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Stark mixing of 2S muonic helium. I. Collisions with hydrogen atoms
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The transitions between the 2S and 2P states of the muonic helium atom (ap or He-p) in col-
lisions with hydrogen atoms are examined using the rectilinear-trajectory coupled-equation method.
The 2S level shift is included semiempirically and the target atom is approximated using the frozen
ground-state charge density. Partial decoupling of the coupled equations is achieved, and some sim-

ple approximations for the 2S-to-2P transition probability are derived and compared with the exact
solution of the coupled equations. The cross section obtained is fit by cr2s 2p =5.5 &(10 / v "ao for
v ~ 1, with the velocity v in atomic units, and muon-catalyzed fusion parameters are reevaluated us-

ing this expression.

I. INTRODUCTION

The hydrogenic-atom collisional Stark mixing rate of
the metastable 2S state into the 2P states is of interest for
a variety of physical problems. ' One such problem
occurs in the theory of muon-catalyzed d tand d--d

fusion. The muon may stick to the charged fusion parti-
cle to form muonic helium (ap at 3.47 MeV in d-t fusion
or He-p at 0.79 MeV in d-d fusion). The sticking may
occur in an excited state, or the atom may be promoted
there by subsequent collisions. To describe the muon-
catalyzed fusion kinetics, the Stark mixing rates for the
metastable 2S state in collisions with D2, etc. , are re-
quired. Due to collisional slowing of the muonic helium
ion, the mixing rates are needed for velocities below the
initial ap velocity of 5.83 a.u. (the atomic unit of velocity
equals ac, where a is the fine-structure constant and c is
the speed of light). The present work examines this prob-
lem using the formulation of Kodosky and Leon.

The Kodosky-Leon approach assumes that the hydro-
genic atom (or ion) follows a straight-line trajectory rela-
tive to the target described by a screened Coulomb poten-
tial. The interaction is taken in the dipole approxima-
tion. Assuming a spin-free basis of the four n =2 eigen-
functions readily leads to a system of four coupled first-
order differential equations. The model allows the energy
of the S state to be shifted semiempirically to take into
account the effect of vacuum polarization on the energy
of the S states of muonic atoms. The much smaller split-
ting between the 2P&&2 and 2P3/2 states, which can be
taken into account only if the muon spin is included in
the problem, is not expected to have any important
consequences and is neglected in this model.

The target in most experiments is actually a hydrogen
molecule rather than an atom. The results obtained in
the present paper are the Stark mixing cross sections for
np in collisions with H, D, or T atoms, represented by
shielded Coulomb potentials. The physics of the molecu-
lar problem is more involved and there is much to be
learned by studying this simpler system first. The insight

gained in the present work is useful for determining
which physical ingredients need to be included in the
molecular calculation.

The organization of this paper is as follows. Section II
contains a discussion of the coupled-equation approach
and its application to the calculation of the 2S-2P mixing
cross section. In Sec. III we examine the fixed-field ap-
proximation proposed by Leon and Bethe for the solu-
tion of the coupled equations. In Sec. IV we propose
analytical approximations for the 2S-2P transition proba-
bility that are expected to work for the large- and small-
impact-parameter regimes. The numerical results ob-
tained from the various approaches are presented and
discussed in Sec. V. Section VI discusses the application
of this work to muon-catalyzed fusion.

II. THE COUPLED EQUATIONS

The Kodosky-Leon (KL) model assumes that the clas-
sical straight-line trajectory approximation is valid and
that the collision takes place with a constant relative ve-
locity U at an impact parameter p. The basis for the mix-
ing process is taken to be the n eigenfunctions with
quantum number n, situated in the rotating frame defined
by the atom-target orientation vector. The S-state energy
lies at AEO relative to the energy of the nonspherically
symmetric states, which are taken to be degenerate. For
the states considered in the present work, the separation
between the n =2 levels and the n =1 or n =3 levels is
very large compared with the 2S-2P splitting, so the
n =2 single-manifold approximation is expected to work
well.

The specific problem considered here is somewhat
different from those considered by Leon and Bethe (LB)
and KL, so we begin by rewriting the KL equations in a
slightly more general form. Including the functional
dependence of the coupled equations on the nuclear
charge Z and the reduced mass M„of the hydrogenic
projectile and the screening constant p of the shielded
Coulomb potential target, we obtain
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R (t) denotes the distance of the atom from the target as
a function of time. The zero of time t is taken at the dis-
tance of closest approach [i.e., R (0)=p] and 8(t) is the
angle of the atom-target orientation vector at time t rela-
tive to that at t =0. For the parameter values P=Z =1
the above equations reduce to those of KL, and if in addi-
tion EEO =0, the equations reduce to those of LB.

