge, for ioniza-
tion of hydrogen in the weak-field limit and we com-
pared" our results rather favorably with those obtained
from perturbation theory. We present here results of a
more detailed study of ionization in the weak-field limit,
and we illuminate differences between the length and ve-
locity gauges which arise because of approximations
made in arriving at our weak-field ionization amplitude.
We have also extended our calculations to ionization of
hydrogen by moderately strong fields, beyond the weak-
field limit, and we report some results below. We show
results for both nonresonant and resonant ionization by
strong fields, and we present a (limited) comparison with
recent experimental data. We have explored the
influence of an intermediate resonance by expressing the
electron wave vector

~

4;(t) } as a linear combination of
two Floquet eigenvectors whose quasienergy eigenvalues
vary with intensity and almost coincide (to within an in-
tegral multiple of Aro) at the resonance intensity. The
time-dependent coeScients of the two eigenvectors are
determined from the solution of two coupled differential
equations. Recently Freeman et al. observed, in an ex-
periment where xenon was irradiated by a short pulse,
secondary peak structure in the above-threshold peaks of
the ionization signal. They attributed this structure to
resonance enhancement; we argue further that the struc-
ture could not occur without the electron jumping from
one dressed-state energy-eigenvalue curve to another.

In Sec. II we describe the radiation field and its interac-
tions, in the length and velocity gauges, with the electron.
In Sec. III we examine the Floquet ansatz and its physical
significance. We derive a modified Floquet equation
whose solution does not explode exponentially in coordi-
nate space. In Sec. IV we introduce a variational princi-
ple for the ionization amplitude. The input to this varia-
tional principle is the solution to the modified Floquet
equation, or an approximation to it. We show that pro-
vided one works in the velocity gauge a finite expression
for the ionization amplitude is obtained; the correspond-
ing expression in the length gauge is infinite. We discuss
in some detail the TTA, which follows from using a trial
wave function obtained by truncating at the ionization
threshold the Floquet expansion in harmonic corn-
ponents. In Sec. V we present numerous results of calcu-
lations based on the TTA. In Appendix A we describe
the state of the electron, in each of the two gauges, im-
mediately after the field has been turned on, assuming no
depopulation of the initial state has occurred during the
rise time of the field. From this we may determine the
appropriate normalization of the (modified) Floquet wave
vector. In Appendix B we discuss the asymptotic motion
of the electron, before the field is turned ofF. In Appendix
C we briefly discuss perturbation theory. In Appendix D
we derive the time-dependent coupled equations for the
Floquet wave vectors at intensities where there is an
avoided crossing of the eigenvalue curves.
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II. RADIATION FIELD AND ITS
INTERACTION %'ITH THE ELEC.TRON

We describe the radiation field as a classical, mono-
chromatic field that is spatially homogeneous over atomic
dimensions and has the electric field vector

F(r) =Re(Foee ")
and vector potential

A(r)=(clt())Im(Face ") .

(2.1)

(2.2)

(2.3)

where E, is the b—inding energy. At some finite time,
say, t =0, the field is turned on. We assume that the field
is turned on sufficiently slowly so that its resulting band-
width ha) is small compared to the frequency co, so that it
is realistic to treat the field as monochromatic.

In the length gauge the interaction of the electron with
the field is

V'"(r)= —eF(r) x, (2.4a)

while in the velocity gauge this interaction is

V'"'(r) = —(e/)uc) A(r) p, (2.4b)

where e and p are the charge and mass of the electron
and x and p are its position and canonical momentum.
(Here and elsewhere we sometimes insert a superscript v

or 1 to distinguish the gauge. ) The electron is governed
by the time-dependent Schrodinger equation,

i()—e(t)l H(~)
(
')())), t

d
dt

where, with V(r) equal to V'"(r) or V'"'(r), we have

(2.5)

Here ~=cot, with co the frequency and t the time, Fo is
the real electric field amplitude, and e, is the (possibly
complex) unit polarization vector. The field amplitude
does vary in space over the macroscopic dimensions of
the focal region of the laser, and of course it varies in
time during the intervals that the laser is turned on and
off. We confine our attention in this study to a macros-
copically small volume inside the laser focus, a volume
which contains many atoms but over which the spatial
variation of the field is negligible. We do not consider
what happens after the active electron leaves this volume
and scatters out of the laser focus. In particular, we do
not take into account the effect of spatial variations of
the laser intensity on the energy spectrum and angular
distribution of the electron. It is not difficult to correct
for this. 2

Initially, before the field is turned on, the electron is
bound to an atomic potential 8'in the state i represented
by

~

)p( t ) ) e
—i ( Pt /r) )—i g( w)

~

q(( t ) ) (2.7)

Here P is the ponderomotive energy shift of a free elec-
tron, which is just the time average over one cycle of
Vo(r), that is,

P=e Fo/(4p, a) ), (2.&)

and g(r) is a periodic function, with period 2n, defined by

g{r)=—J dt'[V()(r') —P] . (2.9)

Substituting the right-hand side of Eq. (2.7) into both
sides of Eq. (2.5) results in modifying H (r) by subtracting
the term Vo(r). The interaction V'"(r) shifts the (cycle-
averaged) energy of a free electron upwards by P, and
shifts the initial bound energy level by an amount 6(;"
which may be negative. For frequencies well below the
smallest resonant frequency we expect

~
b, ',

"
~

&&P. The
interaction V'"'(r) does not shift the energy of a free elec-
tron, ' ' but it shifts the initial energy level by
6(;")=b,I ' —P. A wave vector

~

)p("(t)) in the length
gauge is related to the corresponding wave vector

~

)Ii(")(t)) in the velocity gauge by'

(~)( )
i(P(lt))+i((~)+ix k~( )~ ()i) ) (2.10)

III. FLOQUET ANSATZ

In this section we discuss the Floquet ansatz, and in
particular its physical significance. Starting from the
equation satisfied by the Floquet wave vector, we develop
a modified equation whose solution does not diverge ex-
ponentially in coordinate space.

is )M dx/dt =(i/))'t)[H(r), )(ix], which in the length gauge
is just the canonical momentum p but which in the veloc-
ity gauge is p —A'k„(r), where haik„(r)=e A(r)/c. In the
velocity gauge p is the mean mechanical momentum,
averaged over one cycle. Note that we have omitted the
term V()(r) =e A (r)/(2pc ) from the interaction
V'"'(r), while V'"(r) includes Vo(r). We may rewrite
Vo(r) as )rt k„(r)/2)(t, , which is the instantaneous kinetic
energy of a free electron that is oscillating in the field, but
is on average at rest. Since V()(r) is spatially independent
over atomic dimensions it cannot influence the micro-
scopic motion of the electron. It can only influence
{through its macroscopic spatial variation} the motion of
the electron as it travels through the laser focus after it
has left the potential IV to which it was bound. Were we
to include Vo(r) in V'"(r) we could formally remove it
through a gauge transformation, ' which would amount
to absorbing it in an irrelevant phase factor multiplying
the electron wave function,

H(r) =H, + V(r},

where H, is the atomic Hamiltonian,

H, =(p /2p, )+ IV .

(2.6a)

(2.6b)

A. "Ingoing" wave vector

The wave vector
~
+,(t) ) which develops from the ini-

tial bound state i can be approximated by the Floquet
form'

The instantaneous mechanical momentum of the electron
( F;(t) & =e ''

~
1(';{r)&, (3.1)
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where
~
g;(r)) is periodic with period 2m. The complex

quasienergy c; may be expressed as c; =E; +6, —i I, /2,
where 6, is the (gauge-dependent) shift in the initial ener-

gy E, and where I, is the positive (gauge-independent)
width. The harmonicity of the Hamiltonian H(t) is des-
troyed during the interval that the field is turned on; were
it not for this, the Floquet ansatz would be exact. Stated
another way, turning on the field introduces an essential
boundary at the gnite time t =0; once the field is on, the
atom begins to disintegrate, and it totally breaks up after
a characteristic time fi /I;.

The Floquet wave vector
~

1(,(r)) contains no informa-
tion about the way the field was turned on. Therefore the
replacement of

~

ql, (t)) by
~

F;(t)) is justified only if the
initial state is not significantly depopulated during the
rise time t p of the field. A necessary condition is
2 it/co« t o« iir/I;. If to is long, and significant de-

pletion occurs during the rise time, we may easily (in
principle) account for the accumulated depletion provid-
ed that the state of the electron evolves adiabatically as
the laser intensity I varies; we simply include the para-
metric dependence of c; and

~
P;(r) ) on I and we make

the change

exp( i c, t /ir—)~i, exp( i e—
, d t '/fi )

in Eq. (3.1). However, in order to integrate s, over time
we need some knowledge of how the field was turned on,
that is, we need to know how I varies with time. If the
laser frequency is close to a resonant frequency, we must
assume that I varies very slowly with time and that the
frequency bandwidth of the field is small compared to the
detuning from resonance. Otherwise, the electron state
will evolve nonadiabatically into a superposition of two
or more Floquet states with time-dependent mixing
coefficients that are determined from coupled differential
equations; this situation will be considered in Sec. V
when we present some results for resonant multiphoton
ionization by a short pulse.

To simplify our discussion we assume throughout this
section and Sec. IV that the initial atomic bound state is
not significantly depopulated during the rise time of the
field. As we just mentioned, in Sec. V we illustrate how
our formulation can be generalized to treat resonant mul-
tiphoton ionization, a circumstance in which depletion
does occur during the rise time. We envisage for the
present that the field is turned on at t =0, reaches its
peak intensity at t = t p and has constant intensity there-
after. In theory, we assume that the field is not turned off
until t = ~. In practice, all that is necessary is that the
field be turned off some time after the electron has left the
range of the atomic potential since the mean motion of a
free electron is unaffected by the (spatially homogeneous)
field and how it is turned off, as long as the field is turned
off adiabatically. In Appendix A we discuss the state of
the electron immediately after the field has been fully
turned on (assuming that no depopulation of the initial
atomic state has occurred). We show there that for t not
much greater than t p the state of the electron is
represented by

~

4', "{t) & =exp( —i b, ', 't/fi)
~

e', '(t)}-(3.2a)

in the length gauge, and by

~
4,'"(t) ) =expI i—[(b,',

" t /fi) g—(r)

—x k„(r)]J
~
4;''(t)) (3.2b)

in the velocity gauge.
We may expand the Floquet wave vector in the har-

monic series

(3.3)

I;« )E,„f (3.4)

an inequality which is satisfied for all n if it is satisfied for
n =Np and n =Np —1. This inequality is just the condi-
tion' for the spatial spreading of the electron wave pack-
et to be negligible during the characteristic time that the
atom ionizes.

The Floquet approximation to
~

4;(t)) is a useful
simplification if inequality (3.4) is satisfied. However, this
simplification comes with a high price —the nonnormal-
izability of

~
g;(r)), which introduces obvious

mathematical difficulties. Note that the initial boundary
condition, that immediately after the fie1d is turned on
the electron is in a state represented by

~

4', s'(t) ), where

g is the gauge, cannot be satisfied. Since
~
g;(r)) de-

scribes a localized bound electron, the best we can do is
to require that the cycle average of the probability for the
electron to be in the initial state at time t & 0 is
exp( —I, t /irt); that is,

I dr
~

(Ci',"(t)
~

1(,"'( ))r~
'=1 .

