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Structure of clusters generated by spatio-temporai intermittency
and directed percolation in two space dimensions
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Within the sustained regimes of spatio-temporal intermittency occurring in coupled map lattices
and directed percolation with two space dimensions, fluctuating clusters are shown to be well de-
scribed by ordinary percolation concepts and critical exponents.

Following the success of dynamical systems theory in
describing deterministic chaotic phenomena in strongly
confined situations, much work is now devoted to the
study of spatially extended systems, aiming at a better un-
derstanding of the nature of turbulence. In this field,
many "intermediate" models in one space dimension (1D)
e.g., chains of coupled maps) have been introduced and
phenomenologically explored recently. ' A scenario
specific to weakly confined situations has been shown to
occur in various one-dimensional systems ' ' ' ' or
quasi-dimensional systems such as Rayleigh-Benard con-
vection in an annulus. "' ' It describes the transition
from a "laminar" (regular) state possibly unstable to lo-
calized perturbations of finite amp&itude to sustained re-
gimes of spatio-temporal intermittency where disorder
occurs both in space and time.

Previous work "' ' ' was devoted to a test, in the one-
dimensional case, of Pomeau's initial conjecture that the
transition to spatio-temporal intermittency is equivalent
to a phase transition of the directed percolation type, in-
dicating thus a path from turbulence in large determinis-
tic systems to critical phenomena in statistical mechanics.

Here we concentrate on the regimes of sustained
spatio-temporal disorder exhibited by the two-di-
mensional (2D) systems defined below.

The first one is a 2D square lattice of maps coupled by
diffusion. The local evolution law f (the elementary map)
is designed to fulfill the minimal requirements for exhibit-
ing spatio-temporal intermittency when coupled in an
array. ' ' It reads

rX if Xe[0,—,']
f (X)= r(1 —x) if Xe[ ,',1]—

X ifX&1, r&2

(only the case r =3 is considered in this work). The cou-
pled map lattice (CML) can be expressed as

X;"J+'=f (X;"~)+,'e[f(X;", )+f(—X,"+, , )

+f(X,,",)+f(X,,+, )

4f (X,"~ )], —

where subscripts denote the spatial position of the sites,

the superscripts the time, and e is the coupling strength.
The local evolution law consists of a chaotic repellor
(X & 1) connected to a continuum of fixed points (X ~ 1).
All sites whose local state is smaller (larger) than one are
then said to be turbulent (laminar). This system, in the
infinite size limit, possesses a critical coupling e, marking
the condition of propagation of disorder (turbulent sites).
For e& e, sustained regimes of spatio-temporal intermit-
tency are observed whereas the homogeneous laminar
state is the asymptotic state for e & e, .

Following the analogy developed in the 1D case, we
study the above CML in parallel with 2D directed bond
percolation (DP), considered here as a typical probabilis-
tic cellular automation with two local states one of which
is absorbing. Although emerging from many different
fields (flows in porous media, epidemics, forest fires, ...),
directed percolation is considered here in connection
with the problem of the transition to turbulence. As in
the one-dimensional case, ' ' active sites are said to be
"turbulent. " Also, the existence of an absorbing state is
crucial to model the metastability of the "laminar" state
in the deterministic systems. Furthermore, the system
can be viewed as a dynamical and irreversible process
mapped onto a 2D space. For numerical simplicity, we
use a body-centered cubic (bcc) lattice (two space dimen-
sions plus time) for which the state of a site is determined
by four equivalent "parents. " The only parameter is the
probability p for a bond to be active (opened) and the au-
tomation is fully defined by a set of five elementary prob-
abilities corresponding to all possible configurations of a
four-site neighborhood in a two-state medium with the
symmetries of the lattice. The transition is characterized
by the existence of a percolation threshold at p =p,
=0.287. For p &p„and in the limit of infinite systen. ts,
disorder (active states) propagates to infinity in time and
space, giving rise to sustained regimes similar to those of
spatio-temporal intermittency. For p &p, any arbitrary
initial condition evolves to the homogeneous absorbing
state, disorder being only transient.

