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The electron affinity of small clusters of rare-gas atoms like Ar„, Kr„, and Xe„ is calculated using
a dielectric continuum model. Thus, we obtain for Xe„a positive electron affinity for approximate-
ly n & 10. For small clusters (n =12) the excess electron is only weakly bound in a diffuse orbital.
For larger clusters (n & 25) we conclude that Xe„ is very stable. The clusters Kr„and Ar„are
strongly stable only when they are much larger (n & 100).

A single rare-gas atom has no electron affinity because
of its closed electronic shell. Liquid Ar, Kr, and Xe can
solvate excess electrons in a delocalized quasifree state. '

These electrons have a high mobility. ' The attractive
interaction between the solvated electron and the rare-gas
atoms arises from the induced polarization of the atoms
and is stronger than the effect of the repulsive short-
range interaction. Thus the energy of the electron is
lower than in the vacuum. In view of this, one expects a
transition from zero or no electron affinity for small clus-
ters to a positive electron affinity for large clusters. In
the following, the size dependence of the electron affinity
and the localization of the excess electron in rare-gas
atom clusters is studied in detail. Note that so far this
problem has not been studied very much experimentally.
Haberland et al. have tried to produce and detect Xe„
clusters for n (13,but without success. Theoretical stud-
ies by Thirumalai use a statistical superposition of
electron-atom interaction potentials to obtain a rough es-
timate of n =50 for the smallest sizes of stable Xe„. This
is a rough upper limit and it is important to improve this
estimate. Another study by Antoniewicz et al. shows
that large dielectric spheres could bind electrons at their
surface. However, no attempt was made to study the
electron affinity of clusters or rare-gas atoms and the lo-
calization of the excess electron inside these clusters.

We thus proceed as follows. The quasifree electrons in
liquid rare gas form a band. The energy Vo of the bottom
of this band determines the solvation energy; thus if
Vo(0 the liquid has a positive electron affinity and if
Vo &0 then there is no electron affinity. This energy Vo
has been determined from the photoelectric effect with
photoelectron emission into the liquid. ' lt is convenient
to divide Vo into three distinct parts, Vo = Vz

+ Vp~ + Vpp The interaction Vz with the repulsive
Hartree-Fock pseudopotential of the electrons of the
rare-gas atoms' increases the energy of the quasifree elec-
tron. The attractive polarization interaction between the
electron and the rare-gas atoms is much faster than the
movement of the excess electron and essentially instan-
taneous. Vt,~(r) is the potential energy due to this in-
teraction with the atoms which are in the immediate vi-
cinity of the position r of the electron. Vt,z(r) is the po-
tential energy due to the atoms which are farther away

from r and not included in Vpz. Note the important
difference to clusters of polar molecules such as (NH3)„
with a polarization interaction which is much slower
than the excess electron. Approximately, the contribu-
tions Vz and VpH should be the same in the liquid and in
the cluster because of their short range. Note that'
Vg + Vp~ & 0 and that without VpF (0 the energy of the
solvated electrons in the liquid would be positive. Thus
VpF which obviously depends strongly on the cluster
size, determines the electron affinity together with the
size-dependent kinetic energy of the excess electron. For
Vpp one can use a simple dielectric-continuum model be-
cause the Lorentz relation is a good approximation for
the local electric field in liquid rare gases. ' The effective
dielectric constant eL is obtained from the Clausius-
Mossotti relation and given by

Et = l +3a/(R ws —&)

where a is the electric dipole polarizability of the atoms
and Rws is the radius of a sphere of the atomic volume
(Wigner-Seitz radius). The density of the atoms is
p=(~4m.R ws)

To calculate the electron affinity of a cluster of n rare-
gas atoms X„we approximate the cluster by a sphere of
radius R =n ' Rws. It is now easy to obtain a rough es-
timate of the minimum size required such that the nega-
tively charged cluster X„ is stable. We assume that the
electron is localized inside the cluster. It should have a
high mobility as in the liquid gas. ' Thus we may use the
approximate wave function