2& 0

which describes the electron as having a spectrum of
discrete but complex energies e;+nA~, averaged over
one cycle. In reality the electron has a spectrum of real
energies,

E,„=E,+6, +nA~,

which are broadened by at least the natural width I;. A
harmonic component

~ P,„) represents an electron that
has absorbed a total of n real and virtual photons, and
has a discrete but unphysical energy E,„iI,/2—which
approaches the physical energy E,„ in the weak-field lim-
it. ' If n & No (where No is the smallest integer for which

E;„&0) the electron is unbound. Since an unbound elec-
tron cannot be localized in space if it is monochromatic
in energy, the

~
1(;„),n &No, are nonnormalizable even

in the weak-field limit, and so
~
g;(r)) is nonnormaliz-

able. In contrast,
~

4;(t)) is a normalized wave packet
which describes the electron as initially localized in the
bound state i. Turning on the field gives the electron an
energy bandwidth Rheo, and after a characteristic time
irt/I; the electron is free and is represented by a normal-
ized superposition of free-particle wave packets, where
each component wave packet is peaked in energy space at
one of the E;„, with a width fib, co. (The peaks are
broadened further if ionization occurs over a range of in-
tensities. ) Recalling that Rheo» I, , a necessary condi-
tion for the electron energy spectrum to resemble a
discrete one is that
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This relation fixes the overall normalization factor for

I P;(r) ), a factor which depends on the state of the elec-
tron after the field has been turned on.

For t & to we have

H(r) —'
e

"'"
I q, (~) ) =0,

dt
(3.6)

V'+' ———(eF&/2)(e. x), (3.8a)

V'+' —— (eFO—/2i cop)(e p), (3.8b)

and with V' ' = [V'+'] . As noted already, a component

I g;„) describes an electron which has an energy
E,„—I;/2 and has absorbed a total of n real and virtual
photons. There are infinitely many ways that an electron
can absorb net n photons; for example, it may first emit 6
photons, then absorb n +6 photons. Thus

I f;„) is com-
posed of infinitely many waves,

(3.9)

where here the subscript m signifies the number of real
photons which the electron has absorbed; the number of
virtual photons absorbed is n —m, which may be negative
(corresponding to emission). Only the m =n component,
that is,

I f;„„),describes the electron on the energy
shell. In the weak-field regime we have 0(m (n. An
electron which has absorbed m real photons will move
out to infinity with a mean physical momentum
iiik, =(2pE; )'~, which in the Floquet approximation
becomes complex, equal to

(3.10)

We pause for a moment to define the branch of the square
root. We follow standard convention and draw a series of
overlapping branch cuts along the real axis in the energy
plane. The nth cut begins at the threshold n fico and ex-—
tends to the right along the real axis to infinity. The
physical energy sheet is defined so that if E lies on this
sheet just above the positive real axis, the square root of
E is positive. The point E, +b, , iI, /2 is—defined to lie
on the unphysical sheet reached from the physical sheet
by crossing the real energy axis downwards between the
Noth and (No —1)th thresholds. Returning to our elec-
tron which has absorbed m real photons, we expect that
since the mean momentum is the canonical momentum in
the velocity gauge, we have

(x
I y,'„"' ) -e""'/r, r - ~

where r =
I

x
I

. (We have ignored an angle-dependent
factor, and also the logarithmic distortion which would
arise if 8' were to have a Coulomb tail. ) We have at-
tached the gauge superscript U to

I f,„)to emphasize

(3.11)

and if we substitute the expansion (3.3) into this equation
we obtain

(e, +nficu H, )—
I 1(;„)=V

I 1(; „,)+ V
I

1(; „,),
(3.7}

where V+ ——V~/' with

that the asymptotic form (3.11} does not hold in the
length gauge, for in the lat ter gauge the canonical
momentum is the instantaneous momentum. Moreover,
the interaction V~ "(r) diverges in coordinate space for
r O-o. [Of course, V'"(r) diverges in momentum space
for p —~, but not as fast as p /2p. ] If m & No we have
Im(a; ) &0 and (x

I
g';„" ) decays as r increases. If

m )No, we have Re(a., )~0 so that (x
I

i)'j';„"' ) behaves
as an outgoing wave; however, since Im(~; ) & 0 this
wave explodes exponentially as r increases, which is
clearly unphysical and stems from the quasienergy having
the imaginary part I, /2, a consequence of neglecting
wave-packet localization. It follows that the components
(x

I
1(';„') explode exponentially for all n, except in the

zero-width limit I,~0. Since the length- and velocity-
gauge solutions of Eq. (3.6) are related by the gauge
transformation, Eq. (2.10), the (x

I P,'„") must also ex-
plode exponentially. However, provided that inequality
(3.4) is satisfied we ought to be able to neglect I;. We
cannot simply put I;=0 in e; in Eq. (3.7), since the cou-
pled equations (3.7) are homogeneous, and e; is an eigen-
value which is determined by the condition for a regular
outgoing wave solution to exist. What we can do is to
modify Eq. (3.7) by introducing the zero-field eigensolu-
tion as an inhomegeneous term. The eigenvalue becomes
an input parameter to these inhomogeneous equations,
and we take this parameter to be the shifted energy; we
neglect the width. ' We calculate the shift by first solv-
ing Eq. (3.7) for the eigenvalue e„' this can be done rela-
tively easily ' ' since the eigenvalue is unchanged by the
rotation r ~re', which transforms the functions
( x

I f;„) into functions that decay as r increases if
Im(e' ~;z ) &0.

B. Modified coquet equation

To modify Eq. (3.7) as suggested, it is convenient to in-
troduce the projection operator

P=
I 4;x&; I5„O,

where the Kronecker 5 operator 5„0 acts with reference
to the subscript n of

I f,„),and where
I 4; ) represents

the initial state of the electron in the zero-field limit.
Premultiplying both sides of Eq. (3.7) by P gives, recalling
that H, I

4;)=E,
I
e, &,

(&; —E;}PIP;.&=Plv+ If;, . i&+v- I@,.
(3.12)

The correct normalization of
I 1(,(~) ) is determined from

Eq. (3.5}, but we can temporarily normalize
I
tP;(r}) so

that (4; I $,0) =1; then P
I g;„) simplifies to

I 4;)5„0.
We can later renormalize

I g;(~) ) correctly. We now use
Eq. (3.12) to rewrite the right-hand side of Eq. (3.7) as

[~+(I—~}][V+
I 0;,. i&+V

I 0;,.+i&]

= ( e; E, )
I +; )5„0+( I ——p )[ V+ I g; „()

At this point we put F, = —i q, where g is positive but
infinitesimal; this moves c.; from the unphysical sheet to a
nearby point on the physical sheet just above the positive
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+(1—5„O
~
4;&&4;

~
)[V+

~ g, „
+V IA, .+&&1.

Thus the Floquet wave vector becomes

~F;(t)&=e ' '
~

q;(r)&,

(3.13)

(3.14)

where the harmonic components of
~ g, (r)& are now

determined from Eq. (3.13). It may be verified from Eq.
(3.13) that, in contrast to Eq. (3.6), we have

—i(E, +h, )f/A
H(r) i% — F—;(t) = —A, ;e

where A, ; depends implicitly on
~ g; + ~ &,

(3.15}

In the weak-field limit k, vanishes through first order in

the intensity and hence remains small even at moderate
intensities. Introducing the nonlocal operator

11(r)=
~
4, &(4,

~

(e "V+5„,+e"V 5„,),
we can rewrite the right-hand side of Eq. (3.15) as

—b, , e
' '

~
4, &+11(r)

~
F;(r) &,

(3.17)

which explicitly displays the source term b, ; ~
4; &. In the

velocity gauge the solution of the coupled equations
(3.13) is such that each component (x

~

P';„"& is regular at
r =0 and behaves for r —00 as a superposition of physical
(nonexploding) outgoing waves, of the form exp[ik; r]/r.
This asymptotic boundary condition cannot be satisfied
in the length gauge because the interaction V'"(r)
diverges for r —~. Note that while the length- and
velocity-gauge solutions of Eq. (3.6) are connected by the
gauge transformation of Eq. (2.10), the length- and
velocity-gauge solutions of Eq. (3.15) are not, except in
the weak-field limit.

C. Outgoing wave vector

We now turn to
~
4/(t) &, which describes an unbound

electron that scatters from the atomic potential, in the
presence of a radiation field that is turned on t =0, and
emerges as a free particle moving through the field with
mean momentum A'k/. The wave vector

~
4/(t) & is non-

normalizable and can be expressed exactly in the Floquet
form'~

real axis. We have e, —E; =b,;+g and Eq. (3.7) becomes
the set of inhomogeneous equations

(Z,„+iq—H. )
~ q,„&

=a, ~e, &8„,

8(r)= ——J dt'k/ k„(r') .
p 0

We also introduce in Appendix B the eigenvectors

~~,'"(r)&=e ''
f

+(U)( r) &

—l8(1 )
~

@(0)(r) &

f 7

(3.20)

(3.21)

(3.22)

(3.23)

where
~
4z & is the eigenvector of the atomic Hamiltoni-

an H, which satisfies out-asymptote boundary conditions
and approaches

~

k & at large distances, and where
k/(r)=k/ —k„(r). Thus

~

4/'(t) & represents the final
state of the electron unperturbed by the field, while

~

4/"'(t) & differs from
~

4/'(t) & only by a time-
dependent phase factor. Each of the vectors of Eqs.
(3.21)—(3.23} represents at asymptotically large distances
the same physical state as does

~ k/, t &. The vectors
4 f '( t ) & and

~

K W&" '( t ) & incorporate, to some extent,
the effects of both the atomic potential and the interac-
tion with the field. In the low-frequency limit

~

KW/'(t) & exactly describes the scattering of an elec-
tron from the atomic potential in the presence of the
field, as first shown by Kroll and Watson ' ' . The
length-gauge forms of the vectors of Eqs. (3.21}—(3.23)
are given by the transformation of Eq. (2.10).

where E/ f——i k&/2p —while in the velocity gauge the en-

ergy is unshifted, e/ E——/. Whereas
~

0';(t}& satisfies a
boundary condition at t =0, when the field is turned on,

~

0'/(t) & satisfies a boundary condition at r = ao, when
the field is turned off. Turning off the field at t = 00 does
not disrupt the harmonicity of the Hamiltonian H(~),
and consequently the ansatz (3.18) is exact for t & to Of
course, turning on the field does disrupt the harmonicity
of H(r), and Eq. (3.18) ceases to be valid for r & to Th. e
precise form of

~
4/(t) & for r & to is of no interest to us,

but it is affected by the way the field is turned on. What
does interest us, however, is the fact that turning on the
field profoundly alters the form of

~
4/(t) & since the elec-

tron, whose energy e& is close to one of the values E;„,
can now emit n photons and be temporarily captured into
the initial bound state i. Consequently, when t &tp,

~
0'/( t) & exhibits resonance poles at energies

e/ E;„i——I—; /2.
In Appendix B we discuss the state of the electron after

the electron has escaped from the infiuence of the atomic
potential but before the field is turned off. At such times
the electron state is represented in the velocity gauge by
exp[ i 8(—r)]

~ k/, t & where, if
~

k & is the eigenvector of
the canonical momentum operator p with eigenvalue Ak,

I&f r& e I~f& (3.19)

I
pf(r}& (3.18)

IV. EXPRESSIONS FOR THE IONIZATION
AMPLITUDE

when t & to, where
~
g/(r) & has period 2n The energy.

c& is real and positive, and in the length gauge is shifted
by the ponderomotive energy —we have c&

——E&+P,

We work in the velocity gauge throughout this section.
We first introduce a variational principle, and using as in-
put the exact solution to the modified Floquet equation,
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Eq. (3.15), we derive two different expressions for the ion-
ization rate. We subsequently derive the "truncated-
threshold approximation" by using as input the truncated
Floquet expansion in harmonic components. Our ap-
proximate expressions for the ionization amplitude are
not, in general, gauge invariant. We note, however, that
it may be possible to develop gauge-invariant expressions
fpllpwing the suggestipn pf Rpsenberg.

