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The Compton profile produced by the 1s electrons of carbon has been calculated using (i) the im-
pulse approximation, (ii) the hydrogenic approximation, and (iii) a type of Hartree-Fock self-
consistent-field (HF-SCF) approximation. Significant deviations between the hydrogenic and the
impulse results are found for incident photon energies below 25 keV. Between the hydrogenic and
the quasi-HF-SCF results, the main difference is that the Compton defect and the maximum of the
profile are much smaller when using the latter approximation. These differences are discussed in
terms of simple models.

I. INTRODUCTION

The measurements of Compton profiles in solid-state
physics provide significant information on the behavior of
the valence electrons. In most cases, the experimental
profiles can be analyzed successfully in the framework of
the following approximations.

(l) The independent-electron (single-determinant wave
function) and frozen-orbital (no relaxation after ioniza-
tion) approximations, which amount to expressing the
Compton profile as a sum of one-electron contributions.

(2) The impulse approximation, which provides a sim-

ple expression for these one-electron contributions.
The first of these approximations is justified by the fact

that the Compton profile appears as the expectation value
of a one-electron operator [see Eq. (2) below]. The other
two approximations are justified if the energy b E
transferred from the photon to the electron is much
larger than the initial binding energy of the electron. '

These approximations have to be combined with a
choice for the orbitals representing the initial state of the
electron (and the final state if the impulse approximation
is not used; see, however, the theory developed in Ref. 2
where the explicit calculation of the final state is avoid-
ed). Each choice corresponds to a specific assumption on
the potential experienced by the electron. The validity of
this approximation is not directly related to hE.

In the present article we examine the effect of different

approximations in the case of the 1s level of carbon and
for the experimental conditions of the measurements
made recently at the "Laboratoire pour 1'utilisation du
rayonnement electro-magnetique" (LURE) on graphite
and graphite intercalated compounds (initial photon en-

ergy equal to 12858 eV, scattering angle of the photon
equal to 135', and energy hE transferred at the Compton
peak equal to 500 eV. Since the contributions of the core
electrons to the Compton profile are always present in the
experimenta1 results, they have to be taken into account
when comparing theoretical and experimental values
even though these electrons do not contribute
significantly to the structure of the solid.

If the impulse approximation is not used, the simplest
approach is obtained by using hydrogenic orbitals, '
i.e., assuming a potential of type —Z'/r, where Z* is
some effective nuclear charge. However, it is we11
known that the results obtained when using such a po-
tential are not always satisfactory. Therefore we shall
also study the effect of using a Hartree-Fock self-
consistent field (HF-SCF) type of potential instead of
—Z*/r.

II. THEORY

The general theory of the inelastic scattering which
gives rise to the Compton profiles is well known [see, e.g.,
Ref. 9]. The main steps of this theory are the following.
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If the energy range of the incoming photons is small
enough (compared to the electron rest energy mc ) the
use of a nonrelativistic coupling Hamiltonian is justified.
In atomic units this Hamiltonian is written

J=gJ;,

where

(4)

d 0'

dQ dE2
(E2/Ei) g ff g e

Th f j=l,N

x 5(Ef E; b,E—), —

(2)

where the following notations have been used:
(da/dQ)T„ is the Thomson scattering cross section; E,
and E2 are energies of the incoming and outgoing pho-
tons; E; and Ef are the initial and final energies of the
electronic system; f, and gf are the corresponding wave
functions; K is the vector difference k, —k2, where k, and

k2 are the initial and final wave vectors of the photons; r,.
is the vector position of the electron j; and N is the num-
ber of electrons. One can also define the Compton profile
as '"

H;„,= A /(2c ) —(p. A+ A.p)/(2c) .

If the energy transferred in the scattering process is large
compared to the initial binding energy of the electron,
then the p A+ A p term is negligible. If in addition the
coupling is weak compared to the in&tial energy of the
photon, then the first Born approximation is suScient.