With Eq. (1) specialized to n =2, the primary concern
of the present work, it is convenient to define the vector
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i.e., prior to the collision the atom is entirely in the 2S
state, and after the collision the components of a are
desired in order to determine the probability that the
atom has made a transition to one of the 2P states. The
problem is completely determined once the parameters p,
v, Z, P, and M„have been specified. However, some ad-

ditional manipulations prove numerically advantageous.
Any decoupling of the system of Eqs. (6) and (7) is use-

ful, and by introduction of the new vector c related to the
components of a by

ao
0

—1a1

ao
1

1a1

one obtains the new system

ic= Wc,

where

EEo 0 3F 0

(10)

Then the coupled equations are given by 0 0 i8 0
ia= Va,

where
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and the initial condition for the problem is

0
c( —~ }= (12)

The fact that V is Hermitian implies that the norm of
a(t) remains constant as a function of time. The initial
conditions imposed at time to must satisfy the constraint
that

I
a ( to )

I

= 1, because the model assumes that the
population is entirely in the n =2 manifold. By the con-
servation of the norm, then

I
a(t)

I
= 1 for all t; therefore

the model conserves probability.
The particular problem of interest for the current work

is to find the vector a( ao ) given the initial condition

0
a( —ao )=

F~szp= I
ci(~) I'+

I
ci(~ }I' (13}

where FSM designates the "full Stark model" in order to
distinguish this result from the various approximations
for the transition probability discussed later. Equations
(2}—(4) and (10)—(13) constitute the problem in the final
form.

All that remain to be considered are the computational
details of the calculation. The propagation of Eq. (10)

Clearly the c4 component is decoupled from the rest of
the system and, in fact, is zero for all times. Thus it is
only necessary to propagate the first three components of
c using the upper-left block of 8'. This block is Hermi-
tian, so the first three components of c conserve probabil-
ity. Finally, the mixing probability of interest Ppg pp is
defined by
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can be accomplished by any one of several numerical ap-
proaches. The technique used in the present work is the
Adams-Bashforth-Moulton predictor-corrector method.
Most of the available codes are designed for the propaga-
tion of real systems; however, Eq. (10) can be easily
rewritten in real and imaginary component form, yielding
a system of six real coupled equations. An integration
distance of a few screening lengths is adequate for the
calculation, and the system appears to be well behaved
for the values of parameters examined here.

Once the mixing probability is known as a function of
impact parameter, the Stark mixing cross section is easily
obtained by

~2S'-2P = ~ dP P 2S-2P
0

This integral is performed by numerical quadrature.

(14)

III. THE LEON-BETHE FIXED-FIELD MODEL

The model described in Sec. II contains most of the im-
portant physical interactions, and the resulting numerical
solutions are expected to yield accurate results for the
mixing probabilities. Nevertheless, it is of interest to ex-
amine whether simple approximations can yield reason-
able results with less effort. For the present work, these
further simplifications are primarily a matter of conveni-
ence since the numerical propagation of the three cou-
pled equations is not especially difficult. For large n, the
question becomes more critical because the number of
coupled equations grows as n, and the system can quick-
ly become so large that direct solution of the coupled
equations is either too expensive or numerically difficult.
This was the case for the mesic atom cascade process in-
vestigated by LB, who were led to consider solutions of
the system for levels as high as n =23; the accurate prop-
agation of the associated 1058-real-component solution
vector would appear to be rather difficult, even by today' s
computational standards.

For problems where the energy shift EEO can be
neglected, an approximation known as the fixed-field
model is of interest. LB proposed that, for transitions in
and out of the S states, the neglect of the angular cou-
pling terms present in Eq. (1) should provide a coupled
system whose solutions are in reasonable agreement with
those of the original system. They term the approxima-
tion the fixed-field model (FFM) and apply it to slow col-
lisions of mesic hydrogen atoms with normal hydrogen
atoms. Such an approach certainly achieves the goal of
simplifying the coupled system, because, in the Stark rep-
resentation, the equations completely decouple and can
be solved in analytical form. In addition, LB make a fur-
ther approximation that leads to an extremely simple
semianalytical method for obtaining the Stark mixing
cross section.

In the present paper the cross section is obtained
without recourse to such approximations. Nevertheless,
it is of interest to compare the exact numerical solution
of the full Stark model with the fixed-field model solution
and the LB approximation to the fixed-field cross section.
This section contains a brief summary of the LB results
for the fixed-field model, written out in a somewhat more

convenient form for purposes of computation.
The basic fixed-field model result obtained by LB is

that, for the manifold n, if the atom has unit probability
of being in the S state before the collision, then the prob-
ability that it is still in the S state after the collision is

2
n —1 —iN(n; j)
j=0

FFM
PnS-nS

n
(15)

where the "Stark phase" 4(n; j) is given by

.
)

3~n(2j n—+1) ((p )
2ZU PMp

and the function g is defined by the integral
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Equation (16) has been generalized to include the func-
tional dependence on Z and P, which are both unity in
the LB problem. The fixed-field model results are given

by LB essentially in the above form, and the integral of
Eq. (17) is to be performed numerically.

