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Many-body dynamics on a time-dependent basis

E. S. Hernandez and D. M. Jezek

(Received 14 March 1988)

We propose a method of solution of the many-body Schrodinger equation that involves an expan-
sion of the wave function in terms of a finite, time-dependent basis of a relevant subspace. The
equations of motion for the expansion coe%cients generalize previous proposals of approximate dy-
namics. The method is illustrated in the case of an X-particle system with an SU(2) Hamiltonian,
and it is shown that it improves the approximation that disregards off-diagonal elements of the
dynamical matrices.

I. INTRODUCTION

The dynamical many-body problem is a subject of
current interest in view of the large field of applications
to nuclear and molecular collisions as well as to quantum
hydrodynamics. Among the most popular proposals to
construct approximate solutions of the full Schrodinger
equation, the time-dependent Hartree-Fock (TDHF)
method is largely perferred, in spite of the fact that its va-
lidity is restricted to short times. ' The traditional TDHF
procedure was enriched by the observation, posed by
Lichtner and co-workers, that the TDHF wave function
should be endowed with a time-dependent phase propor-
tional to the classical action computed on the TDHF
path. On the other hand, Suzuki introduces the action
phases to establish his description of the semiclassical
propagator that involves a superposition of Slater deter-
minants (equivalently, coherent states) moving along in-
dependent TDHF trajectories. Being a semiclassical ap-
proximation of the exact propagator, the corresponding
expression does not include interference terms.

In the present work we propose an alternative descrip-
tion of the dynamics, that, while preserving the quantal
nature of the system, allows the introduction of trajec-
tories on a classical phase space in the same spirit of
Suzuki's propagator. For this sake, in Sec. II, we present
the derivation of the law of motion of a wave function
that is expanded on a set of predetermined moving states,
starting from the Schrodinger equation. In Sec. III we
discuss the particular realizations of our general dynam-
ics, previously presented in the literature. An illustration
that involves a two-level N-particle system with TDHF
[SU(2}] coherent states as the moving set is presented in
Sec. IV. Section V contains the final conclusions.

II. THE WAVE FUNCTION
AND ITS EVOLUTION

~
q(t) ) =y a;(t)

~
g;(t) ) (2.1)

will be a solution of the Schrodinger equation provided

Let us consider an instantaneous (not necessarily or-
thogonal) finite-dimensional basis I ~

(p;(t)) ), where the
dynamics of each member of the set is predetermined. A
wave function

that the time-dependent coefficients satisfy

itic a;(t) a;—(t) 8 ih—
~
q;(t) ) = g v;

~
q;(t) )

=0. (2.2)

Although the basis need not be orthogonal, it admits
a spectral decomposition of the identity I
= QJ k Ik& ~ (pk ) ((pj ~; considering I to act on the left of
the null vector in Eq. (2.2), we easily realize that each ma-
trix element ((pj

~
v,

~ g; ) must vanish. This fact leads to
the evolution law

MA =—LA,
fi

(2.3)

where A is the coefficient vector, L is the Lagrangian ma-
trix with components

L, , (()= (q, (() (R Np;(()— —(2.4)

and M is the space metric with matrix elements

M, , (t}=((p,(t)
~ p, (t)) . (2.5)

A(t}=—M '(t)L(t)A(t) . (2.6)

In such a situation, it is no longer necessary to demand
the full Hilbert space to be a finite-dimensional one, since
it is sufficient that the subspace S(t) satisfies this require-
ment. This fact then induces an approximate procedure,
looking for wave functions of the form (2.1), within a
time-dependent set of the Hilbert space, that we believe
to contain most components of the true state during a

It is clear from (2.4) and (2.5) that the diagonal terms of
these matrices, respectively, are the Lagrangians
X, (y, ( t ), p, ( t ) ) and the norms of each basis state.

Up to this moment no approximation has been made,
so that Eq. (2.3) corresponds to the exact dynamics, its
solution depending on the predetermined law of motion
of the basis I ~

q&; (t) ) I. Moreover, if we know in advance
that the exact solution of a given Schrodinger equation
belongs to a time-dependent subspace S(t), such solution
is the restriction of (2.1) to the above subspace with
coefficients that evolve according to (2.3), i.e.,
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time interval that meets our observational needs. A nu-

merical illustration of such an approximation will be dis-
cussed in Sec. IV.

