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We study the propagation of an elliptically polarized light beam normally incident onto an arbi-
trarily oriented liquid crystal in steady-state conditions. The Euler-Lagrange equations for the
molecular director and the equations describing the evolution of the beam polarization in the
birefringent medium are derived from a unique variational principle, which is proved to be con-
sistent with the geometric-optics approximation. The Hamiltonian formulation of the theory is
studied in detail. The conservation of total angular momentum and total free energy in the process
is derived from Noether’s theorem, and the theory of the adiabatic invariants is used to obtain a
new proof of Mauguin’s theorem of crystal optics. The general analytical solution of the propaga-
tion problem is presented for the important case of pure twisted structures. It is proved that two
particular solutions exist (called Mauguin’s solutions) obeying Mauguin’s theorem rigorously. Only
these solutions may exhibit the occurrence of the optical Fréedericksz transition. In general, multi-
ple optical thresholds are found. An analytical formula to obtain the thresholds is also derived.

I. INTRODUCTION

The study of the nonlinear interaction between intense
optical fields and nematic liquid crystals (NLC) has re-
ceived a great deal of renewed interest in recent years.!
The existence of a characteristic threshold intensity,
below which no molecular reorientation can be induced,
was demonstrated both theoretically? and experimental-
ly3 for the case of linearly polarized light incident onto a
homeotropically aligned sample. The underlying physi-
cal mechanism of such an effect, known as the optical
Fréedericksz transition (OFT), is essentially the same as
in the corresponding dc Fréedericksz transition.* The
geometry dictates, in fact, that the polarization of the
light beam remain linear in traversing the cell, even with
molecular reorientation.

There are a number of other dc Fréedericksz transi-
tions with different geometries to which one can also find
an optical analogue. In most cases, however, the under-
lying physical mechanisms of the dc- and optical-field-
induced transitions are very different, because the beam
polarization varies in propagating through the medium.
An example is the OFT in a planarly aligned nematic cell
induced by a light beam linearly polarized in a direction
perpendicular to the molecular alignment. A linearized
theory for such a process shows that even the threshold
behavior for the induced transition is characteristically
unique and quite different from the dc analogue.’ Clear-
ly, an exact theory, accounting simultaneously for the
optical-field-induced molecular reorientation and the
change of the light polarization, would be desirable.

A rigorous study of the action of an optical field on a
NLC is complicated because the field propagates in an in-
homogeneous anisotropic medium and therefore the elec-
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tromagnetic energy density, the Poynting vector, and the
polarization state, all vary in space throughout the sam-
ple. Zel'dovich et al.® realized that the optical-field-
induced molecular reorientation of the liquid crystal is to
be determined consistently with Maxwell’s equations. In
the Zel’dovich approach, the Euler-Lagrange equations
for the molecular director are obtained by minimizing the
total free energy with the components of the optical elec-
tric field held constant. The solution of Maxwell’s equa-
tions in the geometric-optics approximation (GOA) is
then introduced back into these equations to obtain the
final form of the differential equations governing the
director distribution in the sample.

A variational principle avoiding the somewhat indirect
method of Zel’dovich was proposed by Ong, who also cri-
ticized the Zel’dovich theory.” In Ong’s approach, the
GOA is introduced consistently in the free-energy density
from the beginning. The intensity (average energy flux
along the propagation direction) of the optical field enters
Ong’s theory as a fixed parameter. Although the ap-
proaches of Zel’dovich and Ong lead to the same final
equations for the molecular director, the latter approach
has the advantage of yielding a variational principle
directly related to the equations that one wants to study.
Both Zel’dovich’s and Ong’s approaches, however, have
been carried out in simple geometries, where the polar-
ization of the optical beam remains linear, even in the
presence of the molecular reorientation. This excludes,
for instance, twisted nematic structures (or cholesteric
structures with large pitch), that may be also interesting
for applications.

In this paper, a generalization of Ong’s variational
principle to arbitrarily distorted nematic structures and
to arbitrary polarization states of the light beam is
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presented, for the case of normal incidence. The physical
process is very complicated, in general, since all degrees
of freedom (splay, twist, and bend) of the NLC are cou-
pled together, with the parameters (e.g., Stokes’ parame-
ters) describing the polarization of the light. It would
therefore be very useful to derive both the Euler-
Lagrange equations for the director and the equations
governing the polarization state of the optical field from a
single variational principle so that one could then use the
powerful tools of analytical mechanics to find conserved
quantities or adiabatic invariants.