As in one dimension, the transitions of both systems
have indeed many common features and are best de-
scribed in the framework of critical phenomena. In this
Brief Report, we will focus not on the transition point
but on the spatial structure of the clusters generated by
the two processes.
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FIG. 1. Typical snapshots of the spatial structure of directed percolation after the transient period following random initial condi-
tions. Similar pictures are obtained for the CML described in the text. Sites in the absorbing-laminar state are black. The size of the
lattice is N =50. The boundary conditions are periodic. (a) p =0.290 (just above the percolation threshold). (b) p =0.345 (in the re-

gion described in the text). (c) p =0.400 (above this region).

Above the threshold, and when starting from not too
particular initial conditions such as a homogeneous state,
both systems reach stationary regimes of spatio-temporal
intermittency with well-defined statical properties.

The mean fraction of turbulent-active sites f, goes to
zero when approaching the threshold from above. Far
away from this region, f, is close to one and the laminar-

absorbing clusters are small. For intermediate values off„turbulent and laminar sites are in roughly equal pro-
portions, giving rise to very intricate instantaneous spa-
tial structures (see Fig. 1).

Let us now consider this in terms of ordinary percola-
tion: At each time step, the spatial structure is viewed as
a particular realization of a site percolation problem on a
2D square lattice with unknown correlations. Near the
intermittency threshold, laminar-absorbing sites always
percolate and turbulent-active sites form small clusters.
On the contrary, there are only small clusters of laminar
sites and turbulent sites always percolate for the large
values of f, observed far away from the intermittency
threshold. Continuing the parallel investigation of our
two systems, we now focus on the precise description of
what happens in the intermediate region using the frame-
work of finite-size scaling theory.

Let us consider an ordinary site percolation problem
on a 2D lattice governed by a concentration parameter a.
We note R =R (a,L) the probability of existence, at con-
centration a, of a percolating cluster on a lattice of linear
dimension L. Sites of the same type are said to be con-
nected when they can be joined by a path of similar sites
following the grid lines of the transverse 2D square lat-
tice. (On a finite lattice a cluster is said to percolate if
there is at least one cluster connecting the "top" and the
"bottom" of the array). For an infinite lattice, R (a) is a
step function: R =0 below and R = 1 above a„the per-
colation threshold. We have numerically estimated R&

(R2), the probability for absorbing-laminar (active-
turbulent) sites to percolate for DP and the CML de-
scribed above.

Figure 2 shows the variation of R& and R2 with p for
different lattice sizes L in the case of directed percolation
on a body-centered cubic lattice. Results are similar for
the CML defined above. The curve in each set is clearly
approaching a step function when L increases. Two
thresholds are thus defined, one for the percolation of
absorbing-laminar sites, and one for the percolation of
active-turbulent sites (see Table I). This is a usual feature
of ordinary site percolation problems, for which the two

TABLE I. Summary of the values of the measured exponents for both systems at both thresholds. The exact values for ordinary
percolation are given for comparison. The thresholds and the v exponents are estimated from sets of curves similar to those of Fig. 2
for values of L between 50 and 400. The precision is 10 ' for the thresholds, 3)&10 ' for v. The error bars on the thresholds set the
precision of the corresponding concentrations to 5&10 . Exponents p were determined by varying L between 25 and 400 and by
calculating the mean size of the largest cluster over 2 &(10 iterations after a transient of 2)& 10 iterations starting from random initial
conditions. Exponents ~ were calculated on a 400)&400 lattice by cumulating the cluster sizes distribution over 2& 10 iterations, also
after a transient period following random initial conditions. The estimated precision on these exponents is 2)& 10

System

DP

CML

Site type

absorbing
active

laminar
turbulent

Threshold

p =0.315
p =0.345
e=O. 173
a=0. 186

Concentration

0.526
0.581
0.570
0.533

1.34
1.33
1.33
1.36

1.95
1.92
1.92
1.93

1 upper.

1.91
1.90
1.89
1.90

1.96
1.97
1.88
1.92

jef

2.05
2.07
2.05
2.06

Exact values for ordinary percolation 1.896 2.055
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FIG. 2. Directed percolation: variation with p and for
di8'erent values of the size L, of R

&
(R2) the probability of the

absorbing-laminar (active-turbulent) sites to percolate. The re-

sults are similar for the CML described in the text. The es-

timated asymptotic position of the inflexion point for large sizes
was used to determine the thresholds. 6, the quantity used to
calculate the exponent v, was measured on similar curves for
both systems and both thresholds by determining the p interval
delimited by the lines R =0.2 and 0.8. Each point was calculat-
ed during a simulation of 2000 iterations after a transient
period. Sizes L =50, 71, 100, 141, 200, and 400 were investigat-
ed but only L =50 (6), L =100 ( ), and L =200 (0) are
represented.

thresholds are related through duality. However, Table I
shows that the systems studied here both display critical
concentrations for the two thresholds which are not com-
plementary of each other. This lack of duality is not
surprising since the two types of sites (active-absorbing or
turbulent-laminar) are not equivalent in the dynamical
processes at the origin of the clusters, introducing local
correlations in contrast with the case of plain geometrical
percolation.