Under these assumptions (which we assume to hold in
the experimental conditions considered here}, the
differential cross section for the inelastic scattering of the
photons is given by'

(5)

III. IMPULSE HYDROGENIC VERSUS EXACT
HYDROGENIC APPROXIMATION

We compare here the Compton profiles predicted by
the impulse and hydrogenic approximations in order to
illustrate the way in which the impulse approximation
breaks down in our case for sufficiently low values of the
transferred energy hE. According to the discussion
developed in Ref. (1), the Compton profile in the impulse
approximation is obtained from Eq. (5) by assuming
hE ~& —e, . After some algebra one gets'

J;(qz) = f f I ~;(q) I
'dqzdqY

where X;(q) is the Fourier transform of the initial orbital

y, and qz is given by

qz EE/——K —K/2 .

If, in addition, y; is approximated by an hydrogenic 1s

orbital,

y (r)=(Z,' /m)' e

d2CT

1Q 1E2
de E2
dQ ~ E,

(3)

where Z is the effective charge defining the potential,
then4"

J(qz)=8Z /[3n(Z +qz)3] .

In the independent-particie and frozen-orbital approxi-
mations it is first assumed that f; can be described by a
single Slater determinant. Furthermore, it is assumed
that the ionization takes place independently for all the
electrons so that Pf is a sum of Slater determinants where
the (bound) orbitals p; of g; have been successively re-
placed by (unbound) orbitals qf. Finally, all these deter-
minants are assumed to be independent.

The energy difference between each of the final deter-
minants and g, is equal to the difference between the cor-
responding orbital energies ef —e; [Koopman's
theorem "]. Note that e; is not necessarily equal to the
experimental ionization potential. Finally, one can thus
write the Compton profile in the form'

The Compton profile in the hydrogenic approximation
is obtained again from Eq. (5) by assuming that q; is
given by Eq. (8}and

graf
by'

yf (Zf'/4n qf )' [——1 exp( 2—nZf'/qf )] ' —e

X,F i (iZf /qf, l,i ( qf r qf r) ), — .

where qf is the asymptotic wave vector of the final elec-
tron. If the same effective charge Z* is used for y, and

yf one gets' "

J(qf )=—",'Z' K [1—exp( —2mZ'/qf )] 'expI —2(Z*/qf )tan '[2Z'qf /(Z' +K qf}]I—
x (3K'+Z*'+qf') [(Z*'+K'+qf')' 4K'qf]—
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qf ——[2(e, +b,E )]' (12)

We have determined the Compton profiles given by Eqs.
(9) and (11)using

[Notice that the plots (exact hydrogenic versus impulse
hydrogenic) in Ref. 1 are incorrect, as it has already been
pointed out by Mendelsohn and Smith .]

This Compton profile can also be expressed as a func-
tion of qz —like in the impulse approximation —by using

Eq. (7), the relation between E and hE which corre-
sponds to the geometry of the considered experiment, and
the relation

0.0S-

0.06-
E

0.04-

E

0.02-

~ pm'- - --0.05

- -0.1

--0.2

Z' =Z =Zf' =( —2e; )' (13)

and the value of e; given by the HF-SCF calculation, '

v1z. ,

e, =11.33 a. u. (14)

Two significant features of the resulting profiles are
seen in Fig. 1.

(i) The position q,„of the peak given by the hydro-
genic approximation is shifted to negative qz when the
incident energy E, decreases. At high values of E, , q,„
coincides with the impulse value. The value of E& de-

pends of course of the experimental conditions. If we as-
sume a resolution of 0.15 momentum a u. , then a
significant shift can be observed for E& lower than -25
keV.

(ii) Concerning the amplitude of J,„, the situation is
qualitatively similar: the values given by the two approx-
imations coincide at high values of E&, but the hydrogen-
ic value decreases faster than the impulse one when E,
decreases. If a relative difference of 10 is the smallest
that can be observed, it is seen that the difference be-
tween the two methods appear for E, lower than a limit
as high as -90 keV.

It must be emphasized that these limits concern the
difference between two approximate profiles (hydrogenic
[Eq. (11)] and impulse-hydrogenic [Eq. (9)] approxima-
tions) and not the diff'erence between the impulse and ex-
act profiles. However, the two approximate profiles are
obtained here with consistent approximations concerning
the electronic states: the same initial state is used in the
hydrogenic and impulse calculations, and the same
effective charge is used in the initial and final states of the
hydrogenic approximation. In other words, the same
electronic potential [—( —2e;)'~ /r] is used all through
these calculations. It is likely then that the differences
between the two computed profiles arise mainly from the
additional dynamica1 assumptions made in the impulse
approximation.