P(r)=
~

r
~

'sin(~
~

r
~

/R)

for the electron. The kinetic energy of the electron is in-
creased by AEk;„——R m. R /2m as compared to the case
where the electron is in an infinitely large liquid. Similar-
ly, the attractive polarization interaction VpF is reduced
in smaller clusters because there are less atoms, which
can be polarized. The energy density of a dielectric in an
electric field Eo with fixed sources is w = ——,'P Eo where
P is the induced polarization. For an electron at the
center of a sphere of radius R and dielectric constant eL
we obtain thus the total dielectric energy W(R)
= W„+( l et ')e R —'/2, where W„ is the energy for
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the infinitely large (R =ac) sphere. Thus the potential
energy Vpp = W(R) is increased by bE «
=(1—eL ')e R '/2 and we obtain an estimate for the
energy E of the electron,

1 —&L eE(R)= Vo+
2m R2 2 R

(2)

e' &z,
—1

VpF(z)=- (z &d),
4z EL+1

near the surface

(3a)

Using data on liquid rare gases (Table I) we estimate the
critical number of atoms for which an excess electron can
be bound inside the cluster from E(n,'i Rws)=0. We
obtain for n, the following values: 820 for Ar, 210 for
Kr, and 73 for Xe. Note that this is only a very rough es-
timate because the wave function of the excess electron
would actually leak out of the cluster surface. This
reduces the kinetic energy and bound excess electrons are
already expected for smaller sizes.

We shall now examine the electron affinity in more de-
tail requiring extensive numerical work. We have to ap-
proximate the effective electron potential at the surface of
the cluster. We first consider the liquid which fills the
half space z (0 and has a plane surface at z=0.
Sufficiently far away from the surface we can approxi-
mate VzF with the electrostatic image-force potential.
At the surface this potential diverges and we have to use
a suitable cutoff. ' We set VPF(r)=const for all points
which are less than an appropriate distance d away from
the surface. With proper continuity we obtain outside
the surface (a= 1)

+ Vpz+ VPF(z) inside (see Fig. 1). Note that V(z)~0 for
z~+ ~, thus deep inside the liquid Vo ——V(z) (for
z~ —ao) and

2e
VR + Vp~ = Vo+ (1—eL-, ) .

4d
(4)

VPF(r)= '

,'eP (r), r &—R—+d
—

—,'eP (R+d), R —d &r &R+d
—

—,'e [P, (r) P, (R d)+—P, (R—+d) j,
r(R —d

Springett et al. ' provide an estimate for Vzz. From their
Eq. (14) we would obtain d =Rws/2 which is rather too
small. For the results presented here we have used a
larger value d =R ws. Note that the total potential V(r)
is independent of d except in a narrow region at the sur-
face.

We approximate again the cluster as a sphere of radius
R. The electron potential V(r) is then spherically sym-
metric and using the same model as for the liquid we ob-
tain

VR + VPN + VPF (
I
r

I »
V(r)=

VFF( Ir I »

where VR+ Vp~ are given by Eq. (4). Vpp(r) is calculated
similarly as for the planar surface of the liquid. If the ex-
cess electron is at a position r its charge —e induces a po-
larization P in the dielectric sphere. This polarization
gives rise to an electrostatic potential P at the position of
the electron. Using the same cutoff procedure as for the
planar surface we obtain

Vpp(z) = Vpp(d) ( d &z & d)

and in the liquid ( e =rl )

(3b)

e2 GL —1 e2
Vpp(z) = — ( 1 —eL

'
) (z & —d) . (3c)

4z eL(eL+1) 4d

We approximate VR and Vpz as constant inside the
liquid and zero outside. The total electron potential is
then V(z)= VPF(z) outside the liquid and V(z)= V„

where the factor —,
' arises because we consider image

forces. P(r) can be obtained from a multipole expan-
sion. " One obtains outside the surface (r & R)