For purposes of calculation we provide expressions
that are somewhat easier to use than Eqs. (15)—(17). In-
serting Eq. (16) into Eq. (15) and performing the summa-
tion one obtains

FFM 1 ()i —1 )5(I)( )i )
n -nP s s —— 1 —2cos

n 4

(n +1)b&(n)
&sin

AC)(n)
X cosec

2

for n odd, and

FFM
Pns-ns 2

sin
n

n EC)(n) b4(n ),
cosec

2

(19}

for n even, where

b,4(n) = g(Pp) .
ZUpM„

(20)

4x Ei(2x), (21)

where KO and E& are modified Bessel functions and Lo
and L

&
are modified Struve functions. Expansions for all

these functions are provided in Ref. 10. Although sub-
routines are available for Ko and K&, Struve-function
subroutines appear to be quite scarce. Thus we provide a
simple analytical expression below for g(x) that seems to
be adequate for most purposes. We break the domain of

Although Eq. (17) can be integrated numerically
without difficulty, an analytical expression is more con-
venient. The integral of Eq. (17) can, in fact, be per-
formed analytically and one finds

g(x) =1—2x [Lo(2x)E) (2x)+L) (2x)I(.0(2x)]
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g(x ) = 1 ——x + x lnx +ax 3+bx3'
where a =0.3550 and b = —0.3338 for 0 (x (1,

g(x) =(0.890+ 1.665x +0.289x )e

for 1 ~x &2, and,

(22)

(23)

g(x)= x i e " 1+—'+
x' (24)

where a =1.190 and b =0.360 for x &2. The above ap-
proximation g(x) lies within 0.1% of the exact function
g(x) over the entire domain (0, ~ ). This analytical inter-
polative approximation can be easily extended to include
more terms in the expansions if greater accuracy is re-
quired.

In the current work, we limit our attention to the spe-
cial case of n =2. Then Eq. (19) reduces to

PFFM 2
P~q qq ——cos

2
(25)

definition of the approximation g(x) to g(x) into three
ranges:

IU. APPROXIMATIONS FOR THE 2S-2P
TRANSITION PROBABILITY

Section III contained a discussion of the LB fixed-field
model, which leads to extremely simple expressions (even
for large n) for the transition probability in and out of the
S state. In this section we limit our attention to just the
n =2 manifold, and examine the possibility of obtaining
more sophisticated approximations for the 2S-2P transi-
tion probability. The small number of coupled equations
involved means a more careful examination is possible.
The derivation of the approximation is facilitated by con-
sidering the large- and small-impact-parameter regimes
separately.

The large-impact-parameter regime, where the effect of
the collision on the system is weak, is the most straight-
forward case to consider. The choice of approximation
for this case is clearly a time-dependent perturbative ap-
proach. The treatment used to obtain the first-order per-
turbation result for the transition probability will be de-
scribed fully elsewhere, " so here we only list the final re-
sults. Upon performing the analysis one finds that, in the
first-order time-dependent perturbation-theory (PT) ap-
proximation, the transition probability out of the 2S state
is given by

where

&@(2)= g(PP) .
ZvpM„

(26)

Values of the function g in Eq. (26) are easily obtained
through use of the approximation g defined in Eqs.
(22)—(24). The mixing cross section is then obtained in a
fashion siinilar to that of Eq. (14) using

P2s2F(P)=[I+(P)] +[I (P)]
with

I~(p)= J dt s (1+2AS+2A.'s )e
3&2

Zv~M 0
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where we have introduced

s(t)=(t +2)'
The integral in Eq. (27) is readily performed by numerical
quadrature. The fixed-field approximation is compared
with other approximate formulations and with direct
solution of the coupled equations in Sec. V.

In addition to the fixed-field approximation, LB con-
sider a further approximation to reduce the effort re-
quired to evaluate integrals of the type appearing in Eq.
(27). A semianalytical approximation is derived that ap-
pears to be applicable only to collisions in large-n states
for which the bulk of the cross section arises over impact
parameters where the interaction is strong. The method
relies on the sharp cutoff of the transition probability due
to screening to eliminate appreciable contributions from
the perturbative region, a reasonable approximation for
slow collisions. This approximation does not appear to
be useful for the present high-velocity collisions because
here the majority of the cross section arises over impact
parameters where the interaction is weak. The present
collision satisfies neither the large-n nor the low-velocity
criterion, and we merely note that application of the
technique to this problem leads to substantial errors
(though, as it turns out, the error is opposite that of the
fixed-field approximation itself, so some fortuitous cancel-
lation occurs). Thus it is necessary to perform the in-
tegrals directly by numerical quadrature.

and

co =AEO,

r=piu,

A, =Pu .
The integral of Eq. (29) appears to be too complicated to
evaluate in closed form; nevertheless, the real, one-
dimensional integral is computationally much easier to
deal with than the propagation of the coupled system of
Eq. (10).