Concerning the experimental conditions under con-
sideration here, we conclude that the initial energy (close
to 13 keV) is below the limit of validity of the impulse ap-
proximation. This is in agreement with the fact that the
transferred energy in the region of the Compton peak is
not significantly larger than the initial binding energy of
the 1s electron (hE close to 500 eV;

~
e,

~

close to 300
eV).

0
0 20 40 60

E~ (keV)
80

FIG. 1. Compton defect q,„ in the hydrogenic approxima-
tion and relative difference 5J,„/J,„between the maximum
value of the Compton profile in the impulse and hydrogenic ap-
proximations vs the photon incident energy E~.

IV. HYDROGENIC VERSUS HF-SCF
APPROXIMATIONS

0.05.

0
0 1 2

Q (a.u.)
FIG. 2. Compton profiles. The number of each curve refers

to the method described in Table I.

We shall now study the difference between the Comp-
ton profile obtained in the hydrogenic approximation
(i.e., assuming that the initial and final electronic states
are eigenfunctions of a Hamiltonian with a potential
equal to Z'/r) —with the Compton profile obtained in a
HF-SCF approximation.

The advantage of the hydrogenic approximation over
the HF-SCF one is that it leads to simpler calculations
[see Eq. (11)]. However, the hydrogenic initial state is
not fully satisfactory, since it appears already in the im-
pulse result (see Table I, methods 1 and 2, and Fig. 2).

The HF-SCF approximation does not lead to a closed
expression of the profile. On the other hand, it corre-
sponds to a more realistic potential: the HF-SCF poten-
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TABLE I. Summary of the values obtained here for the Compton profile of the 1s level of carbon.

q, x is the Compton defect, J,x is the maximum value of the Compton profile, and tp; and yf are the
initial state and final state of the electron, respectively. The experimental conditions are described in

Ref. 3. The effective charge Z*=4.75931 used in the case of the hydrogenic and Coulomb states is
defined by the Eqs. (13) and (14).

Method
no. qmax Jmax

Impulse method [Eq. (6)]

hydrogenic [Eq. (9)]
HF SCF

0.178
0.153

hydrogenic
HF SCF
HF SCF

Nonimpulse method [Eq. (5)]

Coulomb [Eq. (10)]
Coulomb [Eq. (10)]

numerical [using
the potential
of Eq. (15)]

—0.207
—0.500
—0.112

0.164
0.142
0.133

tial for a given electron is close to —Z/r (Z is the actual
nuclear charge) in the region where the nuclear attraction
dominates the repulsion by the remaining electrons (small
r), whereas it is close to —1/r in the region where the nu-
clear charge is screened by the charge of the other elec-
trons (large r) instead of the same average value —Z'/r
everywhere, as assumed in the hydrogenic approach.

We will analyze the difference between the Compton
profiles obtained by these two methods by considering the
intermediate case of a calculation using a HF-SCF initial
state and an hydrogenic final state (Table I, method 4).
The physical meaning of such a calculation might seem
questionable: the two states are not eigenfunctions of the
same Schrodinger equation and in particular they are not
orthogonal. It will turn out, however, that this hybrid
calculation provides useful insights (see discussion
below).

V. HYDROGKNIC VERSUS HF-SCF INITIAL STATE

The algebraic calculation leading to the expression of
the Compton profile in the case of an HF-SCF initial
state and hydrogenic final state is outlined in Appendix
A. The results, obtained with the HF-SCF orbital of Ref.
13, are given in Table I (method 4).

It is seen in Table I that the resulting Compton defect

is significantly larger and the resulting maximum J,„
significantly smaller than the ones obtained by the hydro-
genic approximation [Table 1, method 3].

In order to interpret these two features we have deter-
mined the Compton profiles in the hydrogenic case with a
fixed charge Zf' given by the Eqs. (13) and (14) for the
final state and varying values of the effective charge Z
for the initial state. This is a hybrid calculation with the
same type of questionable physical meaning as that of
method 4. The corresponding expression of the Compton
profile J,. is given in Appendix B, and the results are
presented in Table II.