TABLE I. Parameters used in our calculation: Vo gives the
bottom of the quasifree electron band in the liquid gas (Refs. 2
and 3), p is the density of the liquid gas (Refs. 2 and 3), a is the
polarizability of the rare gas atoms (Ref. 9). The following re-
sults are given: n, is the smallest number of atoms for which
the cluster has a positive electron affinity and nL is the number
of atoms required such that 50% of the density of the excess
electron is localized inside the cluster.
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Ar

—0.2
0.021
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Kr

—0.4
0.018
2.485

16
180
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—0.65
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4.05
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FIG. l. Radial density distribution r
i t(lr)

~

and effective
model potential V(r) for an excess electron at a Xe» cluster.
The energy eigenvalue is E = —5 meV. The reduced dielectric
constant e, has been used for the calculation. The surface of the

0
cluster at R =6 A is indicated by the vertical line. Note that the
discontinuities of V(r) are an artifact of our model and have
only a small influence on f(r) and the electron affinity.
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00 k R2k+
(r)=e(eL —1}g L+ + r

and inside (r &R)

k+1 r
eL k=o k~L+k+1 R "+'(r)= —e

The dominant part of these sums can be performed exact-
ly to obtain better converging forms,

sitive on d and the electron affinity decreases slightly if d
is increased. As an effective dielectric constant in Eq. (7)
we use Eq. (1) which estimates the dielectric constant of
the liquid. It contains contributions to the polarization
due to interactions between dipole moments of the atoms
themselves. This is quite reasonable for the larger clus-
ters but probably overestimates the polarization for the
very small Xe clusters. Thus we did another set of calcu-
lations using in Eq. (7) a reduced dielectric constant

e, =1+3a/R (10)
P&(r)=e

P&(r)=—

—S
1 r r —R r

1 1 R 2

2 2+
&L +1 « ~L, R' —r' R'

(7)

where

00
1S(x)= g x" .

, kent+k+1

The resulting VzF is negative everywhere. In the limit

eL ~~ we obtain for V~F the usual image potential at a
neutral metal sphere.

The excess electron is bound in the spherically sym-
metric potential in a state with zero angular momentum.
Its wave function is then of the form P(r) =u (

~

r
~
)/

~

r
~

and the Schrodinger equation reduces to the radial equa-
tion'

f2 d2
+ V(r) u (r) =Eu (r) .

2m dr 2
(8)

The appropriate boundary conditions are u(0)=0 and
u(ao)=0. If the lowest-lying eigenvalue E is negative
then the electron affinity is positive and equal to —E.
Otherwise, E is zero and the electron affinity vanishes.
Far away from the surface of the cluster the potential is
asymptotically V (r)-r Thus we .put in our numerical
analysis of Eq. (8} V(r}=0 for r &R +6, in a good ap-
proximation for a sufficiently large A. We are using
6=50 A, which is large enough because

~

V(R+5, ) &0. 1 meV in all our calculations. The
wave function is then u (r)-exp( Xr ) for r & R + b, an—d
X=( —2mE/fi )' for E &0. The outer boundary condi-
tion is thus (d/dr) lnu (R)= —g. This eigenvalue prob-
lem is then solved numerically. To examine how the elec-
tron is localized in the cluster we calculate the fraction
PI of its density inside the surface of the cluster

which only includes the direct interaction of the atoms
with the electric field of the electron. This reduces the
dielectric constant by about 20%%uo but the change in the
electron affinity is small. Results are given in Table I.
For Xe clusters the smaller numbers are obtained using
the larger dielectric constant eL of Eq. (1) and the larger
numbers using the smaller e, of Eq. (7). The difference
between these results is small and indicates that our cal-
culations should be reliable. For small clusters just larger
than n, the electron is bound in a very diffuse orbital.
The electron is localized inside the cluster only for much
larger cluster sizes (ni »n, ). For these sizes strong
binding is achieved. Note that the estimate n, obtained
from Eq. (2) agrees well with nL. Our results indicate the
Xe„clusters should be easier to produce and detect
than the other clusters considered here because they are
smaller. In Fig. 2 we show the size dependence of the en-

ergy E of the bound excess electron and the probability
PL of localization for Xe„clusters. Just above the criti-
cal size n, =6—9 the electron affinity is small and in-
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This is essentially the probability' to find the electron in
the cluster and characterizes together with the energy ei-
genvalue E how strongly the excess electron is bound.