For co=0, however, the integral of Eq. (29) can be eval-
uated analytically. For this special case, I+(p) and
I (p) have the same value, designated here by Io(p), and
after a change of the integration variable the integral can
be written in the form

(31)

I( )
3&2

d
e [1 2+pe 2+yy ] (30)

ZupM i y (y —1)
where we have introduced y=PP. Using Eq. 8.432.3 of
Ref. 12, along with "Feynman's trick" of generating new
integrals by integrating with respect to a parameter under
the integra1 sign, ' ' one easily obtains

dy . =Ki. 2y
j( 2 1)i/2 1
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for all integer values of j, where Ki is the modified Bessel
integral function as defined in Ref. 10. This result does
not appear to be contained in the standard reference' un-
der any guise. Using the expressions for the Ki obtained
from Ref. 10, one obtains the final result

o(P) = [PPKo(2PP)+Ki(2PP)]
6&2P
ZvM„

(32)

where Eo and I(, are modified Bessel functions, and a
fortuitous cancellation has eliminated a rather unpleasant
expression involving modified Struve functions.

Inserting the result from Eq. (32) into the equation cor-
responding to Eq. (28), one finds that, in the degenerate-
level first-order time-dependent perturbation theory
(DPT) approximation, the transition probability out of
the 2S state is given by

'2

P2s 2p(P)-= [PPKo(2PP)+K&(2PP)]' .
ZvM„

(33)

P2s zz(p) = 4sin
(1+ )

+q sin mv 1+q (34)

The transition probability in this approximation violates
conservation of probability for small enough p, because
P2s 2p(p) diverges as p for small p. However, the ex-
pression is expected to be valid for large p in situations
for which the level splitting can be neglected.

The effect of a nonzero splitting co is to provide a cutoff
for the transition probability at large impact parameters.
As will be seen below, the cross-section integral of the de-
generate Coulomb model diverges logarithrnically with
the upper limit. A nonzero splitting suppresses this
divergence. " In the present model the assumption of a
shielded Coulomb potential provides a cutoff on the order
of a screening length, even if the splitting co is taken to be
zero. For the splitting to have any substantial effect, co

must be large enough that the "characteristic length" of
the cutoff associated with co is less than the screening
length p '. Thus, for very small co, the splitting may
have very little effect on the probability at any impact pa-
rameter for the shielded Coulomb model. For such situa-
tions, Eq. (33) should serve as an accurate approximation
at large impact parameters.

Now consider the small-impact-parameter regime. In
keeping with the previous comments about the role of the
splitting, we here set co=0 at the onset. Clearly, in this
region perturbation theory cannot be used and what is
needed is some type of analytically soluble coupled-
equation approach. An appropriate choice for this would
appear to be the degenerate Coulomb model (DCM), first
examined by Chibisov. For small enough impact param-
eters (and high velocities), it seems reasonable that most
of the mixing occurs near enough to the nucleus that
shielding can also be neglected.

Chibisov's degenerate Coulomb result for the transi-
tion probability out of the 2S state is given by

with

9
Z 2v 2p2M2

P

where we have introduced the functional dependence of q
upon Z and M„, both taken to be unity in Chibisov's
derivation. It is easily checked that P2s z~(p) falls off as

p for large impact parameters. Thus when Eq. (34) is
inserted into Eq. (14) to obtain the cross section, the re-
sulting expression diverges logarithrnically with the
upper limit. The transition probability of Eq. (34) can be
demonstrated to be less than or equal to unity for all real
positive p, so the degenerate Coulomb model conserves
probability. For small p, P2spp(p) has an oscillatory
character with the oscillations increasingly rapid as p
goes to zero.

We have obtained expressions for the 2S-2P transition
probability in this section that we expect to be valid for
large and small impact parameters. The analytical ex-
pressions given by Eqs. (33) and (34) both assume degen-
erate levels, while the perturbation result for large impact
parameters given by Eqs. (28) and (29) includes the split-
ting; however, the integral must be evaluated numerical-
ly. In Sec. V we evaluate the approximate expressions
discussed in this section and compare the results with
those obtained from the full Stark and fixed-field models.

