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Elastic constants of the hard-sphere solid from density-functional theory
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The isothermal elastic constants of the perfect fcc hard-sphere crystal are computed from our ap-

proximate density-functional theory and found to be in qualitative agreement with the computer-
simulation results over the full density region ranging from marginal stability of the solid up to the

close-packing density.

dinates, with a summation over repeated indices, while E

is a smallness parameter). Several sets of elastic constants
can be defined according to whether one considers the
elastic response to the "small-strain tensor, "
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2)(u, +u, , ), which governs the change in the position of
the points, or with respect to the "finite-strain tensor, "
g;J ——(e/2)(u; +oui, +Elk ukj), which governs the change
in the distances between the points. Unfortunately, these
different definitions have been denoted invariably C,"k& in
the recent literature. ' When the undeformed system
(e=O) is in an equilibrium state, the linear term of the ex-
pansion with respect to the strain of the free energy of
the deformed state, say, F [p,], around the free energy of
the equilibrium state, F [p, o], has to be balanced by the
equilibrium stresses of the undeformed state, T;, which
for the present system correspond to an isotropic pres-
sure p, T; = —p5; . Hence with either strain tensor one
has
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where V is the undeformed volume. The elastic response
of the system is defined then by the second-order term of
this expansion. Using the small-strain tensor E; one ob-
tains the elastic constants used in Ref. 1 —3, which in or-
der to avoid confusion, we will denote here A;Jkl.
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whereas the elastic constants, say, B; kI, used in Ref. 6
and 7,
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result from an expansion with respect to the finite-strain
tensor g, . Finally, a third definition, used in Ref. 4 and
5, results from an expansion of the stress tensor of the de-
formed system, say, T; (e):
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Recently, several authors' have considered the prob-
lem of the first principles determination of the elastic
constants of the hard-sphere fcc crystal from either
density-functional theory' or from computer simula-
tions. ' The resulting situation has raised some
doubts ' ' and it is hoped that the present report may
clarify the situation. Most of the problems originate
from the conflicting results which have been obtained
from two different versions of the density-functional
theory, whereas the two independent sets of simula-
tion results, ' although not identical, are mutually con-
sistent and require no further comments on our part.
The results of Jaric and Mohanty and Jones are qualita-
tively incorrect since they predict a negative elastic con-
stant (C&2) not seen in the simulations. ' To understand
the origin of this discrepancy it is necessary to recall here
that the theory used by these authors ' is based on a
second-order expansion of the free energy in the relative
density change between the solid and the liquid. As we
have shown elsewhere, ' this approximation predicts
only a metastable perfect crystal which can be further sta-
bilized within this second-order theory only by consider-
ing a very imperfect crystal with an unphysically large
concentration of about 10% vacancies. It is thus not
surprising that such a loose solid should also exhibit an
unusual elastic behavior. Contrary to a recent claim it
seems fair to us to conclude from this that the unexpect-
ed elastic properties found within this theory are ar-
tefacts of the underlying approximation scheme and not
of the density-functional theory per se. To show this
more explicitly we have computed the elastic constants of
the perfect fcc hard-sphere crystal within our own ver-
sion ' of the density-functional theory. " The basic
thermodynamic potential used to determine the iso-
thermal elastic properties is the Helmholtz free energy, F,
of a system of N particles enclosed in a volume V at tem-
perature T and of local number density p(r) such that

f v drp(r)=N, which we briefly denote F[p] Elasticity.
is concerned then with the behavior of F [p] with respect
to a small deformation of the system away from its equi-
librium state (see Jones for a more detailed account).
Such a deformation can be produced by a small uniform
strain induced by the linear point transformation,
r, (E)=r;+au,"r for any point r=[r, ] of the undeformed
system (here i and j are running over the Cartesian coor-
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which amounts to formulating a generalized Hooke's law.
These different definitions are not equivalent and lead, for
the cubic crystals under consideration, to the relations e=O

C]i =&ii —S = A ii

CU =&iz+p = A i2+u

C44=&~ —
S = A44

(5)

for three independent deformations u; . First, we consid-
er an isotropic compression, u,- =5, , for which

e, =3(C»+2C&z —2p), where e, is the corresponding
value of e and p the pressure of the equilibrium solid.

where we have used the Voigt notation A &=—A[,"][kI],
etc. , with a= 1 =(x,x), a=2=(y, y), a=3=(z,z),
a=4=(x,y), etc. As seen from (5) it is only when the
equilibrium system is taken at zero pressure, which is im-
possible for the hard-sphere crystal, that the three sets of
elastic constants [Eqs. (2)—(4)] coincide. Henceforth, we
consider C; kI of (4) as our basic set and determine them
by using for F [p,], the approximate free-energy density
functional proposed elsewhere ' but evaluated now for
the deformed system of local density p,(r), which we

parametrize by Gaussians centered around the deformed
lattice sites R;(e)=R; +au;, RJ'
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and with a modified (or relaxed) inverse width matrix
a;J(e).