It is seen that increasing Z qualitatively results in the
same two effects as the ones found when replacing the ini-
tial hydrogenic orbital by a HF-SCF one (method 4). A
quantitative agreement can even be obtained: it is seen
that Z;*=S.53 a.u. reproduces fairly well the profile ob-
tained in the method 4 (Compton defect equal to —0.541
and —0.500 a.u. , respectively; maximum value of J;
equal to 0.143 and 0.142, respectively).

We conclude that the effect observed on the Compton
profile when changing the hydrogenic initial state into a
HF-SCF one can be simply described as resulting from a
scaling (such as the one obtained by changing Z;" in the
hydrogenic state) although the actual difference between
the two orbitals might be more complicated.

VI. HYDROGENIC VERSUS NUMERICAL FINAL STATE

TABLE II. Values q, x and J,x obtained with the method 3
of Table I with different effective charges in the initial state.

We consider here the effect of improving the potential
for the final state. We have used the V ' potential,

Z,* ZJ
q max

(a.u. )
Jmax

(a.u. )

V(r)= Z/r+J&, +—2[Jz, +(J +Jz +Jz )/3], (15)

4.5
4.76
5
5.53
6

4.76
4.76
4.76
4.76
4.76
4.76

0.118
—0.096
—0.207
—0.311
—0.541
—0.745

0.192
0.172
0.164
0.157
0.143
0.133

where Z is the actual charge of the nucleus and the Jk are
the Coulomb operators corresponding to the orbitals yk,

Jk«)= J d'»'I 0k«') I'/Ir-r'I . (1&)

This potential is not the HF-SCF one since we have re-
moved the exchange terms for convenience, but the orbit-
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als yk used for computing it are true HF-SCF orbitals
(deterniined with the exchange terms included). '

In fact, the main property that we require here for the
potential is that it is close to —Z/r for small r and to
—1/r for large r This is actually the case for the poten-
tial defined in Eq. (15) as seen in Fig. 3. A similar ap-
proach has been presented in Refs. 10 and 14.

A. Determination of the final-state wave function

The final state of the Compton process is an eigenfunc-
tion of the Schrodinger equation with the potential
defined in Eq. (15). In order to determine that function,
we first expand it in partial waves,

y =r '
g&CIfI(qI, r)P&(cos8),f (17)

where C& is a normalization factor, f& a function to be
determined, and 0 is the angle between the qf and r vec-
tors Th. e function f& is evaluated by a numerical integra-
tion of the corresponding Schrodinger equation on a grid
of points starting at small r with the regular solution (an
its derivative) corresponding to the potential —Z/r, "

I +1 IqI r
f&(qI, r)= (qrr) e

X iF, (l +1+iZ/qI, 2l +1, 2iq&r—) . (18)

In order to determine the normalization factor CI we
first write f& (for large values of r) in the form

Then the expression of f& given in Eq. (19) is compared
with the following normalized asymptotic form [cf. Eq.
6.90 of Ref. 12]:

CIfI ——A&[HI (qI, r)+exp(2ib&)H&+(qI, r ],
where

AI ——(2m) (2q/) '(21+1)i'

(20)

(21)

and H& are—defined in Eq. (6.69) of Ref. 12. Finally, b, i is
a phase shift that needs not be determined here. Using
E s. (19) and (20) and the relation between the asymptot-qs.
ic forms of F&, GI, H&+, and H& [Eq. (6.72) of Ref. 12]
one finds

Ci =2 Ai(a, +iPi ) (22)

J;(q/)=64~'&q& g (2l+1) '
~

Ci Jdr rf~(qIr)j~(Kr)
I

B. Determination of the Compton profile

have now to determine the Compton profile givene av
b E . (5) using the functions q&& defined on a grid o

iK rpoints. For that purpose we expand e' ' in partial waves
and PI(cos8) [appearing in Eq. (17)] as a sum of products
of spherical harmonics. This gives

f&(qI, r) =a(Fr(qI, r)+PIG((ql r (19)
Xqi, (r) [', (23)

where FI and GI are, respectively, the regular and irregu-
lar solutions of the Schrodinger equation corresponding
to the potential —1/r. The coefficients a& and P& are
determined by identifying the values of f& and of dfi dr
resulting from the integration with the asymptotic values
of Ft, GI, and their derivative given in Eqs. 14.5.1-14.5.8
of Ref. 15.