A. Variational principle

Let
~
4;„(t)) be a trial approximation to

~
4, (t))

which satisfies the boundary condition

Ay, (T)= & 4f'(T)
~
U(T, O)

~
4I '(0))

Af p( T)'+Rf p, ( T)' (4.3)

where U(t, t') is the evolution operator and where,
defining

~
+f „(t))~

~

+f"(t)), (4.2)

where
~

4f'(t)) is orthogonal to
~

W,
' '(t) ) and is defined

by Eq. (3.22), with its asymptotic form given by Eq. (B5).
The amplitude Af, ( T) for finding the electron at the large
positive time T in the state represented by

~

4f"(t) ), if at
t =0 it was in the state represented by

~
4I '(t) ), is

~4, ,„(t)&~ ~C', "(t)), t 0 (4.1)

where
~

4',. '(t) ) represents the initial field-free state. Let

f ~~( t ) ) be a trial approximation to
~ 4f ( t ) ) which

satisfies the boundary condition and writing
~
A(t)P) for A(t)

~
g), we have

(4.4)

(4.5a)

(4.5b)

Rf, ,„(T)=—,f dt f dt'&A(t)%f, „(t)
~

U(t, t')
~

A(t') l, ,„(t')) .
o o

(4.6)

It is apparent that the remainder R;,„(T) is bilinear in
the errors in

~
4;„(t)) and

~

'4lf „(t),and so Af;„(T) is
a variational estimate of Af;(T) in the sense that it is sta-
tionary with respect to variations in the trial vectors
about the exact vectors. Were we to choose

~ 4f,„(t)) to
be

exp( iEftlfi)
~ pf —(r))

we would have %(t)
~ +f „(t)) =0, so that Rf;,„(T) would

vanish and Af;„(T) would appear to be exact. This is
not so. In writing down Eqs. (4.3)—(4.6) we replaced
U(t, T)

~

4f"'(T)) by
~

'IIf «(t)); this is justified in the
limit T—00 but not, with the present choice of

0f ~ ( t}), for finite values of T because the limit is sensi-
tive to the contribution from the resonance poles which
arise from the capture-escape mechanism discussed in
Sec. IIIC abave. It might appear that Rf;,„(T) would
also vanish if we were to choose

~

ql; „(t)) to be

exp( —iE, tf'ri)
~

1i,"(r)&,

with
~

P',."'(r}) the unmodified vector satisfying Eq. (3.6),
that is, &(t)

~ 4;,„(t))=0; but this cannot be true since

~
4, „(t)) is not exact. The resolution of this paradox lies

in the observation that expressions (4.3)—(4.6) were de-
rived using the Hermiticity of H(r), a property that can
be safely used only when the trial wave vectors are nor-
malizable. Thus the subsequent passage to nonnormaliz-
able trial wave vectors, through some kind of limit pro-
cess, must be taken with caution. The values of Af; „(T)
and Rf; „(T) must be insensitive to this limit process.

The rate for ionization to a group of states f with den-
sity p'(Ef } in the energy interval (Ef, Ef+dE) is, for

QQ

Pf; P'(Ef )dE
i

——Af1(T)
i

d
(4.7)

In the examples that we consider below we find that
Af g( T) can be expr'essed in the form

0

(4.8)

where M„ is an ionization matrix element. Using the re-
sult

f dt e'"'=iP —+m5(Q},
0 0 (4.9)

we obtain, for T—~, the expression

Af; „(T)= ni g o(Ef E,„)M„, — —(4.10)

Clearly this would not be the case were we to allow

~
4;,„(t)) to approach the exponentially exploding

unmodified Floquet wave vector since the spatial in-

tegrals would become infinite. On the other hand, as we
shall see, the spatial integrals remain finite when we take

~
%, ,„(t)) to be the nonnormalizable but nonexploding

modified Floquet wave vector.

B. Ionization rate
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where we have neglected the finite principal part since it
does not contribute to the rate for ionization to a group
of states within a narrow energy bandwidth. Only terms
with n )No contribute to the sum on the right-hand side
of Eq. (4.10) since Ff f——i kj /2p is positive. Noting that

The harmonic expansion of
~

f', "'(r) ) yields

(ek
~

V (r)
~

lj'; (&))= yM„&

where in the present example M„has the form

(4.15}

Af, „(T)=——QM„e
n

(4.11) M„=(4„-
~

V'"'
~

P', „'„)+(4„-
I

V'
I

@',"„',) .

(4.16)
we obtain for the approximate N-photon ionization rate
the result

Pf~( (2n/——A)p'(E;~)
~
M~

~

(4.12)

C. Floquet approximation

We now develop expressions for Af;«(T) based on
choosing

~
4, „(t)) to be the modified Floquet wave vec-

tor ~F, (t)); we determine the harmonic components of
~

f;'"'(~)) by solving Eq. (3.13). Recall that the solution
of Eq. (3.13) yields an approximation to (x

~

i)'j', "'(r))
which behaves as a superposition of nonexploding outgo-
ing waves as the radial coordinate increases. We note,
however, that our

~
4, „(t)) does not satisfy the bound-

ary condition (4.1) unless we take into account that the
field is turned on at t =0. If we do this, the field ampli-
tude varies with time and destroys the harmonicity of

~

g;'"'(r)) during the interval [O, to]. However, the con-
tribution from this interval to the integral over t on the
right-hand side of either Eq. (4.5a) or (4.5b) is finite and
comparable to the finite part [cf. P(1/0) in Eq. (4.9)]
which we throw away. We may therefore change the
lower limit on the integral over t from zero to to with no
real further loss in accuracy. We formulate two different
expressions for Af, „(T}based on the choices (i)

I q'f, ,(&))=e'"'I @f (t))
I @f

where 8(r) was defined by Eq. (3.20), and (ii)

~
q'f „(&))=

~

@f"'(&)),

where in both examples Ef Ef~. The tria——l vector (i}
does satisfy the correct boundary condition (4.2) since the
phase 8(r) is "harinless" and the state represented by tri-
al vector (i) is at any time t identical to the state
represented by

~

4f"'( r ) ) .
We start with choice (i). From Eqs. (84) and (4.5b), re-

calling that

—iE tlat

dt kf (4.13)

and that (4& '(0}
~

4', '(0) ) =0, we have

Af;„(T)=——J dt(4i,
~

V"(w)
~

f', "(r))

i(Ef —E,- —5,' )tlat
Xe (4.14)

where N )No; we have neglected interference terms in
the ionization signal arising from the absorption of
different numbers of photons, since such interference
terms vanish when the signal is averaged over a cycle.

Each of the two terms on the right-hand side of Eq. (4.16)
is infinite. The reason is the following: (x

~
4i, ) is af

standing wave, containing both ingoing and outgoing
waves of the form exp(+ik;zr)/r, while (x

~

g';"„'+i ) are
superpositions of outgoing waves that include the com-
ponent exp(ik, ~r)/r. The latter component interferes
destructively with the outgoing part of (x

~
4„) (whichf

becomes ingoing upon complex conjugation} in each of
the integrands of the two integrals (4i,

~

V'+'
~ it; „+i).

Therefore each integrand has a nonoscillatory part which
is not cut off by V+' and therefore does not vanish as r in-

creases. Consequently, the two integrals are divergent.
However, it turns out that the on-shell matrix element

Mz, which is the only matrix element we need, is finite.
In other words, when n =N the divergent parts of the
two terms on the right-hand side of Eq. (4.16) cancel. To
see this, we use Eq. (3.13) to rewrite M„ in the form

M„=(4i,
~
(E,„+ig H, )

~

f—', „"') . (4.17)

M =(4„
i
(H, H, )

i
f;'"'), —

a form which clearly illustrates the significance of the
non-Hermiticity of H, .

We note here that one sometimes sees in the literature
an expression for the N-photon ionization matrix element
which differs from the right-hand side of Eq. (4.16) only
in that the superscript U is replaced by l, that is, the
length gauge is used. However, except in the weak-field
limit, such an expression is infinite; (x

~
tP,'z) does not

behave for large r as a superposition of outgoing waves
exp(ik, r)/r, and we can. not repeat in the length gauge
the proof we just gave for the finiteness of Mz.

Before continuing, we note one further point. Suppose
we were to choose

~
1(, ,„(t)) =

~

4', '(t) ) and

Now E;„+ig —H, annihilates the component of
( x

~

P';„") which behaves as exp(ik, „r)/r for large r, or,
more precisely, it turns this component into a function
which vanishes as 1/r as r increases. Consequently, if
n =N there is no destructive interference and the part of
the integrand of (4i,

~
(E;&+i i) H, }

~

—p', g) which does

not vanish as r increases is oscillatory; the integral can
therefore be made to converge by, for example inserting a
convergence factor exp( gr) into th—e integrand. It fol-
lows that M~ is finite. Recently, a calculation of the
matrix element M, for one-photon ionization of hydro-
gen was performed in perturbation theory, at one order
beyond lowest order. Incidentally, it follows from Eq.
(4.17) that
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I %f („(t)& =exp( —iEftlA)
I
ff")(r) & .

Using Eq. (4.5a} we would obtain

Af, „(T)=—„f—dr&gf"'(r)
I

V'"(r)
I
4, &

0

induced by the interaction of the electron with the atomic
potential 8'. However, the reader uninterested in
mathematical manipulation can skip directly to the re-
sult, Eq. (4.32), which can in fact be obtained more sim-

ply, as explained later. Rewriting

i (Ef —E, )t/A
Xe (4.18) g(U)( )eie(r) ig ei()(~)d

e (4.24)

Inserting the harmonic expansion of
I
Pf"'(r ) & and

V'"'(r) into the integrand yields
and integrating by parts the term in the time in the time
derivative in Eq. (4.23) (noting the surface term vanishes
because the integrand is periodic), we obtain

where now

0 n

I +; &+&Of", '. +) I v+ I +;&

(4.20)

i()(r)+in'
2% 0

X ~„- V(") ~+n~~

d
dt

(4.25)

Af(„(T)=——J dt(4i, I [ 'V'( )r
0

—b,f"(r)]
I
([(';"'(r) &

(4.21)

Thus the effective interaction is now V'"'(r) minus the in-

stantaneous energy shift. We have the harmonic expan-
sion

(~„
I [ V'"'(r) —~'"'(r)]

I

q'"'(. ) &.'"'
f f

= g M„e '"', (4.22}

where now

M = dt 0 V" -b("'v
2m 0

i e(r)+ inr (4.23)

Note, however, that if we neglect the finite part of the in-
tegral over t in Eq. (4.19) we obtain
Ef ——E, + n 'Ace =E,„—5,'"', where n

' = —n. In other
words, the energy of the emergent electron is unshifted.
The source of the discrepancy is that the components

(tif '„& have resonance poles at energies Ef close to Ef
m )N0, as noted above. We would obtain the correctly
shifted energy Ef E;„by ——choosing I)Ii, „(t)& to be

I

4', "'(t)& rather than
I

4&,''(t)&, but this would change
the structure of M„; infinitely many components

I
gf" &

would explicitly contribute to M„. Moreover, the
"finite" part of the integral over t is very large and can-
not be neglected.

We now consider choice (ii) above. From Eqs. (Bl),
(B2), and (4.5b), and again using Eq. (4.13) and

(ef(")(0)
I

e(0)(o)
& =o,

we have

From Eq. (3.15) we have

't(~)) =[F. +6, '~ —H(r[]
[
ii"'(~[)

(4.26)

and combining this result with Eq. (4.25) yields

dt e '~( r)+'" r
2% 0

x (& „ I
(E;„—H. )

I
1(',")(r) & . (4.27)

We now specialize to n =N.