Let us now examine more closely the characteristics of
the dynamical rule (2.3). Since it is derived from the
Schrodinger equation, it is clear that both the norm

(l(
~

q)=A'MA

and the total energy &
a=(y ~Xt

~
li) =A'HA

(2.7)

(2.8)

M = (L L)— — (2.9)

which indicates that the metric is invariant if and only if
the Lagrangian matrix (2.4) is Hermitian; in such a case,
it becomes evident that the matrix T with

TJ] = g. le (2.10)

is Hermitian itself.
The Hamiltonian matrix (2.8) is time dependent, in

general. Its evolution law can be extracted from the ener-

gy conservation condition (d /dt)%=0 and Eqs. (2.6) and
(2.8), giving

(where H is the time-dependent matrix with components
H;~ = (y; ~

H
~ g&J )) are conserved quantities. On the oth-

er hand, the metric matrix M satisfies the following prop-
erties, which enable us to easily find its law of motion: (i)
Hermiticitp, M =M; (ii) positive definiteness, since (2.7)
ensures A MA )0 for any A vector; (iii) vanishing deter-
minant if and only if the states I ~

q&, )) are linearly
dependent; (iv) M is the identity in the subspace S(t) if
and only if the basis is orthonormal.

The evolution law of M can be obtained from the
norm-conservation condition (d/dt)(g

~
f) =0 for any

state
~
l() or vector A(t) and Eqs. (2.6) and (2.7). We

easily find

er the Lagrangian associated to the state
~
f) in (2.1),

X(g, P)= P ih —H—g = A LA+ifiA MA,
at

a„(t)= exp —f L (t )dt
o n, nO

= exp —f [(n(t')
~

no(t')) —5„„E„(t')jdt'

(3.3)

It is clear that the adiabatic approximation including
Berry's phase is obtained from (3.3) as one disregards the
nondiagonal overlaps (n

~
rio) with n diff'erent from no

In fact, in such a case the wave function (2.1) takes the
form

(3.1)

the corresponding Euler-Lagrange equation in the space
of variables (A, A ) is exactly (2.3). The solution of the
latter may be formally expressed as

A(t)= exp i' f dt'M '(t')L(t') A (0), (3.2)
0

and we may recognize several current dynamical descrip-
tions arising as particular cases of the above solution.
Let us consider the following situations.

(i) Time inde-pendent Hamiltonian 8 with orthonormal
eigenvectors

~

n ). In this case the evolution operator in
(3.2) is the usual propagator exp[ (i /fi)—8t ] of
Schrodinger equations that assigns phases exp( iE—„t/fi)
to each initial amplitude a„(0).

(ii) Time depend-ent Hamiltonian 8(t) with orthonor
mal instantaneous eigenvectors

~

n (t)). One may observe
that the Lagrangian matrix L is Hermitian while the
space metric M is the identity, thus the evolution opera-
tor in (3.2) is unitary. If we consider that at t =0 the sys-
tem lies at an eigenstate

~
no(0) ), the evolution law (3.2)

gives the amplitudes a„(t) as

H= (L M 'H H—M 'L) . — (2.11)
~
P(t)) = exp —f (no(t')

~

no(t'))dt'

Apparently, the right-hand side of (2.10) should not be
expected to vanish unless very special symmetries occur;
notice that the operator 6 =M 'L is the generator of
the motion (2.6) and that (2.10) actually is where

E„ t' dt' np t (3.4)

H= (G H —KG) . — (2.12) exp i /fi f E—„(t')dt'
0 0

Now, if the space metric is invariant, G is Hermitian;
consequently, Eq. (2.12) is a Heisenberg-like equation of
motion for H with 6 playing the role of a Hamiltonian.
Particular choices of the basis set and selected Hamiltoni-
ans 8 may yield commuting H and G matrices, in which
case H itself is a dynamical invariant.

III. RELATION TO OTHER
DYNAMICAL DESCRIPTIONS

It is interesting to notice that the dynamical law (2.3)
can be derived from a variational principle. If we consid-

is the traditional time-dependent phase of the adiabatic
approximation and

exp i/fi f (no(t')
~

rio(t')dt'
0

is the geometrical contribution commonly denoted as
Berry's phase. In this context, we may observe that
Berry's description is equivalent to reducing the Hilbert
space to the one-dimensional instantaneous subspace gen-
erated by

~

no(t) ).
(iii) Nonlinear propagation of a coherent state It is well.

known that when an X-particle system is described by a
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coherent state at t =0, a good short-time approximation
to its exact evolution is prescribed by the time-dependent
Hartree-Fock method. ' The determination of the proper
phase of the TDHF wave function is due to Lichtner
et al. , who showed that such phase should be propor-
tional to the action S related to the moving coherent state

~

+(t)),
S= J dt'(S(t')

i
E

~

S(t') ) .