where CI and f& are determined as explained in Sec.
VI A, jI is the spherical Bessel function coming from the
expansion of e' ', and q&, is the HF-SCF 1s function
used in Sec. V. The integral in Eq. (23) is performed nu-
merically by a Gauss quadrature. The whole procedure
for determining C&, fI, and J; has been checked by using
the potential V(r) = Z "/r in—the numerical integration
and comparing the resulting profile with that given by
Eq. (11).

VII. RESULTS

-40-

-60
0.5 1

r (a.u.)

eniials
tential

(Eq.10)

1.5

FIG. 3. Potential V in the hydrogenic approximation (dotteotted
lines) and in the quasi-HF-SCF approximation (solid line) as a
function of the distance r to the nucleus.

The results of the calculations presented in Sec. VI are
shown in Table I (method 5). By comparing with the re-
sults obtained with method 4, it is seen that replacing the
hydrogenic final state by that resulting from the potential
of Eq. (15) increases the value of q,„(i.e., decreases

~ q,„~ ) and decreases J,„.
It turns out that these variations o qm, „andand J can-

not be explained by an analogy with the variations ob-
tained when changing Zf in the hydrogenic approxima-
tion. In order to demonstrate that, we have calculated
h C t ofiles in the hydrogenic approximation

E s. 13)with a fixed effective charge Z given by the Eqs. (

and (14) for the initial state, and varying values of the
effective c arge f off h Z' for the final state (this is a calculation
similar to that presented in Sec. V, but the roles of Z;*

d Z ' are interchanged; the expression for J; is given in

Appendix B). The results are presented in Table III: i i
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TABLE III. Values q,„and J,„obtained with the method
3 of Table I with different effective charges in the final state.

4.76
4.76
4.76
4.76
4.76
4.76
4.76
4.76

Zf

0
1

2
3
4
4.76
5.53
6

q max

(a.u. )

1.84
1.35
0.89
0.46
0.07

—0.21
—0.49
—0.65

Jmax
(a.u.)

0.178
0.183
0.184
0.179
0.171
0.163
0.156
0.152

0.1
0$

CL

N
L

0.05

seen that for Zf &2 the variations of qm, „and J,„as a
function of Zf are parallel instead of being opposite
when passing from method 4 to method 5. In addition,
for Zf &4, the value of q,„ is much larger than the one
found in methods 3 and 5.

Thus, in order to interpret the effect of improving the
potential used for determining the final state, we have to
go into a more detailed analysis of Eq. (5).

A. Variation of q,„

The most important aspect of this equation, in the
frame of the present discussion, is that e' '* and qf are
oscillatory functions. For instance, if qf is a plane wave
(hydrogenic approximation with Zf*=0), then the matrix
element in Eq. (5) is simply the Fourier transform of y,.
and the maximum is obtained when the vector K+qf
vanishes. Thus, after integrating over the final state (i.e.,
over the angle between the vectors K and qf }, it can be
expected that the maximum of J; is obtained when the
modulus of K and qf are equal,

(24)

[cf. also Appendix 8, Eq. (84)], or equivalently, when

q,„=—e;/K . (25)

Indeed, using the actual value of E at the maximum ob-
tained for. Zf'=0 (K =6.17 a.u. ) one gets from Eq. (25)

q,„=1.84 a.u. in agreement with the actual value (cf.
Table III).

When Zf ~0, the relation (24) cannot be satisfied over
the whole range of the integration for the matrix element
of Eq. (5) (i.e., r =[0,0c]). However, this might not be
necessary since y; is a bound state and can be considered
to be zero for r larger than some value r,„.

Let us consider the curve in Fig. 4 giving the partial
values of J,„obtained with Eq. (23) and the integral
over r restricted to a finite range from 0 to r,„.It is seen
that here r,„ is close to 1 a.u. : the matching between
e' ' and yf expressed by Eq. (24) has to be achieved only
in the range r =0 to r =1 a.u. in order to get the max-
imum J,„.