=E;)v
I

C)) & we have

Since H, I 4), &f

i 8( r)+iNr
27T 0

x(@k I(H, Hg)
I
QI"'(r)—& (4.28)

(4.29)

where G, (E)=(E i' H, ),—the—ingoing Green's
operator for the atomic Hamiltonian. [Note that Eq.
(4.29), and therefore Eqs. (4.32) and (4.33), are invalid for
a potential IV with a Coulomb tail. ] Since
( x

I
G (Ef ) IV

I kf & behaves as an ingoing wave, the
second term on the right-hand side of Eq. (4.29) does not
contribute to the matrix element of Eq. (4.28) and we can
replace

I
(Ii), & by I kf & in this matrix element. If we usef

Eq. (B3) to write

Note again that H, in non-Herrnitian in the matrix ele-
ment of Eq. (4.28) because of the destructive interference
of the outgoing part of (x

I
4&), & with the component off

(x
I
f;'"(r) & that behaves as an outgoing wave

exp(ik, r)()(Ir. We can express
I

(Iik &, up to a normaliza-f
tion factor, as

I 4), & =
I kf &+G, (Ef ) IV

I kf &,

We showed above that, with choice (i), M)v is the matrix
element for a transition induced by the interaction of the
electron with the field, that is, V+'. We now show that,
with choice (ii), M)v is the matrix element for a transition

H e-'"'Ik &=[IV—V"(r)]e-"'Ik &f f

+ Ef+iA-- e ' "kfdt
(4.30)
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we can replace exp[i0(r)]((Iik
I
H, in Eq. (4.28} by thef

adjoint of the right-hand side of Eq. (4.30). Upon in-

tegrating the term in the time derivative by parts, and
noting that EI—NAco=E; +5,",we obtain

iO(r)+iNr
2K 0

which becomes an ingoing wave upon complex conjuga-
tion. The projection amounts to expanding an ingoing
wave in terms of outgoing waves, which is like working
against the grain of the wood. Nevertheless, convergence
can be accomplished by Pade summation or by other
means. ' Rather than pursue this further (it will be taken
up again in future work} we now describe an approxima-
tion which is free of this difficulty.

+I((— P)"(v)) .
d
dt

(4.31) D. Truncated Floquet expansion

d. e " +'N'(k
I

IV
I

q', "'(.) & .2' 0 f (4.32)

Combining Eqs. (4.26) and (4.31), and neglecting the term
( k/ I

~' & which is small if indeed A, ,
"is small, we ob-

tain the desired result,

The convergence problem just alluded to arises from
the nonnorinalizable outgoing wave components of (the
modified)

I
f;'"'(r) &. However, we can approximate

(~) & by a normalizable vector by truncating the har-
monic expansion of

I
1((',"'(~) & at the (No —1)th term,

Writing 8(r)=pcos(r —X), where

p=exp( i X)(e—/pcs )Foe k&,
g((()(r)

& g I

g(U) &e
t(((

n (No
(4.34)

with p and 7 both real, the harmonic expansion of
(r) & yields

MN ——ge" "'"JN „(—p)(k/ I
w

I

Q', „')& . (4.33)

where the
I

g(„")& are now determined from the following

coupled equations, obtained by truncating the homogene-
ous equations (3.7),

This last expression was used ' to calculate partial rates
for multiphoton detachment of the negative hydrogen
ion. It is interesting that two trial vectors which differ
only by a "harmless" phase lead to expressions for the
ionization amplitude that have a very different structure,
cf. Eqs. (4.16) and (4.33). As may be expected, the trial
vector (i) is not as accurate as (ii) when the field is strong;
the trial vector (ii) incorporates, through the phase factor
exp[ i 8(r)], the —absorption and emission of virtual pho-
tons. It will be shown elsewhere that, for n =X, the
right-hand side of Eq. (4.16) is a factor Jo( —p) larger
than the right-hand side of Eq. (4.33), provided that in-
equality (3.4) is satisfied. We could directly obtain Eq.
(4.32) by taking

I P«, (t) & equal to e ' "
I kI, t & in Eq.

(4.5b), provided we neglect the term (k/
I
4; & coming

from (QI,„(0)
I

4(, '(0)&. This term is finite, and of the
same order as the finite part of the integral over t which
we have already neglected.

To evaluate MN, in either of the forms (4.16) or (4.33),
we must solve Eq. (3.15} for

I
g', "'(r)&. The numerical

solution of this equation is complicated by the presence
of the operator 11(r}, which is nonlocal in coordinate
space and precludes the direct numerical integration of
the coupled differential equations (3.13) for the (x

I
f'„"'&.

Nevertheless, these equations can be solved in a number
of ways, for example, by expansion of the (x

I

i)'j'„"'& in a
discrete (not necessarily normalizable) set of basis func-
tions that have outgoing wave character. The coefficients
of the basis functions satisfy an inhomogeneous matrix
equation. However, the expansion which results from
projecting

I
g', ")(r) & onto

I
@„&(with either V'+' or W

sandwiched in between) does not converge. The reason
for this is that ( x

I @(, & contains an outgoing wave,I

(E;.—H. )
I

q',."'& = v'+
I

y',;.' i&+ v'"'
I 0;',".'+) &

(Ei, NO —i H(() I 4(', No —I& v'+'
I Pi, N —2&

n &N0 —1

(4.35)

It may be verified that Eqs. (4.34) and (4.35) combine to
give

E, +6', "+i((—H(r) P',"(~()—
0 V(U)

I

g(U)
& (4 36)

which we can rewrite as

—iE,.~ t/A

H(~) i' F'(t—) =—e ' v'+'
I

1()' N ) &,

I
'p, „(t)& =exp[ i (E, +b,(—"))tlfi]

I
1((")(r)&,

to contrast with Eqs. (3.6) and (3.15). Since E,„ is nega-
tive for n & No we can demand that the ( x

I
P';"„' & are reg-

ular at the origin and decay exponentially as r increases.
Thus the set of homogeneous coupled equations (4.35)
form a real eigenvalue equation, with the shift 5';"' deter-
mined from the condition for the existence of regular de-
caying solutions. The width automatically vanishes.

%'e therefore choose the trial vector
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with
~

g' (~)) now determined from Eqs. (4.34) and

(4.35). Since this
~

g;'"'(r)) is normalizable it does not
present any computational diSculties. In fact, rather
than impose the normalization condition (3.5), we can im-

pose the simpler requirement that the time average (over
one cycle) of (pI")(r)

~

1(';"(r)) be unity'. Furthermore,
two (truncated) Floquet eigenvectors

~

PI"'(r) ) and

~
f~"(~)) with different (real) quasienergy eigenvalues E';"

and c.'"' are orthogonal in the sense that if N0; and N0.
are the values of N0 for ionization from states i and j, re-

spectively, we have

f Ol oj ( qIU)( )
~

q(v)( ) )
0

J n+No 1, n+No
n&0

(4.37)

To establish the orthogonality we premultiply both
sides of Eq. (4.36) by exp[i(NO; NO—J )r] and by the bra
(QJ"'(r)

~

and we integrate over r from 0 to 2' Th. is

yields

2~ i(NQ No T
( ) (v) ~f dec " " g"'(~) F.,"+iii—Hit) p—t, '(v}l=0;

0
(4.38a)

there is no term on the right-hand side of this equation because the term in exp( iN& r—)(tii"'(v)
~

vanishes upon in-

tegrating over r. Interchanging i and j and taking the adjoint of Eq. (4.38a) we obtain

2n i(NO, , —No. )g
( ) (v) . d (v)f dr e " " P;'"'(r) s')+i' H(—r)—g'"'(r) =0 .

0 i dt J (4.38b)

Subtracting Eq. (4.38b) from Eq. (4.38a), the terms H (r) disappear since here H(r) is Hermitian (the truncated Floquet
eigenvectors are normalizable) and the terms in the time derivative combine upon integration over r to give a surface
term proportional to (No, No }))iso;—it follows that

[(No; No, )fico+—sj"'—sI"']f dre " " (,P,'"'(r)
~

P;'"( )r) =0,
from which Eq. (4.37) follows immediately.

However, truncating the harmonic expansion at the (No —1)th term is fairly drastic, and so we try to compensate for
this by improving the trial approximation vector

~
%&„(t)) to

~
+I(t) ), which represents the development into the final

unbound state f. Rather than take
~

4&")(t)) for
~ %I„(t)), we choose the Kroll-Watson scattering wave vector

~

KW&")(t) ) [cf. Eq. (3.23)], which provides an accurate description of those harmonic components
~

g&"„') of
~

g&"(r) )
for which

~

nAco
~

&~E&. We observe that the field is turned on at t =0 so that
~

)Il&,„(0))=
~

)p„), but as before we

neglect the contribution from the interval [0,to] to the integral over t in Eq. (4.5b). We have

f
L

Integrating by parts the term in the time derivative yields, for n =N,

M — di '"'+' '" 4 " H( ) —(E 5 ) 'ii— g'"( ))2' 0 f '
dt

(4.39}

Noting that H(r) is Hermitian since
~ g,'"'(r) ) is normal-

izable, and using Eq. (4.36), we arrive at

2m' i (N —No )7.+i 0(r)
N d7 e2' 0

X(C') (,) ~

e " V+'
~

Q'"~ )),
(4.40)

a result obtained previously" in the length gauge. The
advantage of using the velocity gauge is that expression
(4.40) for M)v remains finite even in the strong-field limit;
in contrast, the corresponding length-gauge expression"
for MN is finite only in the weak-field limit. We refer to
the approximation of Eq. (4.40) as the "threshold-
truncated approximation" (TTA). In discussing the

weak-field limit we consider the TTA in both its
velocity-gauge and length-gauge forms, but unless the
gauge is specified otherwise it is understood to be the ve-

locity gauge.
The integration over r in Eq. (4.40) serves to project

out all but one of the harmonic components
~

P&„) ) of

exp(iEItlh)
~

KW&")(t));

the component which survives is the (No —N)th, corre-
sponding to the emission of N No photons. (To s—impli-
fy notation we do not distinguish between trial and exact
harmonic components. } We see, noting Eq. (3.23}, that
the expression on the right-hand side of Eq. (4.40) is just
the spatially integrated matrix element of the one-photon
absorption operator V'+) sandwiched between the trial
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harmonic comPonents
I li; )v )& and

I Pf )v )v& Now

I
Np N—

I

fico is almost equal to Ef, and is therefore not
small compared to E&, so that we cannot expect the
Kroll-Watson approximation to give a highly accurate
trial comPonent

I lgf )v )v& (excePt if N=Np and the

field is weak, since both the trial and exact
I lifp& ap-

proach
I 4), &.) Nevertheless, the Kroll-Watson approx-f

imation allows us to at least partially build the effects of
both the field and the atomic potential into I)pf„(t)&.
The merit of the TTA must of course be judged against
the comparison of its predictions with exact results. At
present, exact results are available only for the weak-field
limit; as we shall see in Sec. V, at least in this limit the
TTA is reasonable. We conclude this section with a few
remarks on other approximations.

Here
I

)p; („(t)& represents the initial bound state unper-
turbed by the field, and

I
)Iif „(t)& represents a free elec-

tron moving through the field, with the A interaction
Vp(T) now included in the velocity gauge. These trial
vectors are a considerable sirnplification to those used in
the TTA. Inserting the trial vectors of Eqs. (4.43) into
the right-hand side of Eq. (4.5a) leads to the approximate
amplitude considered by several authors, and popular-
ized by Reiss,

2m i(N —No)r+](9(r)+i((T)
N d7 e

2K 0

x (kf I
[V'"'(r)+ Vp(r)]

I 4, & .

(4.44)

V. RESULTS

K. High-Rydberg initial state; N =1

If the initial state is a high-Rydberg state we can have
(with the parameters P defined in Appendix A) P' «1
and P,'"~ 1, the quasistrong regime. Consider one-
photon ionization to a state with P'" « 1 and

(1)pf' PI%co~——l. These values for the final state parame-
ters can be realized if the electron is ejected with an ener-

gy not far above threshold (which happens for a
sufficiently low frequency) and if the intensity is
suSciently high. Working in the velocity gauge, and
neglecting 5(, we are led to the reasonable choices

Iq, „(t)&=e '
Ie, &,

I
q)f„(t)&=. ' '

I ~),, & .