Consequently, the TDHF wave function reads

~
tt»»(t)) = exp(iS/A')

~

4'(t))

= exp(iS/irt) UTDH„(t)
~

0'(0) ),

(3.5)

(3.6)

where UTDHF(t) is the nonlinear generator of the self-

consistent motion. ' We then realize that Eq. (3.6) is the
particular realization of (2.1) and (3.2) restricted to the
instanteous subspace generated by the coherent state

i
S(t)).
(iv) Superposition of coherent states at t=0. Let us as-

sume that the initial wave function corresponds to a su-
perposition of a finite number of coherent states

~
$, (0)).

Suzuki proposed a representation of a semiclassical
propagator that assigns the following structure to the
time-dependent wave function:

~ Ps ( t ) ) = g a, (0) exp( iS) /irt )
~

4', (0)), (3.7)

where S is given by (3.5) with the TDHF coherent state

I &,(t)) = U„„„l
&)(o

Once again we realize that this dynamical law is a spe-
cial case of the general one expressed by Eqs. (2.1) and

(3.2), that corresponds to the neglect of the nondiagonal
elements of the space metric M and the Lagrangian L in

the latter. The accuracy of such an approximation can-
not be guaranteed in advance in view of the nonortho-
gonality of the coherent states. ' In particular, the con-
servation of the norm and the energy should be subjected
to a special test for each selection of the initial superposi-
tion. This fact can be visualized as follows: The evolu-

tion law in (3.7} corresponds to the particular realization
of (2.6) that reads

A (t)= Md '(t)Ld(t) A—(t), (3.8)

where Md(t) and Ld(t) are the diagonal parts of the ma-
trices M and L; notice that Md is the identity if the
coherent states

~
1;(0)) are normalized. If we evaluate

the time derivative of the norm (Ps(t)
~
Ps(t) ) = A MA

and require it to vanish, employing (3.8) we reach the fol-
lowing condition:

A (M i [Ld, M]) A =0 .— (3.9)

We then recognize that the norm of the wave function
is conserved only under very special conditions that in-
volve the selection of the coherent states

~
$, (0) ), which

determine both the space metric M and the Lagrangian
Ld. A similar analysis can be carried upon the energy
leading to similar conclusions. By contrast, norm and en-
ergy conservation are guaranteed (cf. Sec. II) if the full

matrix M and L participate in the dynamics. This fact
leads to the approximate dynamics that we illustrate in
Sec. IV.

IV. ILLUSTRATIONS

We are particularly interested in the application of our
method to a two-level N-fermion system. The most gen-
eral Hamiltonian that includes two-body interactions can
be written in terms of the generators (J+,J,J, } or
(J„,J,J, ) of the SU(2) algebra as

H =Q J+—,
' JaJ (4.1)

and the moving frame is expanded by a set of coherent
states,

/~, )= ... ']0) .[I+ i~, i']' (4.2)

In the last expression,
~

0) is the unperturbed fermionic
ground state and the representation label J takes the
value N/2; the complex variables 4, are related to the
angular coordinates on the Bloch sphere with radius Jby

0;S=t —e
2

—I {P
I (4.3)

The predetermined law of motion
~
S, (t) ) is given by the

TDHF dynamics, whose phase diagrams for quadratic
Hamiltonians of the type (4. 1) have been widely investi-
gated.

We select an initial wave function built as a superposi-
tion of n [n &N+ 1, N+ 1 being the dimension of the
ground-state SU(2} multiplet] coherent states [Eq. (4.2)].
Since different TDHF orbits do not cross, a choice of n

linearly independent states
~
4;(0) ) guarantees linear in-

dependence throughout the time evolution,

g x,
~

4', (t)) = U""(t) y x,
~
z, (0)) =o (4.4)

if and only if A, ; =0 for any i. In such a case, one can as-
sert that the metric matrix M is invertible at all times as
demanded by the evolution law (3.2). For the sake of a
numerical illustration, we adopt the realization of the
Hamiltonian (4.1) with Q=(o, o, e) and a„,=a,„=X/
(N —1), where every other coeScient a," vanishes. In
previous works ' we have demonstrated that the TDHF
flow is given by the intersection of the Bloch sphere and
the quadrics in J space defined by the mean value of ex-
pression (4.1) evaluated with respect to the coherent
state. In the case under consideration, the quadrics are
hyperbolic cylinders; ' the phase flow for N =6 can be
appreciated in Figs. 3 and 4 of Ref. 9 for a strength
7=0.9 and 7=1.5, respectively.