The parameters used in our calculation are presented
in Table I. For the results shown here we use the cutoff
parameter d =R ws. Our results for the Xe„clusters de-
pend only weakly on this parameter and remain nearly
constant if the value for d is chosen between 0.5Rws and
2Rws. The results for the other rare gases are more sen-

FIG. 2. Energy E of the bound excess electron at a Xe„clus-
ter and the fraction PL of its density localized inside the cluster.
Curve a is obtained using for the cluster the dielectric constant
eL [Eq. (1)] of the liquid and b using a reduced dielectric con-
stant e, [Eq. (10)] which might be more appropriate for small
clusters. The dashed line shows the estimate for E according to
Eq. (2).
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creases only slowly with increasing cluster size. The elec-
tron is bound in a very diff'use orbital and the density of
the electron inside the cluster is small, see Fig. l. For
much larger clusters (approximately n & 25) the electron
is strongly bound and localized inside the cluster. The
same qualitative behavior is found for the other rare-gas
clusters and for a spherical square-well potential. '

We conclude from our calculation of the electron
affinity of rare-gas clusters that Xe„might be stable for

approximately n & 10. The excess electron is only weakly
bound for smaller cluster sizes and the marginally stable
Xe„clusters are probably difficult to produce and detect.
Larger clusters (n & 25) with a strongly bound excess elec-
tron should be observable more easily. Note that we in-
clude the screening of the interaction between the elec-
tron and the rare-gas atoms due to the polarizable atoms
which lie in between' . This will be increasingly impor-
tant for larger clusters.

'B. E. Springett, J. Jortner, and M. H. Cohen, J. Chem. Phys.
48, 2720 (1968).

W. Tauchert, Z. Naturforsch. 30A, 1085 (1975).
3R. Reiniger, U. Asaf, and I. T. Steinberger, Chem. Phys. Lett.

90, 287 (1982).
4H. Haberland, H.-G. Schindler, and D. R. Worsnop, Ber. Bun-

senges. Phys. Chem. 88, 270 (1984).
D. Thirumalai, in Large Finite Systems, edited by J. Jortner

et al. (Reidel, Dordrecht, 1987), p. 231.
P. R. Antoniewicz, G. T. Bennett, and J. G. Thompson, J.

Chem. Phys. 77, 4573 (1982).
7P. Stampfli and K. H. Bennemann, Phys. Rev. Lett. 58, 2635

(1987).
J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New

York, 1975).
9Handbook of Chemistry and Physics, 66th ed. , edited by R. C.

West (Chemical Rubber Company, Boca Raton, FL, 1986).
' M. W. Cole and M. H. Cohen, Phys. Rev. Lett. 23, 1238

(1969).
V. V. Batygin and I. N. Toptygin, Problems in Electrodynam-

ics (Academic, New York, 1964), p. 36.
t~G. Baym, Lectures on Quantum Mechanics, 2nd ed. (Benjamin,

Reading, MA, 1969).
t3The spherical square well potential is V(

~
r

~

)= —v &0 if
~

r
~

&R and V(
~

r
~

)=0 otherwise. Its dimensionless
strength is S =mR'UA '. A bound state appears first in this
potential if S & tr /8. For a slightly stronger potential the en-

ergy eigenvalue is E= —vS '(S —m /8) /8 with quadratic
critical behavior and the electron density inside the well is
PL ——S —m. /8 with linear behavior. This agrees qualitatively
with our numerical results and has a formal similarity with
second-order phase transitions.
After the first submission of our paper similar studies for Xe„
clusters were published by G. J. Martyna and B. J. Berne, J.
Chem. Phys. 88, 4516 (1988), using a diffusion Monte Carlo
method. In this study the screening of the electron-Xe in-
teraction due to the Xe atoms which lie in between has been
neglected. Our theory includes this screening and uses an al-
ternative model, somewhat simpler, for calculating the elec-
tron affinity.