We thereby obtain

(4.41a)

(4.41b)

M) =(i'),
I

V'+ (4.42)

Replacing V'+ by V'+' in the above matrix element yields
a different value for M, unless pf" « 1. To obtain the ex-
pression which in the length gauge corresponds to Eq.
(4.42) we must gauge-transform the trial vectors of Eqs.
(4.41).

F. Another limit; N =1

G. Reiss approximation

Many other approximate expressions for the N-photon
ionization amplitude can be derived by choosing different
trial vectors. For example, without commenting at this
stage on its justification, we choose trial vectors

i ( Ef + P ) t IA' —i C( —r) —i ()( r ),
(4.43a)

(4.43b)

We now consider one-photon ionization from a state in
which the electron is tightly bound and both P' « 1 and
P', "« 1. We choose the frequency so that the electron is
ejected with an energy not far above threshold so that
pf"'«1. However, we choose a sufficiently intense field
that pf" ~ 1. We obtain Eq. (4.42) once again.

XG, (Ec+irt+Ac())Vg
I
4; &, (5.1)

where G, (E) is the atomic Green's operator, and where
the choice of sign is plus if n p 0 and minus if n g0. We
can apply the TTA in both the velocity and length gauges
in the weak-field limit, but we do not expect to obtain the
same result in both gauges when N &No since we trun-
cate the harmonic expansion of

I f; (r) & at the (Np —1)th
term. In lowest-order perturbation theory, ' which is
exact in the weak-Geld limit, we have the matrix element

(5.2)

where
I
4; )v ) & is given by Eq. (5.1). The value of this

matrix element is the same in both gauges for all N & No
(see Appendix C). Note that in the weak-field limit M)v

is the same in the TTA as it is in lowest-order perturba-
tion theory. In Table I we present results of calculations
of partial rates in the form of ratios of approximate re-
sults to exact results (with the latter obtained in lowest-
order perturbation theory). We show results obtained in
the TTA, in both gauges, and we also show results which
follow from modifying the TTA in the velocity gauge by
replacing

I i'), (,) & in Eq. (4.40) either byf
ix.k ~ (~)

(5.3)

which corresponds to using the trial wave vector
I

Nf' (t) & of Eq. (2.17), or by

I +.,(.) &-
I kf & (5.4)

which amounts to neglecting the atomic potential in the
final state. (Either replaceinent leads to a considerable
simplification in the evaluation of M)v. ) In the last
column of Table I we show results obtained from the
Reiss approximation, Eq. (4.44). All of the versions of

We now present results of an application of the TTA to
the calculation of rates for multiphoton ionization of hy-
drogen initially in its ground state. We begin by consid-
ering the weak-field limit. In this limit we have 5;~0
and

g;„&~
I
4,„&—= G, (E;+irt+nhcp)V+
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TABLE I. Ratios of approximate to exact estimates of partial rates for N-photon ionization of H by
circularly polarized light of wavelength A, in the weak-field limit. The lowest value of N for each wave-

length is the minimum number No of photons required to ionize the atom. The entries in each column
correspond to (a) threshold-truncated approximation of Eq. (4.40), in velocity gauge; (b) same approxi-
mation in length gauge; (c) same as (a), but with replacement of Eq. (5.3); (d) same as (a}, but with re-
placement of Eq. (5.4); (e) Reiss approximation, Eq. (4.44). The exact results at A, =265 nm were taken
from Gontier et al. {Ref.35).

A, (nm)

50
50
50

80
80
80

120
120
120

140
140
140

230
230

265
265
265
265
265
265

300
300

350
350

(a)

1.0
0.44
0.31

1.0
0.33
0.20

1.0
0.36
0.22

1.0
0.40
0.24

1.0
0.46

1.0
0.58
0.31
0.21
0.16
0.13

1.0
0.52

1.0
0.78

(b)

1.0
0.65
0.66

1.0
0.41
0.36

1.0
1.0
1.2

1.0
0.58
0.53

1.0
0.54

1.0
0.47
0.31
0.30
0.29
0.29

1.0
0.63

1.0
0.54

{c)

1.0
0.41
0.32

1.0
0.24
0.17

1.0
0.45
0.32

1.0
0.32
0.21

1.0
0.30

1.0
0.23
0.14
0.10
0.09
0.07

1.0
0.37

1.0
0.28

(d)

1.7
0.94
0.72

0.34
0.48
0.38

6.6
2.6
1.5

1.7
0.96
0.65

0.93
0.77

0.0062
0.29
0.28
0.25
0.21
0.19

2.0
1.1

0.0086
0.26

(e}

1.7
0.94
0.72

0.34
0.48
0.38

0.0046
0.0062
0.0062

0.029
0.035
0.035

0.0048
0.01

0.000 062
0.0058
0.0078
0.0080
0.0082
0.0078

0.0022
0.0047

0.000029
0.0022

A, (nm) N

265
265
265
265
265

355
355

(a)

7.2[1]
7.9[3]
1.0[5]
7.8[5]
4.5[6]

(b)

7.2[1]
2.2[3]
1.5[4]
1.1[5]
6.9[5]
5.5[4]
1.4[6]

(c)

7.2[1]
2.2[3]
1.8[4]
1.1[5]
5.5[5]

5.5[4]
1.7[6]

(d)

1.4[0]
5.1[0]
7.1[—1]
9.7[1]
8.9[2]

2.1[0]
1.8[3]

532
532
532
532
532
532

6
7
8

9
10
11

7.0[8]
8.2[10]
2.5[12]
1.0[14]
4.6[15]
2.2[17]

7.0[8]
7.3[10]
3.2[12]
1.3[14]
5.2[15]
1.8[17]

6.0[4]
5.5[6]
9.1[7]
1.4[10]
5.1[1 1 ]
1.2[13]

TABLE II. Partial differential rates (in a.u. ), divided by the
Nth power of the intensity, for N-photon ionization of H in the
weak-field limit by linearly polarized light of wavelength A, , with

ejection in the direction of the polarization vector. The exact
results, where available, were taken from Gontier et al. (Ref.
35). The entries in each column correspond to (a) exact results;

(b) the TTA of Eq. (4.40), in the velocity gauge; (c) same approx-
imation in length gauge; (d) Reiss approximation, Eq. {4.44).
The numbers in square brackets represent powers of ten.

the TTA yield results that, with a few exceptions, are of
the correct order of magnitude. While there are
significant differences between the various TTA results
there is no one version of the TTA which appears to be
significant!y more accurate than the others, although
overall the use of the Kroll-Watson wave function in the
unmodified TTA leads to superior results. We see that
the Reiss approximation does not yield results that are of
the correct order of magnitude when Xo is greater than
about 2, and this is a consequence of retaining just a sin-
gle term (the n =0 term) in the harmonic expansion of

~
1(,". (w)); the electron reaches the continuum threshold

by climbing up the harmonic components of

exp[ —i g(s) —i 8(r)]
~ kf )

that correspond to electron energies below the continuum
threshold, but the strong coupling of the below-threshold
components of

~ %f „(t)) to the initial bound state i has
been neglected. We note here that although the Reiss ap-
proxirnation is intended as a strong-field approximation,
the feature that is responsible for its failure in the weak-
field limit remains present in the strong-field limit. In
Table II we show results for partial differential rates for
X-photon ionization by linearly polarized light, with ejec-
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tion in the direction of the polarization vector. We see
that both the velocity- and length-gauge forms of the
TTA yield results that again are of the correct order of
magnitude. While the TTA is not nearly as simple to use
as the Reiss approximation, estimates of rates into con-
tinuum channels labeled by positive S:—N —No can be
more readily obtained using the TTA than using lowest
order perturbation theory. In fact, once

~ g, ~, ) has

been calculated, the effort involved in using the TTA to
estimate rates into positive S channels is no more than
that required to obtain the rate into the S =0 channel.
In contrast, to estimate rates into positive S channels us-

ing lowest-order perturbation theory one must calculate

~ g; ~ ), which is nonnormalizable and significantly com-
plicates the calculation.

Continuing our discussion of the weak-field limit we

S=1
(b)
S=1

C0
(D

~ 10

0

(D
V)

10
~ ~ 4
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FIG. 1. Angular distributions for N-photon ionization of H by a weak linearly polarized field of wavelength 265 nm as a function
of angle measured relative to the polarization vector. We have normalized the angular distributions to unity in the forward direction.
In each figure the curve ~ . represents the exact results. We have (a), N =4 (S =1), TTA, in velocity gauge, according to
Eq. (4.40); ———,same approximation in length gauge; (b), N =4, (S = I ), TTA, in velocity gauge, modified according to Eq.
(5.3); ———,TTA, in velocity gauge, modified according to Eq. (5.4); ——.—,Reiss approximation, Eq. (4.44); (c) N =5 (S =2),
otherwise same as (a); (d) N =6 (S =3), otherwise same as (a).
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turn to angular distributions. In Fig. 1 we show angular
distributions for ionization of H by a weak linearly polar-
ized field of wavelength 265 nm (NO=3). We show exact
results and those obtained in the velocity- and length-
gauge forms of the TTA for the S =1, 2, and 3 channels.
We also show, for the S =1 channel, results obtained us-

ing the two modified versions of the TTA discussed
above, as well as the Reiss approximation. From symme-
try considerations the differential cross section vanishes
when the angle 0 of the ejected electron, measured rela-
tive to the polarization vector, is 90', provided that N is
odd. (Note that (x

~
4;) is even under a x~ —a x.)

This prediction is confirmed by all of the approximations.
However, the two modified forms of the TTA predict
that the differential cross section at 8=90' vanishes for
all S) 1, even when N is even. The unmodified TTA and
the Reiss approximation both correctly predict a nonzero
differential cross section at 8=90' when N is even, but for
quite different reasons [the influence of the atomic poten-
tial 8' in the TTA, and the inhuence of the ponderomo-
tive potential Vo(r) in the Reiss approximation]. The
velocity-gauge form of the TTA appears to give the best
agreement with the exact angular distributions. This is,
in fact, typical, and we have found that in general the
TTA (velocity-gauge form} reproduces the overall en-
velopes of the exact angular distributions reasonably well,
although it often fails to reproduce the detailed structure.

We now turn to strong fields. We have solved Eqs.
(4.35) by expanding the (x

~

f;'„"') in spherical harmonics,
with the radial parts expanded in a discrete basis set com-
posed of Sturmian functions. The coefficients of the basis
functions satisfy a homogeneous matrix eigenvalue equa-
tion. Only spherical harmonics with orbital angular
momentum quantum number (7, and harmonic corn-
ponents

~

PI„"t) with photon index in the range —3&n
( &No —I), were included. This was sufficient to ensure
convergence over the range of intensities studied. In Fig.
2 we show the angular distributions obtained in the TTA
for ionization of H into the S = 1, 2, and 3 channels by a
linearly polarized field of wavelength 532 nm (NO=6)
and intensity 5)&10' W/cm, and we compare our re-
sults with the experimental data of Feldmann et a1.
(Actually, the intensity of the field is not really strong,
and lowest-order perturbation theory still applies. The
angular distributions in lowest-order perturbation theory
have been recently calculated by Kracke et al. , who
obtained very good qualitative agreement with the experi-
mental data of Feldmann et al. ) The overall envelopes
of the experimentally observed angular distributions are
reproduced reasonably well by the TTA but the structure
in the S =1 channel is only barely hinted at and the
structure in the S =2 and 3 channels is missing altogeth-
er. The modified versions of the TTA, modified accord-
ing to Eqs. (5.3) and (5.4), do not give as good overall
agreement, nor does the Reiss approximation, as indicat-
ed in Fig. 2(c).