The paper is organized as follows. In Sec. II our varia-
tional approach is presented. In Sec. III the evolution of
the polarization of the light beam in the medium is stud-
ied and the relevant equations are derived. In Sec. IV the
conservation of the total (elastic plus optical) free-energy
and total angular momentum is derived from the Hamil-
tonian version of the theory. In Sec. V Mauguin’s
theorem of crystal optics is proved using the theory of
the adiabatic invariants. In Sec. VI the case of pure twist
is studied and the general elliptic-integral solution is
presented. Finally, in Sec. VII the occurrence of the op-
tical Fréedericksz transition is investigated and the multi-
ple thresholds are calculated.

II. VARIATIONAL APPROACH

Let us consider a NLC cell of thickness d confined be-
tween the planes z =0 and z =d of a Cartesian system of
coordinates. In the cell, the average molecular orienta-
tion is described by the director i =( sin cos¢, sinf sing,
cosf). The molecular orientation is not uniform, in gen-
eral. We assume, therefore, 0=6(z) and ¢=d¢(z),
neglecting the dependence on the x and y coordinates.
We shall consider in this paper the equilibrium orienta-
tion of the director, so that the angles 8 and ¢ are in-
dependent of time. In each plane z =const, the optical
axis is directed parallel to fi(z). A monochromatic beam
of frequency w is normally incident on the cell along z.
The polarization state of the input beam may be arbi-
trary. Because of the sample birefringence, the polariza-
tion of the beam changes as it propagates through the
cell. Since the medium is transparent, however, the beam
intensity I, defined as the z component of the average
Poynting vector, remains constant.

The NLC is assimilated to a slowly varying positive
uniaxial medium, so that 6(z) and ¢(z) vary appreciably
over a length much greater than the optical wavelength
A. Consistency with the GOA requires, however, that the
polarization state of the light must also change slowly
throughout the medium. This implies in turn that the
birefringence of the medium must be low. The charac-
teristic length I, over which the polarization state
changes appreciably is, in fact, I. ~A/[7(0)—n,], where
fi(6) and n, are the refractive indices of the extraordi-
nary and ordinary wave in the NLC. The condition
1. >> A then implies

n@)—n, <<1. (1)

We shall assume that this condition is satisfied

throughout the medium.
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FIG. 1. Directions of the fields E'”, D', E‘, and D' and of
the molecular director # in the liquid crystal. The vectors E'?,
D'®, and @i are are coplanar. The z axis is directed along the
propagation direction of the optical beam.

For normal incidence, in each plane z =const, the elec-
tric fields E© and E© and the electric inductions D ‘¢
and D@ of the extraordinary and ordinary waves are
directed as shown in Fig. 1. The total electromagnetic
energy density w is the sum of the energy density of the
two waves:

w=—[n2|E®|>+7%6) |E¥|?], )
87
where
neno
7(6)= 3)

N )
(n?cos?@+n2sin’0)!/?

and B =E'® —%(2-E). In Eq. (3), n, and n, denote the
extraordinary and ordinary indices of the material, re-
spectively.

Similarly, the total intensity I is the sum of the average
z components of the Poynting vectors S ‘° and S'® of the
two waves:

4 o = e
Izg[nolE( "1247(6) | E|?]. 4)

We describe the polarization of the optical field by
the Stokes parameter S,=|E,|*+ |E,|*=|E”|?
+|E?|% S,=|E,|*~|E,|% S,=2Re(E}E,), and
S;=2Im(E;E,). We introduce also the ellipticity e of
the polarization ellipse e=S3;/S, and the angle
Y=tan"!(S,/S,) that the ellipse’s major axis forms with
the x axis.

Observing that E\” =E, cos¢+E, sing and using the
identity

|E{¥ |2=1[So+S, cos(2¢)+S, sin(2¢)]
=1So{1+(1—e?)2cos[2(y—9)1} , (5)

we can write the total electromagnetic energy density as
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nltl [n2 8)—n2l{1+(1—e)'"?cos[2(y—¢)]}

=(I/c) NG 6)
n,++[7(0)—n,1{1+(1 cos[2(p—¢)]}

In deriving the last term in Eq. (5) we used the well-
known formulas

s;=(1—e?)"%cos(2¢) ,
s, =(1—e?)"%sin(2¢) , (7)
S} =e ,

relating Stokes’s parameters to the polarization ellipticity
e and the ellipse orientation angle .