In addition, it is seen in Fig. 4 that the main contribu-
tions to J; comes from a rather small interval around a
mean value r close to 0.45 a.u. Thus if we define a local
momentum

0 0.5

FIG. 4. Partial values J(r,„~) ofJ,„(in method 4) evaluated
by Eq. (23) with the integral over r restricted to (0,r,„~}

qf(r) = [2[ef—V(r)] I
' (26)

where V(r} is the potential used for determining qf, we

can reasonably replace Eq. (24) by

qf(r)=K . (27)

[This equation (27) is likely to correspond better to the
actual maximum when the mismatch between e' ' and

yf over the interval r =[0,r,„]is not too large. ]
Equation (27) leads to

q,„=[V(r) e;]/K . — (28}

This expression can be checked in different ways. Firstly,
it can be seen that it predicts that q,„decreases when
Zf' increases, as actually found (see Table II). Secondly,
the slope (dq, „/dZf'), is found from Eq. (27) to be

f
equal to —1/(rK) = —0.36 a.u. , in reasonable agreement
with the slope resulting from the values given in Table III
( —0.49 a.u.). Finally, we note that the Eq. (28) explains
the shift of q,„when changing the potential,

5q,„=5V(r)/K . (29)

~hen passing from method 4 to method 5, this gives

Sq,„=0.40 a.u. , in good agreement with the shift that
has been actually found (5q,„=O.39 a.u. , cf. Table I).

B. Variation ofJ,„
Let us now turn to the variation of J,„when passing

from a hydrogenic to the quasi-HF-SCF final state (i.e.,
from method 4 to method 5 defined in Table I). As men-

tioned above, the matching between e' ' and yf ex-

pressed by the Eq. (24) or (27) can be achieved over the
whole range r = [0,r,„]only if yf is a plane wave. Oth-
erwise a perfect matching cannot be achieved and it
seem. s likely that J,„decreases when the mismatch in-

creases, i.e., when the variation of V(r) around the point
r = r becomes steeper.
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It is possible to construct a simple model that allows us
to check indirectly that the variations of J,„and of the
mismatch between e ' ' and yf are opposite. In order to
construct this model, we first need a precise definition of
the mismatch. It is directly related to the variation of
qf ( r) when calculating the matrix element in Eq. (5).
However, the definition qf (0)—qf ( ~ ) corresponding to
the total variation of qf ( r ) is not convenient here: The
range of r corresponding to r & r,„(r,„as defined in
Sec. VII A) does not contribute significantly to the matrix
element; the quantity qf(0) is unbound [qf (0)= ~].
Therefore we chose to define the mismatch 5q for a
given method m and a given final state q f as

5q qf ( r min ) qf ( rmax ) (30)

where r;„ is some reasonable value.
The model is then completed by relating the profile J

obtained in some method m (method 4 or method 5 in
Table I) and the profile Jp obtained with a plane-wave
final state (hydrogenic approximation with Zf =0): we
assume that the progressive setup of 5q in the course of
the calculation of the matrix element in Eq. (5) amounts
to a constant mismatch 5q in the case of Jp. Thus the
profile J obtained with a given final state is equal to the
profile JD obtained with a plane wave with momentum

qf ( r ) +5q

J (qf'( r ) )=Jp(qf ( r ) +5qm ) (31)

qf(r) +5q =qf (r) +5q (32)

If we consider now the value of qf(r ) corresponding to
the maximum of J, viz. , qf (r ) =K, then the Eq. (32)
gives

qf, ( r ) .=K +5q —5q (33)

[note that Eq. (33) is consistent with Eq. (31) if
5q —5q ~ & 0: otherwise one should interchange the
roles of m and m ']. Using Eqs. (7} and (26) we get the
value of q, for which J ~ is equal to the maximum ofJ

q, =q,„(m ')+d5q + (d5q ) l(2K)

d5q =6q —6q

(34)

(35}

We have determined numerically these quantities when
m ' is method 4 and m is method 5 using r;„=0. 1 a.u. It
gives q, =0.3 1 a.u. , which corresponds to J;=0. 134 a.u.
in method 4 to be compared with J,„=0. 133 a.u. in
method 5 (see Table I).