In order to keep the algebra reasonably simple further
approximations are required with the purpose of limiting
the number of additional degrees of freedom describing
the deformed system. For simplicity we have left the
structural scaling condition (which fixes the effective
liquid ' used to describe the direct correlations of the
solid) unchanged and focused our attention on a;J(e) for
which we took the simple form a;J ( e ) = ( ao+ ea

& N,J
+ra,', with a,' proportional to u;, a,' =a'u, . Here ao
is the isotropic width parameter of the equilibrium crys-
tal (e=O) determined previously ' and a~ describes its
relaxation in the deformed state whereas a' takes into ac-
count the possible strain-induced anisotropy of the width
matrix. The two new variational parameters a, and a'
are then determined perturbatively by minimizing the
second-order-in-e expansion of F [p,] for a given e value.
We found that the results do depend here much more
sensitively on the number of variational parameters than
was the case' for the undeformed state (e=O). For in-
stance, with only one additional variational parameter
(a'=0), very large overestimates of the elastic constants
were found. With the two variational parameters used
here the improvement is already considerable but it is our
impression that in order to reach convergence within the
Gaussian approximation (6) a larger parameter space may
be required. The origin of this difficulty is easily under-
stood in terms of the increased anisotropy of the de-
formed crystal.

To proceed, the three elastic constants C», C,z, and

C44 can now be determined stepwise by computing the
quantity
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FIG. 1. Three dimensionless elastic constants C&*„C», and

C44 and the dimensionless pressure p* of the perfect fcc hard-

sphere crystal vs the packing fraction g = ( m /6)o'p with
p* =(o'/k& T)p and C*p ——(a'/kz T)C &. The full density
range of the solid is considered starting from the (theoretical)
point of marginal stability (g =0.51) over the point of two-phase
coexistence (g=0.545) up to a point (g=0.67) slightly above
random close packing (g=0.64) and only 10% below crystal
close packing (q =0.74). The curves correspond to the results of
the density-functional theory described in the text (based on two
variational parameters and the Percus-Yevick approximation).
On this scale the single Monte Carlo point of Runge and Ches-
ter (Ref. 6) at q=0. 545 cannot be distinguished from the
molecular-dynamics data (~) of Frenkel and Ladd (Ref. 7)
which cover a much larger density range. The results () of
Velasco and Tarazona (Ref. 5) are based on the Carnahan-
Starling equation of state and use three variational parameters.
The results of Jones (Ref. 4) are not shown here because they
correspond to an imperfect crystal.
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Next we perform a uniaxial stretch for which u; reduces
to u„=1 and zero otherwise, leading to e2 ——C». Final-
ly, we consider a shear deformation with u =u„„=l
and u," zero otherwise, leading to e&

——2(2C~+p). From
the knowledge of e, , e2, ez, and p (computed previously
8 —10) we determine C», C,2, and C44. The results are
shown in Fig. 1 where it is seen that (1) no unphysical
values, such as those reported in Refs. 3 and 4, are found
within the present density-functional theory, (2) the qual-
itative trends of the simulation results are correctly
reproduced over the full range of stability of the solid
(previous investigations have considered only a nar-
row density range around two-phase coexistence), (3) the
quantitative overestimations are similar to those found
elsewhere ' and partly inherent to the underlying
Percus-Yevick approximation used here up to the close-
packing density. Notice also that at marginal stability of

the solid the (theoretical) elastic constants appear to drop
to zero discontinuously.

Finally, it should also be observed that the computa-
tion of the isothermal elastic constants is similar to the
computation of the isothermal compressibility, a problem
which is already notoriously difficult in the liquid phase
even for present-day liquid-state theory. It may thus be
somewhat vain, at present, to try to perform more sophis-
ticated density-functional calculations in order to im
prove the quantitative agreement with the simulations,
unless very accurate equations of state for the metastable
liquid become available.
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