To determine the intensity at which lowest-order per-
turbation theory breaks down we have calculated the in-
dex of nonlinearity K (8), defined here as the derivative
with respect to lnI (where I is of the intensity} of the loga-
rithm of the differential cross section for ejection at angle

1.0
O

u 0.8
tU

1.0

0.8 0.8

o06 0.6 0.6

0.4 0.4

0.2 0.2

8 into a specific continuum channel. In Fig. 3 we show
K (8=0) for ionization of H by linearly polarized light of
wavelength 532 nm. In the weak-field limit the index of
nonlinearity is just the number N of photons absorbed in
the specific channel. The intensity at which K(8) begins
to deviate from a straight line is the intensity at which
lowest-order perturbation theory becomes invalid. Note
that, in Fig. 3, E(8=0) turns downwards at high intensi-
ties; this is because the ionization potential increases as
the intensity increases, and the threshold is approached
at which the minimum number No of photons required
for ionization increases by 1.' The departure from the
weak-field limit is not always signaled by a downward
turn in K (8). In Fig. 4 we show E (8=0) for ionization
by linearly polarized light of wavelength 355 nm and we
see that K(8=0) turns upwards at high intensities. This

I I I I III) I I I I I III[

0
(011

I I I I I I ill
)032

Intensity (W/cm )

I I iiil
)013

FIG. 3. Index of nonlinearity vs laser intensity for ejection
into the forward direction by light of wavelength 532 nm.

0.0 0.0 0.00 30 60 90 0 30 60 90 0 30 60 90
e(aeg ) 8(deg ) 8 (deg )

FIG. 2. Angular distributions, normalized to unity in the for-
ward direction, for N-photon ionization of H by linearly polar-
ized light of wavelength 532 nm and intensity 5&10' W/cm .
The angle 8 is measured relative to the polarization vector. The
curves are, experimental data of Feldmann et al. (Ref. 3);

, TTA; ———,TTA modified according to Eq. (5.3);
———,Reiss approximation. We have (a) N =7 {S=1); (b)
N =8 (S=2); (c) N =9 (S=3). Results obtained using the
TTA modified according to Eq. (5.4) are almost indistinguish-
able from the curve ———in (c).
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FIG. 4. Same as Fig. 3 but for the wavelength 355 nm.

is because the wavelength 355 nm is close to the wave-
length for an intermediate three-photon resonant transi-
tion between the 1s and 2p states, and the resonance
wavelength moves towards 355 nm as the intensity in-
creases, thereby enhancing the cross section.

Unfortunately, the laser intensities used in the experi-
ment of Feldmann et al. were not sufficiently high to ob-
serve resonance enhancement of the ionization rate at
355 nm. Nevertheless, we now explore this intermediate
resonance in more detail. For generality we begin by dis-
cussing the case where there is an intermediate m-photon
resonant transition between the bound states i and j. The
electron is excited into a superposition of the bound
states i and j as the field is turned on, and its state can
best be described in terms of the two dressed states
represented by the Floquet eigenvectors

~
I(t,'"(r)) and

~
QJ."'(r)), which are determined by solving Eqs. (4.35).

We have m =NO; —Xo . The (real) quasienergy eigenval-
ues c,"and e'"' differ by very nearly mls, and in the
weak-field limit we have —recall Eq. (5.1)—

g(U) )
~

(P(vt ) (5.5a)

t) [@() ) (5.6b)

In the lower portion of Fig. 5 we have plotted c'&", and
cz"' —3%co versus intensity for the case where H is exposed
to light of wavelength 355 nm; as noted above, there is a
three-photon resonance with the Is ~2p transition. (The

(5.5b)

As the intensity varies, the shifts 6',-"' and h~" also vary,
and the resonance frequency may move closer to the laser
frequency co. In other words, if we plot c'," and
e'."'—mA~ versus intensity, these curves may approach
one another. However, rather than cross, the curves in
general repel each other and there is an avoided crossing.
Following the usual nomenclature, we refer to the in-
tensity I„at which the curves are at closest approach as
the "crossing" point; at this point the frequency m is reso-
nant with the m-photon i ~j transition. As the intensity
passes through the crossing point the characters of the
dressed-state eigenvectors interchange, that is, at intensi-
ties well above the crossing point we have (assuming that
the field is still relatively weak)

(5.6a)

IJJt-
CC

-6~Q—
I—
Z.'
QJ
IX
LLJ
LL «7

&0

. —.506—
I

I

(b)

~ — 530—--
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l t I t I
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FIG. 5. Ionization of H by linearly polarized light of wave-
length 355 nm. At this wavelength there is an intermediate
three-photon resonance with the 1s~2p transition. {a) Partial
differential rates for ejection in the direction of the polarization
vector. The solid and dashed curves refer to ionization from the
dressed states which in the weak-field limit approach the 1s and
2p bound states, respectively. The dotted curves are the ioniza-
tion rates from the 1s state calculated in lowest-order perturba-
tion theory. (b) The quasienergy eigenvalues for the two dressed
states: E is y s Epp 3%CO

(v). (U)

index n of
~

PJ„"') was restricted to the same range, except
shifted downwards by m, as the index n of

~
I(,'„').) Note

that hz~' is small at intensities below the crossing point,
and 6'," is small at intensities above the crossing point.
This is because the interaction V'"'(~} induces only a
small shift in an excited state (and an even smaller shift in
a highly excited state —and no shift in the continuum).
In the upper portion of Fig. 5 we show the rates (calculat-
ed in the TTA) for ionization into the S = 1 and 2 chan-
nels from each of the two dressed states. At intensities
well below I„ the rates for ionization from the dressed
state which develops from the 2p bound state far exceed
those for ionization from the dressed state which devel-
ops from the 1s bound state; this is because the former
dressed state is predominantly the 2p bound state, from
which ionization occurs rapidly. However, as the cross-
ing point is approached, the rates for ionization from the
dressed state which evolves from the 2p state reach their
maxima, and decrease as the intensity is increased further
because

~

I(z"'(r) ) acquires Is character. In contrast,
rates for ionization from the dressed state which evolves
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from the 1s state rise very rapidly as the intensity in-
creases towards the crossing point because

~

g', (r))
picks up more and more of the 2p component; these rates
continue to rise as the crossing point is passed, but less
steeply because

~

g', ",'(r) ) has fully acquired 2p character.
The ionization rates calculated in lowest-order perturba-
tion theory, which are also shown in Fig. 5(a), approach
the TTA rates at intensities well above I„but are too
small in the vicinity of the resonance.

The electron starts out on the quasienergy eigenvalue
curve corresponding to the dressed state that approaches
the initial bound state in the limit of vanishing intensity.
If the intensity is varied slowly, and if the energy gap at
the crossing point between the initial eigenvalue curve
and another one is larger than the laser bandwidth, the
electron will adiabatically follow the initial eigenvalue
curve, and ionization will proceed from the correspond-
ing dressed state. On the other hand, if the intensity
varies sufficiently rapidly in the vicinity of the crossing
point, the electron will jump across the gap, onto the oth-
er eigenvalue curve, even if the energy gap is large com-
pared to the laser bandwidth. To be speci6c, if t, is the
transit time through the crossing point (defined as the
time taken for the intensity to vary from a point on the
left of the crossing point at which the energy gap is
roughly twice the minimum energy gap to a similar point
on the right) the electron will jump curves if the ffuctua-
tion energy tilt, is coinparable to or larger than the ener-

gy gap. No matter how the intensity varies, if the laser
bandwidth is comparable to or larger than the energy gap
at the crossing point the electron must be described, at all
but very low intensities, by a superposition of dressed
states which represents the atom flopping back and forth
between the bound states i and j as it ionizes. It is clear
from Fig. 5 that were the electron to remain on its initial
eigenvalue curve, the ionization rate would continue to
rise as the intensity increases above I„and consequently
the ionization yield, as a function of intensity, would also
continue to rise, unless depletion effects were to enter.
On the other hand, if the electron were to jump to the
other eigenvalue curve as the crossing point is passed, the
ionization rate, and therefore the yield, would drop as the
intensity increases above I„. In the recent experiment of
Freeman et al. , xenon atoms were ionized by a short
powerful pulse. (If the pulse is short, the spatial inhomo-
geneity of the laser focus does not affect the motion of the
electron on its way to the detector because the light
disappears before the electron has a chance to travel a
sufficient distance to experience its spatial inhomogenei-
ty. ) During the rise and fall of the pulse, as the intensity
varied, Rydberg states shifted in and out of resonance.
Freeman et al. resolved each peak in the ionization signal
(corresponding to ionization to a specific continuum
channel) into a series of subpeaks, with each subpeak cor-
responding to an energy shift at which there is an inter-
mediate resonance with a transition to a Rydberg state.
Since subpeaks were observed, rather than simply a
monotonic increase in the yield, we conclude that the
electron jumped eigenvalue curves as each crossing point
was passed.

To study the dynamics near a curve crossing we have

Si(t)= —f dt e'i, (5.8}

and where the eigenvalues si and eigenvectors
~
i)~i(r))

are explicitly dependent on the intensity I and implicitly
dependent on the time t through I =I(t) The. boundary
condition on the coefficients ai(t) is ai(0)=5i;, and these
coefficients satisfy the coupled equations (see Appendix
D)

dI (t) imp+is„ii)
(5.9a)

d dI(t) —imp+is, (ti
(5.9b)

where S;i(t)=S;(t) S(t)—and where

(5.10}

with UJ, (I)= —U;&(I). At intensities far froin the cross-
ing point the eigenvectors vary relatively slowly with I
and so the coupling potential Ui(I) is relatively small.
However, at intensities near the crossing point, where the
eigenvectors undergo a rapid change of character, U; (I)
is large (see Appendix D).

The total ionization yield is the sum of the yields from
the two dressed states. This sum is incoherent provided
that the laser bandwidth is small compared to the energy
gap at the crossing point, ' since in principle one could
tell by an energy measurement which dressed state the
electron emerged from. If M;~ and M z denote the
matrix elements for ionization from the two dressed
states, the total N-photon ionization yield over a time in-
terval dt, during which the intensity changes by dI, is, for
the incoherent process,

d Yiv (I, O) = (2m IR)p'(8 ~ )(dI/dt) 'dI

X[
~
a, (t)M;iv

~
+

~

a)(t)M iv ~
],
(5.11)

where, of course, M;z and MJ z depend explicitly on
I. If the laser bandwidth is comparable to or larger than
the energy gap at the crossing point the atom will ionize
as it undergoes Rabi oscillations and the process is
coherent; we must replace the expression in square brack-
ets on the right-hand side of Eq. (5.11) by

~
a;(t)M, ,v+e " a, (t)Mi iv

We have solved Eqs. (5.9) for the coefficients a, (t) in
several cases. %'e allowed for depletion of the dressed
states by including the half widths I &/2 in the quasiener-

gy eigenvalues, with I
&

calculated at each value of I from

solved the time-dependent Schrodinger equation within a
two-state model. We approximate the wave vector of the
electron by the superposition

8 (t)) =a, (t)e .
' ""

~
iti;(r))+a (t)e

' '
I g (r)

(5.7)
where, with l =i or j,
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photon transitions from the ground state to bound states
with principal quantum numbers 3 and 4. Parity con-
siderations restrict the angular momentum of the elec-
tron in its resonant intermediate states to s and d, and be-
cause of the special degeneracy of the hydrogen atom
these s and d states are mixed by the field. The mixing is
due, in lowest order, to the emission and subsequent reab-

sorption of a photon, or vice versa, which allows for a
change in the orbital angular momentum of zero or two
units. (In contrast, Stark mixing in a static electric field
occurs, in lowest order, through the emission or absorp-
tion of a single zero-frequency photon', the photon is not
reabsorbed or reemitted, and a change of one unit in the
orbital angular momentum is allowed. ) The appropriate
combinations of s and d states in the zero-field limit fol-
low from an application of degenerate-level perturbation
theory. There are two linearly independent combina-
tions, and therefore two eigenvalue curves for each of the
two principal quantum numbers 3 and 4. Note that all
the crossings are avoided, in contrast to the case of a hy-
drogen atom in a static electric field. In the latter case,
the energy eigenvalue curves may actually cross, a conse-
quence of an underlying dynamical symmetry reflected
in the fact that the time-independent Schrodinger equa-
tion for an electron in a static field, which is a scalar
equation, is separable in parabolic coordinates. Unlike
the static field case, the time-independent Schrodinger
equation for an electron in a monochromatic radiation
field is a vector equation, and this vector equation is not
separable in parabolic coordinates. Note that while the
crossings are avoided, the gaps at the crossing points are
sometimes extremely small; the gap at 1.07 W/cm in
Fig. 7 is only 5)& 10 a.u. (compared to a gap of 4X 10
a.u. at the resonance discussed above at the wavelength
204 nm). In this circumstance the jump probability at
the crossing is expected to be close to unity, and it is ap-
propriate to describe the electron by a superposition of
"diabatic" state vectors (see Appendix D). The probabili-
ty for an electron to remain on a diabatic quasienergy
curve is close to unity, and in the absence of any mixing
of diabatic states there is no resonance enhancement of
the ionization signal. Even if there is some mixing of the
diabatic states, the resonance peak in the yield, as a func-
tion of intensity, will be narrow.