V. NUMERICAL RESULTS

In this section we present results obtained using the
formulations described in Secs. II-IV. All the necessary
calculations are straightforward once the parameters
describing the collision have been specified. For the
problem at hand we have Z =2 and M„=201.069m„
where m, is the mass of the electron. For the energy
splitting of ap it is necessary to neglect the energy
difference between the 2P states (due to the absence of
spin in the model); thus, we take the average,
EEo =E ( 2S

& &2 ) —) [E( 2P
& ~2 ) +2E ( 2P3/2 ) ]= —0.0543

in electronic atomic units. ' In addition, we shall also
consider the complete neglect of the energy splitting (i.e.,
b,Eo ——0). The remaining Parameters, P, u, and P, are of
interest for a range of values to be specified when needed.

For the first calculation we consider the case of the col-
lision parameters p= 1 and u =5.83 a.u. These values
correspond to the problem of primary interest. This ve-
locity is that of the ap fragment immediately after the
decay of the compound nucleus, and p= 1 is the shielding
constant of the hydrogen atom in the 1S state. Table I
contains the Stark mixing transition probability P2z 2P, as
a function of impact parameter, obtained from the full
Stark model, the fixed-field model, and the large- and
small-impact-parameter approximations discussed in Sec.
IV.

The results of Table I indicate that for impact parame-
ters less than 5.0X 10 ao P3s pp(P) serves as a good aP-
proximation to P3sz~(p), while for impact parameters
above 5.0 X 10 a o P2s 3p(P ) accurately rePresents
P2s 2p(p). The analytical approximations used in this
manner are thus capable of providing the transition prob-
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TABLE I. Transition probabilities at U =5.83 a.u. calculated in different approximations. FSM is

the full Stark model, FFM is the fixed-field model, DCM is the degenerate Coulomb model, and DPT is

the degenerate-level first-order time-dependent perturbation theory for the full Stark model.

p (units of ao) FSM
P2S-2P

FFMP 2S-2P
DCM

P2S-2P
DPTP2S 2P

1.0X 10
2.0x10-
5.0x 10-4
1.0x 10-'
2.0X 10
5.0x10-'
1.0x 10-'
2.0X 10
5.0x10-'
1.0x10-'
2 OX10
5.0x10-'
1.0X 10+o

2.0X 10+

2.67X 10
9.90x 10-'
7.75x 10-'
6.24x10-'
7.82X 10
2.30X 10
6.34x 10-'
1.62X 10
2.60x 10-'
6.42x 10
1.52x 10-'
1.73 X10-'
1.69x 10-'
3. 17x 10-'

3.60x10-'
8.99x10-'
9.67x10-'
5.90X 10
8.21x 10
5. 16X 10
1.51X 10-'
3.89 x 10-'
6.05 X 10
1.41 x 10-'
3.05 x 10-'
2.89 x 10-'
2.39X10
3.92 x 10-'

2.65 X 10
9.90x 10-'
7.73 X10-'
6.22 X 10
7.81x10-'
2.30x10-'
6.34 X 10-'
1.62X 10
2.62x 10-'
6.55 x 10-'
1.64x 10-'
2.62x 10
6.55 x 10-'
1.64 X 10-'

6.55 x 10+'
1.64x 10+'
2.62 X 10+'
6.55x 10+'
1.64 X 10+'
2.62X 10
6.55 x 10-'
1.64x 10
2.61 X 10
6.42 X 10
1.52x 10-'
1.73 x 10-'
1.69x 10-'
3.17X 10

ability to an accuracy within 1% over the entire domain
of physical interest. In the regions where these approxi-
mations individually break down, the p behavior can
be seen from Table I for P2S 2P(p) at small p and for
P2s 2P(p) at large p.

Full Stark model calculations were also performed with
AEO ——0; no difference in the transition probability was
detected to the number of digits reported. Therefore the
vacuum polarization shift of the 2S level does not play a
significant role in the Stark mixing dynamics for this par-
ticular collision.

The fixed-field results, while having the correct qualita-
tive behavior, do not appear to be especially useful here if
quantitative accuracy is required. For this particular
physical problem (at much higher velocities than the LB
problem) the rotation of the frame has too much of an
effect on the physics for the neglect of the angular cou-
pling to be a good approximation over the range of im-
pact parameters of interest (by the "range of interest" we
mean the range that contributes substantially to the in-
tegrated cross section). The results of Table I indicate
that the fixed-field approximation overestimates the tran-
sition probability at medium impact parameters by about
a factor of 2, while at large impact parameters the
discrepancy is not as great.