The meaning of the agreement between these two
values should not be overestimated because it strongly

[note that the Eq. (3 1) is valid only for qf ( r ) & K: if
qf (r }& K, the sign of 5q on the right-hand side of Eq.
(3 1 ) should be inverted, otherwise J and Jp would be
identical apart from a shift on the qf scale].

If we consider now two methods m and m ', the values
of the corresponding profiles (corresponding to two final
states q f and q f ) are equal if the arguments of Jp in Eq.
(3 1 ) are equal,

depends upon r;„At least the order of magnitude and
the sign of the variation ofJ,„between the two methods
are accounted for.

VIII. DISCUSSION AND CONCLUSION

We have compared the Compton profile of the 1s leve1
of carbon (corresponding to the experimental conditions
of Ref. 3), obtained in a pure hydrogenic approximation
(Table I, method 3) with that obtained in a quasi-HF-SCF
approximation (Table I, method 5). It appears that the
Compton defect is nearly the same in the two approxima-
tions, the maximum found in the latter case being slightly
closer to that found in the impulse approximation than
the former. This small variation of the Compton defect
appears to be the result of a compensation between two
larger effects: Replacing the hydrogenic initial state
by the HF SCF one shifts the maximum of the Compton
profile to a very negative value of q„because the HF-
SCF y; is more concentrated than the hydrogenic one
due to a more attractive potential at short distances of
the nucleus; replacing the final state gf nearly brings
back the maximum to q, =0 because —see Eq. (28)—the
quasi-HF-SCF potential is less attractive than the hydro-
genic one at intermediate distances of the nucleus. On
the other hand, the maximum value of the Compton
profile of method 5 is significantly smaller than that of
method 3 due to two cumulative effects: The HF-SCF
is more concentrated than the hydrogenic one (as men-
tioned for the Compton defect); the mismatch between

qf and e ' ' over the range of q, is larger in method 5
than in method 3 due to a steeper variation of the poten-
tial.

It is seen from this analysis that it is difficult to repro-
duce the results of method 5 in the fraine of the hydro-
genic model. Here, we have found that it would require
us to use the following effective charges: Z =6.9 1 a.u.
and Zf ——2. 59 a.u. The meaning of using such different
values is rather questionable from a theoretical point of
view; the value of Z corresponds to e; = —23.87 a.u. (in-
stead of —1 1.33 a.u. for the ls HF-SCF orbital); in addi-
tion, it seems difficult to find the values of these effective
charges without previous knowledge of the results of
method 5.

It has been suggested" to calibrate Z on the value of
J found in the impulse approximation with the HF-
SCF g; . Here, this gives Z, =5.53 a.u. ; then using

Zf =(—2e; )' =4.759 31, it gives J,„=O.143 a.u. ,

q,„=—0.54 a.u. It is seen that J,„might be con-
sidered to be reasonable, but q,„ is definitely too small
(or too large in absolute value).

One problem in method 5 is the neglect of the ex-
change terms in the potential. The effect of these terms is
difficult to evaluate exactly. However, the fact of neglect-
ing them results in a final state yf which cannot be exact-
ly orthogonal to the bound state. Here we have found at
qZ q max

('(Pf, qr„) =6.8X 10

('Pf f zs ) = 1.2X 10-',
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(jpf q„&=1.6X10-'

We conclude that the exchange terms are probably not
very important here. On the contrary, we have seen that
using the actual Coulomb part of the potential, instead of
the average corresponding to the hydrogenic model with
Zf' =(—2e, )', does provide improvements of the Comp-
ton profile which are significant compared to the accura-
cy of the present experiments.
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where y, (zf', qf, r) is the Coulomb wave of asymptotic
momentum qf and corresponding to the nuclear charge
Zf'; y&, (zi, r) is an exponential function with exponent

ZI
As explained above, the initial state is written here as

a least-square fit. '

Then, using Eq. (12) of Ref. 5, one gets a closed expres-
sion for
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APPENDIX A

(r)=

Eclat

i, (z, ,r},
l

and so

J;=K gcic J d qfMI'M 5(ef —e; hE}—

(A2)