Scaling theory allows us to calculate critical exponents.
Firstly, the width 6 of the transition region between
small and large R scales as L ' ' in ordinary percolation.
This result is independent of the precise definition of 6
and we simply choose there the p interval between
R =0.2 and 0.8 (see Fig. 2). For both systems and both
thresholds we indeed find a good power law with an ex-
ponent close to the exact value of ordinary percolation
(see Table I). Secondly, we considered the scaling of the
size of the largest cluster S with L at threshold. For ordi-
nary percolation S ~L' l' with 1/p=df, the fractal di-
mension in mass of the percolating cluster. The condi-
tion a =a, does not have to be fulfilled exactly, provided
that a is close enough and above a, such that the linear
dimension of the lattice remains much smaller than the
correlation length.

This variation of S with L has been investigated for DP

and the CML at both threshold values together with that
of S„,the size of the largest cluster when it actually per-
colates. Although the scaling is very good in all cases,
the measured exponent for the variation of S is always
slightly larger than the exact value for ordinary percola-
tion (see Table I). However, this value is recovered with
a good precision for the scaling of Sz„(exponent pz„).
This is probably due to the fact that the periodic bound-

ary conditions used in the numerical simulations are not
taken into account when determining the cluster sizes.

Finally, we measured a third exponent by determining
the distribution of cluster sizes at the threshold. For
both systems and both thresholds we also find very good
power laws with ~ exponents close to but smaller than the
exact value for ordinary percolation. This is explained by
a finite-size effect and the exact value is recovered when a
parameter value close to the threshold is chosen such
that percolation occurs at all timesteps (R = I) (see ex-

ponents r,s in Table I). To select an effective threshold

value at a given size L is a usual procedure when trying
to determine exponents defined only in the infinite-size
limit such as ~.

In conclusion, the spatial structures of the clusters gen-
erated by spatio-temporal intermittency and directed per-
colation can be described in terms of ordinary percola-
tion. This is not too surprising since this analogy occurs
in a region far away from the intermittency threshold
where no critical dynamics is expected. In particular the
correlation length and time are certainly very small so
that the systems have almost no memory of their "histo-
ry." The spatial structure is then essentially random (ex-

cept for small scales where, for example, a checkerboard
pattern can be rather frequent) with the relative propor-
tion of sites fixed by the parameter (p or E); this is of
course the usual definition of an ordinary percolation
problem. Yet, the local correlations in space and time in-

troduced by the dynamics break the duality expected in

ordinary percolation and could even, for some particular
cases, alter the analogy put forward here.

Nevertheless, the spatial structures generated by two
systems studied here exhibit the exponents of ordinary
percolation which provides a promising tool to analyze
the statistical properties of spatio-temporal patterns. For
example, the behavior of the backbone of these percolat-
ing clusters quickly evolving in time could exhibit in-

teresting dynamics. The emergence of "critical proper-
ties" in a noncritica1 region may enhance the physical in-

terest of the phenomenon: both the deterministic and the
probabilistic systems are viewed as dynamical processes
on a 2D space where turbulent patches compete with
laminar domains. Halfway between turbulence and sta-
tistical mechanics, they generate time-dependent self-
similar structures in a simple and "natural" manner.

We would like to thank R. Bidaux, B. Derrida, and Y.
Pomeau for fruitful discussions and comments.
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7We first checked that the spatial structures were not simply
equivalent to ordinary percolation problem samplings real-
ized at each timestep with an effective concentration equal to
the instantaneous concentration of active-turbulent sites. As
a matter of fact, at a given parameter value in the region of
interest, there is no correlation between the fact that the sys-
tem percolates or not and its instantaneous concentration.
Furthermore, this quantity has normal fluctuations which go
to zero as the size increases.