Figure l contains plots of P2s pp(p) Pis 2p(p),
P2S 2~(p), and Pzs 2P(p), for impact parameters over the
range from 10 ao to 1.0ao. The dotted, short-dashed,
and long-dashed lines represent the FFM, DPT, and
DCM solutions, respectively. The solid line signifies the
FSM solution. The DPT and FSM solutions appear to be
coincident for impact parameters greater than 10 ao.
Near p=1.0ao the DCM solution is clearly failing, while
for p less than 2.5&10 ao the DPT solution exceeds
unity (thus violating conservation of probability). For
impact parameters greater than 2.0X 10 ao, the values
of P2S pp(p) are significantly larger than those of
P2S 2p(p), as indicated in Table I. Finally, note that
when the cross section is computed using Eq. (14), the

contributions from the range pictured in Fig. 1 are found
to constitute the vast majority of the total.

For small impact parameters the behavior of the tran-
sition probability is too intricate for the few values listed
in Table I over this range to be especially descriptive.
The highly oscillatory behavior for this region is clearly
visible in Fig. 2. Figure 2 contains plots of P2S 2p(p),
P2$-2p(p) P2s 2p(p), and -P2s 2p(p ), for im-pact parame-
ters over the range from 10 ao to 10 ao. Over this
range, the FSM and DCM solutions are coincident, and
the DPT solution exceeds unity (and is therefore off the
graph) for impact parameters less than 2.5X 10 ao.

10

10

I-
10

Cl

CQ

O 10
CL

CL
N 10
M
C4

10

I I I i I I ill

10 10
IMPACT PARAMETER (a j

10

FIG. 1. Transition probability for ap(2S)+Disap(2P)+D
at velocity 5.83 a.u. in the impact parameter range 0.001ap to
1.0ap. The full Stark model (solid curve) is compared with the
fixed-field model (dotted curve), the degenerate Coulomb model
(long-dashed curve), and degenerate-1evel first-order time-

dependent perturbation theory (short-dashed curve).
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FIG. 2. Transition probability for ap(2S)+Disap(2P)+D
at velocity 5.83 a.u. in the impact parameter range 10 ao to
10 ao. The curves are designated as in Fig. 1.
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Thus together the DCM and FFM solutions cover the
complete range of impact parameters.

Within 10 ao, both the DCM and FFM solutions ex-
hibit an oscillatory behavior, with the oscillations in-
creasingly rapid as p goes to zero. The FFM solution is
simpler and shall be examined first. The probabil&ty in
this case is equal to sin [—,h4(2)], with h4(2) given in
Eq. (26). The extrema occur at values of p satisfying
p=6((pp)/(kZvM„) for integer values of k; for odd k a
maximum of unity is attained, while for even k a
minimum of zero is attained. In the limit as p goes to
zero, g(pp) approaches unity; thus the extrema occur at
p=6/(kZvM„) for asymptotically small p.

The behavior of the DCM solution is somewhat more
complicated but can be explained with the help of Eq.
(34). Clearly, a minimum of zero is attained for the DCM
solution at values of impact parameter for which
(1+q)' =k, for even integer values of k. It can also be
shown, by use of elementary trigonometry, that P2s pp(p)
attains a maximum of unity at values of p for which
sin [—,'n(1+q)' ]=(1+q)/2q; this transcendental equa-
tion has a denumerably infinite number of solutions. The
only remaining features that need to be explained are the
minima that fail to attain zero. These correspond rough-
ly to values of p for which (1+q)' =k at odd integers k,
where the q sin [n(1+q)'i ] term of Eq. (34) is zero but
the 4sin [—,'n(1+q)' ] term is equal to 4. As q increases
(i.e., as p decreases), the effect of the nonzero term be-
comes diluted; consequently, the nonzero minima do

asymptotically approach zero as p goes to zero, as shown
in Fig. 2. Further examination of the equations indicates
that the DCM and FFM solutions asymptotically ap-
proach one another as p goes to zero. This can also be
seen by inspection of Fig. 2. Thus LB's claim that the
FFM solutions are satisfactory for small impact parame-
ters is indeed true here; however, for the present problem,
the range over which the FFM solution is a valid approx-
imation to the FSM solution does not contribute very
substantially to the cross section.

In Table II we examine the evaluation of the integral
occurring in Eq. (14), required for the cross section. It is
informative to break the (0, ac ) integration range into the
intervals (0,0.005), (0.005,0.5), and (0.5, ac ) and to com-
pare the contributions from these intervals separately.
For Table II we define the integral

P2
I(Pl P2) dPP~2s 2P(P) . -

P)
(35)

First consider the integral over the interval (0,0.005).
The contribution from the full Stark model is
5.74)&10 ao, while the contribution from the degen-
erate Coulomb model is almost the same, 5.73X10 ao,
as expected from the near coincidence of the FSM and
DCM solutions over this region. The contribution from
the fixed-field model is 8.89X10 ao, about 50'%//too
high. Conservation of probability can be used to deter-
mine that the upper bound on the integral over this re-
gion is equal to 1.25&10 ao, and from the oscillatory
nature of the functions it is reasonable to estimate the in-
tegrals by introducing a factor of —,', thus obtaining
6.25)(10 ao. All the integrals are in rough agreement
with this result. Finally, the DPT solution is seen to
yield a divergent contribution over this interval, but of
course perturbation theory is not expected to be applic-
able in the region of strong interactions.