(A3)

We outline here the computational method that we
have used to determine the Compton profile in the case of
method 4 (Table I), where the initial state y, is the HF-
SCF 1s orbital of the carbon atom and yf is a Coulomb
wave corresponding to a —Z/ /r potential. Several
forms for y; are available in the literature using either
Gaussian' or 1s and 2s Slater functions. ' However, only
expansion in terms of 1s Slater functions leads to a simple
evaluation of the matrix element of e' '. The use of 2s
Slater functions leads to a more complicated expression.
Thus the simplest approach consists of fitting the initial

y; by a combination of 1s Slater functions. In addition,
the use of Gaussian functions leads to a simpler evalua-
tion of the potential V(r) defined in Eq. (15}. Finally, we
have used the Gaussian expansion' and we have reex-
pressed it in a basis of 4 exponential functions with ex-
ponents obtained by multiplying ( —2e;)' (=4.75931
a.u. ) successively by 1, 1.5, 2, and 2.5. The expansion
coefficients of the orbital in this new basis are obtained by

J,. =2mKqf g cic~ f d (cos8)MI'M (A4)

where 8 is the angle between qf and K and the functions
MI' and M have to be evaluated according to Eq. (Al)
with qf ——[2(e, +b,E )]' . Finally, we evaluate the in-

tegral in Eq. (A4) by a Gaussian quadrature.

APPENDIX B

In the case of the method 3 (y; is the single Is hydro-
genic orbital corresponding to the effective charge Z
(yf is the Coulomb wave corresponding to the effective
charge Zfz + Z}f, we can again evaluate the Compton
profile via Eq. (A4). However, I and m have here a single
value, so that there is no summation. In addition, one
has I =m, so that the factors coming from a '~ and
(a +b)'r of Eq. (12) in Ref. 5 disappear in Ml'M& and the
integral can be evaluated algebraically. It gives

J(qf)=32Z;"Zf'K[1 —exp( 2n'Zf lqf)] '—expI 2zf qf —'tan '[2zf qf/(Z, 2+K' qf2)]]—
X I A2Z/(I+Z;"/qf )l[(Z;"+K ql ) +4qf'Z,"—]

+2A3zf'Z, '[(Z,* +K qf )(I Zf'Z, '/—qf ) 2Z—(Zg .+Z,')—]l[(Z +K2 qf2)2+4qf2z ']- .

+ A4Z (1+Zf* /qf )I,
where

(Bl)

A„=[(Z,* +K +qf 2Kqf)'
"—(Z;* —+K +qf+2Kqf)' "]/[(2n —1)Kq ] . (B2)

It can be checked that this expression reduces to Eq. (11}if Z,' =Zg and that it gives the following expression for a final
plane wave (Zf ——0):

J(qf }=(32Z;*Kqf/m)[(Z;* +K +qf) +4K qf!3]l[(Z; +K +qf) 4K qf]— (B3)

This last expression can also be written in the form

J(qf)=8Z, * [[Z,' +(K —qf) ] —[Z, +(K+qf) ] 'J/(3m) . (B4)

In this form it is clear that the maximum J,„ is obtained for q/ close to K as stated in Sec. VII A [cf. Eq. (24)] (in fact,
it is obtained for qf slightly larger than K due to the contribution of the second term).
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After the completion of the calculations presented here a new

set of the HF-SCF orbitals of carbon, expanded in a basis of
1s Slater functions, were published [M. Sekiya and H. Ta-
tewaki, Theor. Chim Acta 71, 149 (1987)]. Thus we have

compared the impulse Compton profiles calculated using the
four different expansions of the ls orbitals: Gaussian func-
tions (Ref. 13), 1s and 2s Slater functions (Ref. 16). 1s Slater
functions {Sekiya and Tatewaki listed above), and fit of the
Gaussian expansion by 1s Slater functions (this work). We
have found that the largest relative difference between any
pair of the profiles at the maximum is not larger than 10 ',
while the effects considered here are of the order of 10 ' (see

Fig. 4). We conclude that, for the problem considered in this
work, any further discussion concerning the best representa-
tion of the initial orbital of the electron is irrelevant.