VI. CONCLUSION

Starting from the Floquet ansatz, we have formulated a
time-independent theory for multiphoton ionization by
moderately intense fields —intensities for which the field
induced width I, in the initial atomic energy level is far
less than the laser frequency co. The theory yields a Pnite
amplitude for N-photon ionization provided that the Ue-

locity gauge is used. In the most complete form of the
theory, a set of inhomogeneous equations must be solved
for the harmonic components of the electron wave vec-
tor. However, in our application we have introduced a
further approximation, the truncation of the harmonic
expansion at the ionization threshold. This approxima-
tion (the TTA) leads to a substantial simplification —the
wave vector is normalizable —but it also leads to a loss in

accuracy. Thus the TTA can only be relied upon to give
the overall envelope of the angular distributions, and not
the detailed structure. Nevertheless, we believe the TTA
to be a significant improvement over existing simpler
theories. Indeed, the replacement of the TTA trial initial
state vector by the unperturbed initial atomic bound state
vector can lead to an error of several orders of magnitude
in the generalized cross sections, even at nonresonant fre-
quencies. Of the various trial final state vectors we exam-
ined, the Kroll-Watson form seems to give the most accu-
rate results on the whole. Furthermore, we have shown
that the TTA can be readily adapted to the treatment of
resonant multiphoton ionization, when two or more Flo-
quet eigen vectors are coupled together in a time-
dependent way.

Presumably, we could improve significantly on the
TTA by solving the inhomogeneous equations for the
harmonic components, without truncation at the ioniza-
tion threshold. It might be sufficient to incorporate, in
the trial initial state vector, absorption of just two or
three photons above threshold, with higher absorption
accounted for by the Kroll-Watson trial final state vector,
which should be far more accurate at energies of 2%co or
3Am above threshold. This is currently under investiga-
tion.

The situation where a threshold is approached at
which No increases by unity is complicated because at an
intensity just above this threshold there are an infinite
number of resonances (if the atomic potential has a
Coulomb tail). Furthermore, an eigenvalue on a particu-
lar unphysical energy sheet casts "shadow" eigenvalues
on infinitely many other unphysical energy sheets, and, as
a threshold is passed, the eigenvalue closest to the physi-
cal energy axis changes. These points will be discussed in
detail elsewhere.
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APPENDIX A: ELECTRON STATE
JUST AFTER FIELD TURN-ON

Here we examine the state of the electron immediately
after the field has been turned on, assuming that the ini-
tial state i is not appreciably depopulated during the in-
terval 0& t & to that the intensity rises. Now, the param-
eter P;, which characterizes the strength of the coupling
of the initial state to the radiation field, is a gauge-
dependent quantity which may be defined as follows: Let
AA; be the detuning of the laser frequency co from a one-
photon resonance, that is, A'EQ;=

~

b,E, fico ~, where—
AE; is the energy separation between the initial level and
the particular level for which, of all bound levels optically
coupled by one photon to the initial level, b,Q; is small-
est. We define P; as the ratio of the characteristic cou-

45

pling energy to the detuning energy AAQ;. In the length
gauge the characteristic coupling energy is eFoa, , where
a; is the characteristic radius of the initial state, so that
P; =P';"—=

~
eFoa; IfihQ;

~

. In the velocity gauge the
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characteristic coupling energy is eFov, /co, where v; is the

characteristic mean speed of the electron in the initial

state, so that P;=P';"'—=
~

eFOU, /cofihQ,
~

. If we work in

the length gauge, and if P',
' « 1, the initial state i will not

be significantly perturbed until the field has been on for a
long time, longer than tp ~ All that happens while the

field is turned on is that the electron energy is shifted adi-

abatically by the small amount 5', ". Thus immediately

after the field has been fully turned on we may represent
the electron by the state vector

~

4', "(t) ) given by

~

4';"(t)) =exp( iA—;'"t/fi) 4;'(t)) . (Ala)

and

are equal to
~

(k
~
4; ) ~, the velocity distribution before

the field was turned on. We note, however, that

~

4', "'(t) ) differs significantly from
~
4,'"(t) ) through the

spatially dependent phase v(x, r)=x k„(r). The charac-
teristic value of this phase is (ea, FO/fico), that is,
(DII;/co)P';". Hence if the detuning is large compared to
the photon frequency, as will be the case for frequencies
well below the smallest resonant frequency, v(x, r) can be
significant even if P', "« l. At frequencies far from reso-

nance, the detuning is comparable to the transition ener-

gy b E;. Now roughly speaking, if b E, is comparable to
the energy splitting between the initial level and its
nearest neighbor, the orbital period of the electron in the
initial state is A/hE, , and therefore v; =a, hE, /A. Using
this result and putting AQ; =DE, we see that, far from
resonance, the characteristic value of v(x, r) is just p'

To summarize, if P',
' « 1 the electron state immediately

after the field has been turned on is represented (i) in the
length gauge by the eigenvector

~
4, ) of the unperturbed

atomic Hamiltonian H„but with the eigenvalue E, shift-
ed slightly by 6', ', and (ii) in the velocity gauge by a vec-

tor which, if P,
' & 1, differs significantly from

~
4, ) by

the multiplicative phase factor e' '"".
We call the regime in which P', '«1 and P', "'~ 1, or

vice versa, the quasi-strong-field regime, to be dis-

Now, this being the case, the state vector
~

4', "'(t)),
which represents the electron in the velocity gauge im-

mediately after the field has been turned on, is, using Eq.
(2.10), just

~

cd', "'(t) ) =exp[ i [—(b, ' rifi) g(r)—
—x k„(r)]j i

4'
, '(t)) . (Alb)

The spatial distributions
~

(x
~

cd;'"(t) )
~

and

~

(x
~

4';"'(t)
~

are clearly equal to
~

(x
~

cP; ) ~, the spa-
tial distribution before the field was turned on. Here, of
course,

~
x) denotes an eigenvector of the operator x

with eigenvalue x. Let
~

A'k) denote the eigenvector of
the canonical momentum operator p with eigenvalue Ak.
Recalling that the velocity operator is p/p in the length

gauge and [p —Ak„(~)]/}Lc in the velocity gauge, we ob-

serve that the velocity distributions

(t) ) =exp( id, ;'"t/fi)
~
4;''(t)—),

~

4', "(r) ) =exp[ i [ (b;'"t/fi)+—g(i. )

(A2a)

+x.k„(r)]] i 4;'i(t) ) . (A2b)

The velocity distribution of the electron is now
significantly altered by turning on the field; the electron
vibrates with a velocity Ak„(r)/p, the same as a free
electron in the oscillating field. In fact, of course, the
electron is almost free, being only tenuously held at a
very large distance a, from the atomic nucleus. In the
limit n~cc we have }c)',"'~0, and hence 6,'"'~0 (and

tinguished from the very strong-field regime in which
both P';" and P,'"' are greater than or comparable to unity.
We have just seen that if p,'.

' « 1 the spatial and velocity
distributions of the electron are not immediately altered
by turning on the field; in other words, the electron orbit-
al motion is not appreciably perturbed during the rise
time of the field. The phase factor v(x, r), which incorpo-
rates virtual absorption and emission of photons, ac-
counts for the fact that while the velocity operator has
shifted by the amount haik„(~)/p the electron velocity is
the same after as before the field was turned on. In the
case where P', " is smaller than unity, but not much small-

er, the atom will be significantly polarized, i.e., the spatial
and velocity distributions of the electron will be
significantly altered by turning on the field; but if the field

has a low nonresonant frequency so that the number m of
photons required to excite (or deexcite) the atom is large,
the excitation rate will be low, proportional to [P;"]
and consequently the population of the (polarized) initial
state will not be immediately altered by turning on the
field. Suppose, however, that the laser frequency is near-
ly resonant with the transition frequency between the ini-
tial level and another bound level, which we denote as j.
In this case both P';" and J33';"' are large, and in fact the
electron will undergo excitation into the state j the mo-
ment the field is turned on. The electron is now best de-
scribed in terms of two dressed states, which are uncou-
pled to each other. These dressed states, denoted as i+j,
are each a linear superposition of the states i and j and
we must now introduce (in each gauge) two coupling
strength parameters P, +, , which measure the coupling
strength of the dressed states to the radiation field. Pro-
vided that P;+ are both small in one gauge, the popula-
tion will remain in the dressed states while the field is
turned on. Note that if the laser is turned on slowly and
if its bandwidth Ace is small compared to the detuning
b0;, the initial electron state will evolve adiabatically, as
the field is turned on, into just one of the two dressed
states, determined by the sign of the detuning. " Howev-
er, if the turn-on is not adiabatic the electron will arrive
in a superposition of dressed states, which describes the
population flopping back and forth between the bound
states i and j, at approximately the Rabi frequency.

Consider now an atom that is initially in a high-
Rydberg state, with principal quantum number n. We
have a;=n ao and v, =vo/n, where ao ——A /rMe and
vo=e /fi For sufficien. tly large n we have P' «1 and

P,
'"~ 1. Consequently, we obtain
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b, ,"~=A,"~+P~P). In this limit the electron becomes a
free electron, displaced infinitely far from the nucleus,
and it cannot absorb a real photon.

Let us finally consider an electron which has positive
energy, and which is incident from infinity with mean
speed v;. This unbound electron can emit and absorb
photons as it passes near to the atomic nucleus. (A
bound electron in a high-Rydberg state has only a very
small probability of being near to the atomic nucleus. )

The coupling-strength parameter in the velocity gauge is,
putting b,A;=co, just P' =(eFou, /fico ). Now P';" is

(co/v, )P' multiplied by the characteristic value of
~

x
~

.
But what do we take for the characteristic value of

~

x ~?
In the weak-field limit we take the wavelength (I/hk),
where hk is the change in the wave number of the elec-
tron when it absorbs a photon. (This is the characteristic
distance over which absorption takes place, as may be
checked using perturbation theory. ) If fico & pv; we have
hk -co/U;, while if iris@ & pu; we have hk -(2pco/fi)'
[The characteristic distance can also be determined as
follows: The time required for a photon to be absorbed is
roughly 2m. /co, and during this time the electron covers a
distance of order U, /co provided that A'co «pv; /2 so that
the mean speed of the electron is not significantly altered
by the absorption of a photon. If fico & pv; /2 the uncer-
tainty Ap in the mean momentum p is comparable to p
and we have (bp) /2p-A'co so that the effective distance
over which absorption occurs is i'/

~

b,p ~

-(fi/2@co)' .]
It follows that in the weak-field limit

(A3)

However, if the field is not weak, we must take into ac-
count the oscillation of the electron in the field. A free
electron oscillates with an amplitude (eFO/p~ ), and this
is larger than 1/b, k if 5 & 1, where

(A'co/pU, )P', "' if iiico & pv, .