Now consider the large-impact-parameter interval
(0.5, oo ). As seen from Table I, the transition probability
over this region is quite small and perturbation theory
works extremely well. Upon performing the integrals one
finds that the FSM and DPT contributions are both equal
to 2.63&(10 ao. The FFM contribution is found to be
3.99)& 10 ao, about 50% too high. The DCM contribu-
tion diverges, as mentioned previously, due to the long-
range nature of the Coulomb interaction.

Next consider the intermediate interval (0.005,0.5). In
both the full Stark and fixed-field models, the bulk of the
cross section arises from contributions over this interval.
The FSM contribution is found to be 2. 84)&10 ao,
while the FFM contribution is 6.32)(10 ao, more than

TABLE II. Integral [Eq. (35); the contribution to the cross section is given by 2mI(p„p2); i.e.,
o =2rrI(0, co )] I(p„p2) at v =5.83 a.u. in different approximations for specified ranges of impact pa-
rameter.

(pi, p2)

(0,0.005)
(0.005,0.5)
(0.5,-)
(Q, oo )

IFSM

5.74X 10
2.84X 10
2.63 X 10
3.68X 10

IFFM

8.89 X 10
6.32X 10-'
3.99X 10
7.61X 10-'

IDCM

5.73 X 10
2.97 X 10-'

IDPT

2.88X10
2.63 X 10-'
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two times too large. Over this region both the DCM and
DPT contributions are in fairly good agreement with the
FSM result, equal to 2.97X10 ao and 2.88X10 ao,
respectively.

Finally consider the entire interval (0, ao ). The cross
section is obtained from the integral l(0, ao ) by multiply-
ing by 2m. For the full Stark model, we obtain
0 2S 2p =2.3 1 X 10 a 0; for the fixed-field model
0 2S 2p =4.78 X 10 & 0 about fwo times too large. The
DCM and DPT cross sections are of course divergent.

We find that the accurate (FSM) integrated cross for
ap(2S}+D as a function of velocity can be adequately fit

by a simple power law

5.5X10
+2s-2p =

& 8 ~0
V

(36)

In conclusion, we comment on the effects of the ap-
proximations remaining in the present calculations. The
first question concerns the effect of deAections on the
cross section. DeAections have been shown to be impor-
tant in ionizing collisions of ap with H at U ~2 a.u. '

However, Stark transitions occur in collisions having
considerably larger impact parameters, and the straight-
line trajectory approximation consequently can be ex-
pected to still be a good approximation at least to veloci-
ties as small as 1 a.u.

A more serious problem may be the breakdown of the
dipole approximation. Upon examining the characteris-
tic lengths associated with the ap atom n =2 wave func-
tions, one finds that the dipole approximation is reason-
able outside the (0,0.005) interval but not well justified
within the interval. However, the transition probability
in this inner interval is saturated (i.e., oscillating between
zero and unity} under the dipole approximation to the in-
teraction and is probably also saturated under the more
realistic Coulomb interaction. Therefore one expects that
I(0,0.005)—=6.25X10 ao for either of the two interac-
tions by taking half the upper bound, as discussed earlier.
This interval does not contribute very substantially to the
cross section so the problems associated with the break-
down of the dipole approximation here are not especially
serious. The breakdown of the dipole approximation on
the low end of the (0.005,0.5) interval may be somewhat
of a problem also, but we do not expect the total loss in
accuracy to exceed 20%.

The present calculations neglect transitions out of the
n =2 manifold. The error resulting from this approxima-
tion can be expected to be no greater than the ratio of the
cross section for n-changing, charge-transfer, and ioniz-
ing collisions of ap(2S), which have been previously cal-
culated, ' to that for Stark transitions. This ratio is as
large as 0.3 (at v =4 a.u. ). However, the Stark transitions
come mostly from larger impact parameters, so the actu-
al error incurred is probably considerably smaller.