The essential aspects of the dynamics (3.2) restricted to
n coherent states can be appreciated as we consider the
overlap

~
(P(t)

~
fz(t))

~
between the approximate and

the exact wave function for n =2. Figures 1 —3 display
the given overlap as a function of time for the choices of
initial conditions drawn at the upper right corner of each
plot, together with the overlap between Suzuki's wave
function (3.7) and the exact one. The parameters of this
calculation are 7=1.5 and N =6; it is clear that the
linear independence of the evolving coherent states is
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lait&hl condit&on
iat condition

Ety,
FIG. 1. Overlaps between the exact and the approximate

wave functions corresponding to Eq. (3.2) (solid lines) and to
Suzuki's approximation (dashed lines), expanded on two (n =2)
coherent states, as a function of time. The initial conditions are
indicated on the upper right corner.

guaranteed since they are different at t =0. The major
characteristic of this sequence of figures is the progressive
departure between the curves as time proceeds; this
departure is unobservable in the current scale in Fig. 1

and becomes substantial in Fig. 3. The whole sequence
shows that the approximate wave function expanded in
the moving basis yields a better approximate to the
modulus of the exact one than the wave function that
evolves with Suzuki's propagator. This is a general
feature of these two alternative descriptions that repro-
duces itself to different extents over a large sample of ini-
tial conditions; it should then call our attention to the
inaccuracy of disregarding off-diagonal contributions to
dynamical matrices, as discussed at the end of Sec. III.

The above observation can be enforced as we consider
the dynamical invariants such as the total energy and the

FIG. 3. Same as Fig. 1 for different initial conditions.

norm. Figures 4 and 5 display the energies as functions
of time corresponding to Figs. 1 and 2, respectively, and
in Fig. 6 we plot the normalization factor (P

~
f) of the

approximate wave functions in Fig. 3. These drawings
clearly exhibit the importance of the full Lagrangian and
metric matrices as compared to their diagonal restric-
tions [cf. Eq. (3.8)]; furthermore, the whole set of data
here presented strongly recommends the use of the
dynamical law (3.2) as an approximation to the exact dy-
namics.

V. CONCLUSIONS

The numerical analysis of the equation of motion (2.6)
[equivalently, (3.2)] for a particular N-particle system un-
der the most simplified choice of an expansion set, name-
ly, two independent coherent states that undergo a
TDHF evolution, brings into evidence the benefits that
the current method may provide. One realizes that a
reasonable approximation to the exact wave function, to-
gether with excellent conservation of both the norm and
energy, can be achieved during a large time interval as
compared to the unperturbed period A'/e. By contrast,
the goodness of such a description is considerably
lowered if one further simplifies the approximate dynam-
ics and disregards the oF-diagonal matrix element in the
Lagrangian and metric matrices; in particular, the

Initial condkon

w ~~gg ~ ~ 1 T

\

I
/r

FIG. 2. Same as Fig. 1 for different initial conditions. FIG. 4. Approximate energies on the conditions of Fig. 1.
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&y(t)~y (tj)"

FIG. 5. Approximate energies on the conditions of Fig. 2. FIG. 6. Normalization of the approximate wave functions in

Fig. 3.

dynamical invariants may be destroyed to a large extent.
One might thus wonder whether a full variational

description, where one submits both the evolution of the
expansion coefficients and the motion of the basis orbitals
to the corresponding Euler-Lagrange equations, could
improve the description. In other words, one may think
of giving up a predetermined law of motion

~ y, (t) ) and
extract a dynamics for the whole collection of variational
parameters Ia;(t),

~
y;(t) }j. On the one hand, such a

procedure doubles the dimension of the parameter space,
which in turn gives rise to a much more complicated
problem; on the other hand, one can prove that the ma-
trix in front of the time derivatives [cf. Eq. (2.3)] may be-
come noninversible, a fact that invalidates the treatment.
It is then more convenient, for safe applications, to rely
on a previously established dynamics for the moving
basis.

Along this direction, we can point out the following ex-
amples. In the first example, we recall that a numerical
TDHF calculation of a collision between two He nuclei'
parametrized by an initial impact parameter develops im-
portant variations in the size of the angular momentum

dispersion as time elapses. It is then of interest to select
an initial condition consisting of a beam of TDHF states,
whose dynamics is known from the previous calculations,
and investigate to what extent those large fluctuations
can be smoothed away. Another example of interest is
the case in which the Lagrangian [Eq. (2.4)] in the adia-
batic basis is a time-independent matrix; if thig happens,
the evolution law (2.3) becomes a Schrodinger-like equa-
tion with a new Hamiltonian 8= —I,. Diagonalization
of this matrix then yields the coefficients of the exact
wave-function expansion. This situation takes place, for
instance, as one considers a spin- ——, system in a rotating
magnetic field.
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