2 1/2 U) 2 (A4)
(irido/pv, )'~ p", if fico & pv,

If 5 & 1 we must take the amplitude (eFO/pro ) to be the
characteristic value of

~

x ~, and in this case
P;'"=P/fico. Note that if 5&1 the ratio P', "/P', "' is

equal to 5 if iiico & pu; or to (iiico/pv; )' 5 if fico & pv;; in
either case we have P', "&P';". It is apparent from Eq.
(A4) that in the high-frequency limit fico»p. u; we can
have 5& 1, and therefore P';" & 1, and yet P', "'«1; this is
the quasi-strong-field regime. Note that, whether the
field is weak or strong, the shift b', " in the energy of an
unbound electron is zero since the electron spends most
of its time as a free electron, far from the atomic poten-
tial. ' Hence we have 5',."=P, a result noted already. To
summarize, if P', "'«1 the electron state immediately
after the field has been turned on is represented (i) in the
velocity gauge by the eigenvector

~
4; & of the unper-

turbed atomic Hamiltonian H„but with the eigenvalue
E, shifted by an amount 6';" which is small and vanishes
if E; is positive, and (ii) in the length gauge by a vector
which, if P', "& 1, differs significantly from

~
4; & by the

multiplicative phase factor e

In general, we have P' &P,'" if the electron is tightly
bound, and P';"&P,'"' if the electron is loosely bound, or
unbound. Evidently, the gauge in which the electron can
be represented by an eigenvector of H„ immediately after
the field is turned on, is dictated by the initial state —the
length gauge if the electron is tightly bound, the velocity
gauge if the electron is loosely bound, or unbound. Simi-
lar remarks apply to the final state, in discussing the
states of the electron just before and after the field is
turned off. We can introduce coupling strength parame-
ters PJ' and Pg' for the final state, in analogy to those for
the initial state. We are interested here of course in ion-
ization, where the electron is finally unbound. We know
that if P/'« 1 we can represent the final unbound state
of the electron in the velocity gauge by an eigenvector of
H, .

APPENDIX B: ASYMPTOTIC MOTION

(Bl)

where bf~'(i. ) is the instantaneous energy shift of a free
electron, which vanishes when averaged over one cycle,
and is given by

bf"'(r) =(fi /2jM)[kf k„(r)] —Vo(r)—Ef-
(fi /p)kf k„(r) .—

It is easy to verify that, if Ho ——p /2p,

(B2)

Ho+ V'"(~) i' e' "
~ kf, t& =—0,—' (B3)

a well-known result. (Often exp[ i8(i.)]
~
kf,—t & is re-

ferred to as the "Volkov" vector. ) In the length gauge,
since p does not coinmute with V'"( ), tahe state vector of
a free electron moving with mean momentum Akf is not
an eigenvector of p with constant eigenvalue Akf, it is an
eigenvector of p, but with an eigenvalue equal to the in-
stantaneous mechanical momentuin irikf (i.) =A'[kf
—k „(r ) ], which is not constant.

We now introduce an eigenvector of the atomic Hamil-
tonian H„namely,

where
~

C&i, & is an eigenvector of H„with eigenvaluef

Ultimately the electron is free and infinitely far from
the atomic potential 8', and its mean momentum is then
constant in time. The state vector of a free electron mov-
ing with momentum haik& in the absence of a field is just

~ kf, t&='exp( iEftl—h')
~
kf &, where Ef fi kf/2p a——nd

p ~ kf & —Akf
~ kf &. Since p commutes with V'"(r), the

state vector of a free electron moving through a field with
mean momentum Akf differs, in the velocity gauge, from

kf, t & only by a time-dependent factor, exp[ i 9(r )]-
say. This is true even in the strong-field limit P&"'& l. In
fact, we can always transform to the inertial frame where
the mean momentum of the free electron vanishes so that
Pf"' vanishes. The phase 8(r) is
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E&, which satisfies out-asymptote boundary conditions
and approaches ! kI) at large distances. At asymptoti-
cally large times the electron is at an asymptotically large
distance from the atomic nucleus and

100

! &I'(t) )~e ' '
! kI, t ) . (B5)

Note that the asymptotic limit, Eq. (B5), is accomplished
by adiabatically switching off the atomic potential 8 at
large times. This is done by multiplying 8'by the switch-
ing factor exp( rtt I—fi), where rl is positive but
infinitesimal. Effectively, this introduces an energy
spread g and corresponds to constructing a normalized
wave packet which represents a localized electron moving
far away from the atomic potential at large times. In the
limit that q vanishes this wave packet becomes the non-
normalizable ! 4I"(t)).

In the velocity gauge, !
4I' (t) ) correctly describes at

asymptotically large distances an electron moving
through the field, even if P' ~ 1. The gauge transform of

4f '( t ) ), namely, ! 4I '( t) ), is given by Eq. (2.10), and it
is not an eigenvector of H, when P';"'~ 1 because the
phase v(x, r ) cannot be neglected. This has important
consequences' ' for the formulation of a time-
independent theory in the length gauge, since the field
cannot be turned off in a time-independent formalism.
However, we can construct an eigenvector of H, which
does have the correct asymptotic form in the length
gauge. It is

I
O

/
I

&0 —i
— I

1

I

I

!
!

I

I

I

II I !
5

I I

&0 i5
r (a. u. )
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APPENDIX C: GAUGE INVARIANCE
IN THE WEAK-FIELD LIMIT

FIG. 8. Probability density ! (x!4; ))) ()!' (in arbitrary
0

units) vs the radial coordinate r =!x!, with x pointing along
the polarization vector, for a weak, linearly polarized field of
wavelength 532 nm (No ——6). We have, velocity gauge;
———,length gauge.

where

(B6a)
The lowest- (nonvanishing) order perturbation theory

expression for Mz can be derived in each gauge directly
from the original unmodified Floquet formalism by tak-
ing the weak-field limit, whereby gauge invariance is
preserved. We therefore expect that

(B6b)

recall that k&(r}=k&—k„(r). Thus ! KWI"(t)) is an
eigenvector of H, with eigenvalue fi kI(r)/2p, and it
asymptotically approaches the asymptotic form of
! 4I"(t)). Observe that ! KWI"(t)) is the scattering

wave vector used by Kroll and Watson' ' in their low-
frequency approximation for electron scattering from a
potential in the presence of a radiation field. The fre-
quency is considered low if the time 2irlto required for
the electron to absorb a photon is large compared to the
quantum collision time filE&. In this limit the electron
absorbs a photon while scattering from the tail of the po-
tential, when it is almost free. Consequently, at each time
t the electron state is represented by the wave vector for
the electron to scatter from the potential with asymptotic
momentum equal to the instantaneous mechanical
momentum fik~(r). The gauge transform of ! KWI"(t) ),
namely, ! KWJ"'(t) ), is given by Eq. (2.10),

(B7}

it is not an eigenvector of H„ the reason originating in
the fact that in the velocity gauge the canonical momen-
tum is not the instantaneous mechanical momentum.

where EI E, +N——fir(i and where ! 4Ig') is defined by Eq.
(5.1). However, the explicit proof of (C 1) requires some
manipulation. Indeed, it is perhaps remarkable that (Cl)
holds since (x!4I„"') is quite different from (x!4';„").
For example, in Fig. 8 we show the variation with radial
coordinate of ( x!4';g~, ) in each gauge for linearly po-

larized light of wavelength 532 nm (N(i ——6). A general
proof of Eq. (Cl), to all orders of perturbation theory, has
been given by Hailer and Landovitz and by Aharonov
and Au.

APPENDIX D: DYNAMICS NEAR A CURVE CROSSING

We derive here the coupled equations (5.9) for the
coeScients of the dressed-state eigenvectors, assuming
that there is an intermediate m-photon resonance (where
m =No, Noj ). We substitu—te

!
R(. t)) from Eq. (5.7)

into the Schrodinger equation

i)(—4'())l H(t)
)
w())), =d

dt
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where the total time derivative is

d 8 dI(t) 8
dt

=
a~, +

dt ar,
Noting that

(D2}

~ d —iS( ( t) —iS(( t )

l f1 e =E)8
t

(D3)

and using Eq. (4.36), observing that the time derivative in
Eq. (4.36) is the partial derivative (with I held fixed), we
obtain

(t)
e

dr(t) 8 l'NOI T
( ~)

dt
+a, (t)

dt BI
" I'+

Ol
(D4)

exp[tS, ,(t)—tN»r](l{, (r)
~

vanish upon integration over r and that, with

2~ o

x(0;(~) 4)(r)), (D5)

Now at the crossing point the (total) time derivative of
the phase mr+S; (t) is the frequency gap, which is very
small. Therefore in the region of the crossing point SJ(t)
is nearly equal to mr u—p to a constant. We premultiply

iS, (t)
the left-hand side of Eq. (D4) by e ' ( g; (r) ~, and we in-

tegrate over r treating mr+S;~(t), a&(t), and the time
derivatives of a&(t) and I(t), as constant over the cycle
time 2n /co Usin. g the orthonormality relation, Eq.
(4.37), we obtain Eq. (5.9a) after observing that the terms
in

a, (t) =cos f dI'U;,'(I') (D8a)

e' a~(t)= —sin f dI'U;& (I'}. (Dgb)

If the light propagates as a short powerful pulse, the in-
tensity necessarily varies rapidly in time, and then (D8}
provides a rather accurate solution to Eqs. (5.9). The
main contributions to the integrals over I' in Eqs. (D8)
come from the region of the crossing point, where UJ(I')
is large.

We can expand the "adiabatic" state vectors
~
f&(r) ),

1 =i and j, in terms of "diabatic" state vectors
~
dt(~) ),

where
~
dt(r)) is defined as the solution to Eq. (4.36)

when the atomic Hamiltonian H, is replaced by QtH, Qt,
where Qt

——1 —
) 4t )(4t (, with I'&I, I'=i or j. The

projection operator Q& removes the intermediate reso-
nance from

~
g&(r)) and the diabatic quasienergy eigen-

value curves actually cross at the resonance intensity I„.
We have

we have

U (I)+ U (I)= "dr"e
2m BI 0

dk(r)), I &I

i
d (r)) I)I (D9)

X (Q;(r)
~
tPJ(r)) =0, (D6)

where the last step follows from Eq. (4.37}. We see from
(D6) that U;;(I)=0. We can obtain Eq. (5.9b) similarly

by first premultiplying the left-hand side of Eq. (D4) by

(qJ(r)
~

~

If the intensity varies very rapidly, the coefficients at(t)
will change appreciably in absolute magnitude only dur-
ing a very short time interval when the intensity passes
through the crossing point. In this case we can treat the
phase mr+S;~ (t) as a cons.tant, equal to a, say, and Eqs.
(5.9) reduce to the equations

and, noting that the diabatic state vectors approximately
satisfy an orthonormality relation similar to Eq. (4.37),
we can write

~
P((r)) =cosX(I)

~

d;(r))+sinX(I)
~
dj(r)), (D10a)

~
gj(r)) = —sinX(I)

~
d;(r))+cosX(I)

I
df(v)), (D10b)

where the mixing angle X(I) is zero for I« I„and m I2
for I &&I„. Although the diabatic state vectors vary with
intensity, their variation is relatively slow, and to a first
approximation can be neglected; we thereby obtain

a;(t)= U„(I)e' a, (t),
d

(D7a) U (I) dX(I)
lj dI

(D 1 1)

e' a (t)= —UJ(I)a;(t), .

which have the solution

(D7b) and the short-pulse approximation (D8) yields

~
a;( ao )

~

=0 and
~
aj( ~ )

~

= 1, that is, a jump probabili-
ty of unity.
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