Next we examine the sensitivity of the cross section to
variations in the shielding. The physical problem of main
interest, of course, is the Stark mixing of ap due to col-
lisions with D2. Up to this point we have considered the
problem of Stark mixing of ap due to collisions with an
atomic screened Coulomb potential. The screening of the
nuclei in the D2 molecule will be somewhat difterent for

the molecule than for two noninteracting atoms. Howev-
er, if the cross section is not especially sensitive to varia-
tions in the shielding, then we can hope to model the
molecule with the compound atom model. We arbitrarily
modify the shielding by varying the shielding constant P.
Calculations were performed with P=0.9 and 1.1, with
the remaining parameters the same as used for the previ-
ous calculations. For P=0.9, the cross section was found
to increase by 1.6%%uo, while for P= 1.1 the cross section
was found to decrease by 1.6%. This behavior indicates
that the distortion of the screening cloud due to molecu-
lar interactions is not likely to have any substantial effect
on the cross section, so the compound 1S-atom model ap-
pears to be well justified.

However, even neglecting the sensitivity of the Stark
mixing to the distortion of the screening, there still
remains the question of whether simple superposition of
the cross sections can be used to obtain the total cross
section for the compound atom model. Looking at Table
II one finds that most of the contribution to the cross sec-
tion comes from impact parameters between 0.005ao and
0.5ao, a regime where perturbation theory works fairly
well. For trajectories far enough away from both of the
nuclei that perturbation theory is valid, there is certainly
a superposition principle at work; however, it is for su-
perposition of the amplitudes, not the probabilities. Thus
for trajectories parallel to the internuclear axis, perturba-
tion theory leads to a transition probability for the com-
pound atom model that is four times that obtained for the
single atom collision (at the same impact parameter). For
trajectories passing very close to both nuclei, the bound
on the transition probability would mean that passing
near the second nucleus leads to no net gain in the cross
section since the transition probability is already saturat-
ed. Cases where the trajectory passes through the neigh-
borhood of only one of the atoms behave more simply
and there are no significant molecular effects in the tran-
sition probabilities for such trajectories. A rigorous cal-
culation of the interference effects, which explicitly takes
into account the two-centered nature of the electrostatic
potential, is given in the following paper. '

UI. EFFECT ON MUON-CATALYZED FUSION
KINETICS

It has been recently shown to be necessary to separate
the 2S and 2P populations of muonic helium (ap or He-

p) for an accurate treatment of the kinetics in muon-
catalyzed fusion. Earlier treatments had either assumed
the two levels to be populated statistically, or in some
other steady-state ratio, at all times. The observed stick-
ing fraction (including stripping) and especially x-ray pro-
duction depend significantly on the Stark mixing rate.
The sensitivity was shown to be greatest if the true mix-
ing rate turned out to be slower than that used. In fact,
as shown in Fig. 3, the present calculation gives a Stark
mixing rate about a factor of 2 faster than that previously
used and hence does not greatly alter previously accepted
theoretical values of the muon-catalyzed fusion parame-
ters.

The calculations of muonic helium kinetics in muon-
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FIG. 3. Cross sections for ap(2S)+Disap(2P)+D as a
function of collision velocity. The data points are calculated
with the full Stark model and fit (solid line) by Eq. (36). The
dashed line shows the values used in Ref. 5.

catalyzed d tand d -dfusion -have been repeated using our
more accurate Stark mixing rate. Because the cross sec-
tion has been shown to be quite insensitive to the 2S-2P
energy splitting and straight-line trajectories are a good
approximation, the same Stark mixing rate can be used
for He-p as for ap. The results for muon stripping and
Ea x-ray production are given in Table III and compared
with the earlier results obtained using a smaller mixing
rate and with those assuming an infinite mixing rate. All
other rates in these calculations are identical so the

Muon-catalyzed d-t fusion
Present'
Previous
Complete mixing'

0.351 0.290 0.301 0.360
0.358 0.293 0.284 0.343
0.340 0.284 0.328 0.386

Muon-catalyzed d-d fusion
Present'
Previous
Complete mixing'

0.185 0.104 0.175 0.224
0.192 0.108 0.166 0.215
0.171 0.097 0.194 0.244

5.5X10-'
a 0 (present value).

3.7X10-',
ao (from Ref. 5 using the method of Ref. 7).

2s-2p + 00 (statistical).

S
+2S-2P

b
J2S-2P

differences derive from the Stark rates. The present re-
sults turn out to be about one-third away from those ob-
tained with the previous mixing rate toward those assum-

ing statistical mixing. These changes do not help resolve
the small remaining discrepancies with the experimental
values and strongly suggest that their explanation must
lie elsewhere.

ACKNOWLEDGMENTS

We are grateful to Dr. G.M. Hale for advice on the an-
alytic evaluation of some of the integrals. This work was
supported by the U.S. Department of Energy, in large
part by the Division of Advanced Energy Projects.

TABLE III. Stripping probability R and Ea x-ray produc-
tion per sticking in muon-catalyzed d-t and d-d fusion obtained
using different 2S-2P Stark mixing rates.

R N~
/=1. 2 /=0. 05 /=1. 2 /=0. 05
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