In the limit of low birefringence [see Eq.
simplifies to

w=(In,/c)+

M}, w

(I/2¢)[7(8)—n,]
X {14+(1—e?)2cos[2(¢—)]} . (8)

Following Ong,” we take as a variational function the
thermodynamic potential density F, defined by
F=F,—w, where F,, is the elastic free-energy density of
the NLC, given by

Fo=21(k,, sin?0+ k13 cos?0) sin’0 (d ¢ /dz)?

+ 1k, sin’0+ k3, cos?0)(d0/dz)? , 9)

and w is given by Eq. (8). In Eq. (9), k,;, k,,, and k;;
denote the splay, twist, and bend elastic constants of the
liquid crystal, respectively.

We assume that the equilibrium orientation of the
molecular director in the presence of an intense optical
field is given by the functions 6(z) and ¢(z) for which

dez—f Fy—

The minimum is intended with respect to all varied
functions 6(z) and ¢(z) assuming fixed values at the end
points z =0 and z =d and for a fixed intensity I and po-
larization state (e, ) of the optical field.

The Euler-Lagrange equations resulting from principle
(10) read

w)dz =minimum . (10)

d /dz[(k,, sin’0+ k3 cos?0) sin’0(d ¢ /dz)]
+(I/c)[7(6) 1—e?)!2sin[2(p—¢)]=0,
[ky3—(ks3—k,,)sin?0]1(d?6/dz?)
—(ky3—ky,)sinf cosO(d 6 /dz)?
— sinf cosB(ky; —2(ky3 —k,, ) sin0)(d ¢ /dz)?
+(I/2c)7"(0){14(1—e?)"?cos[2(y— )]} =0
(11b)

—n, )( (11a)

with 7'=dn(0)/d6.

Equations (11) must be completed with the equations
governing the polarization state of the optical field. In
the cases where the polarization remains linear, Egs. (11)
coincide with the equations already reported in the litera-
ture.!—36-8

III. EVOLUTION OF THE POLARIZATION STATE

The evolution of the polarization state in weakly inho-
mogeneous birefringent media was studied by many au-
thors (see, e.g., the bibliographies on Refs. 9 and 10). In
these works, the basic equations governing the polariza-
tion of the light were derived from Maxwell’s equations
in the GOA. In the case of nonabsorbing uniaxial media
such as NLC, these equations may be cast in the form of
the precession equation'!"!2

ds/dz=QXs , (12)

where s=(sy,5,,53), 5;=8;/8¢ (j=1,2,3,) are the re-
duced Stokes parameters and () is given by

Q=(w/c)[A(0)—n,]( cos(24), sin(2¢), 0) . (13)

It is worth noting that Eqgs. (12) and (13) can be derived

from the thermodynamic potential F [see Eq. (15), below],

provided one considers F as a Hamiltonian function, hav-
ing 1 as generalized coordinate and

L=—I/w)e (14)

as conjugate momentum. As a matter of fact, /, is the
average angular momentum carried by the optical beam
along the propagation direction. The photon angular
momentum /, and the angle ¢, yielding the orientation of
the polarization ellipse, appear, therefore, as conjugate
variables in the Hamiltonian function F.

The thermodynamic potential F behaves as a Lagrang-
ian function with respect to the coordinates 6 and ¢ and
as a Hamiltonian function with respect to the coordinate
¥ and the conjugate momentum /,. In analytical
mechanics, a function behaving as Fis known as a Routh
function.'?

Taking F as Hamiltonian, one easily obtains
Hamilton’s equations for the angle ¥ and the ellipticity e:

d/dz=3F /dl,

= —(w/2c)[A(8)—n,1[e/(1—e?)"?]
xXcos[2(y—a¢)], (15)
de /dz =(w/I)3F /3y
=(w/c)[A(0)—n,](1—e®)"2sin[2(p—¢)] . (16)

The equivalence between Egs. (15) and (16) and Egs.
(12) and (13) is easily recognized using relations (7).

Equations (11a), (11b), and (15) and (16) form a com-
plete set of differential equations that can be solved for
0(z), ¢(z), e(z), and ¥(z), once appropriate boundary
conditions are given. In Sec. VI, a particular analytical
solution of these equations is presented.
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IV. HAMILTONIAN FORMALISM
AND CONSERVED QUANTITIES

In order to find conserved quantities for the set formed
by Egs. (11) and (15), it is convenient to put the theory
into a fully Hamiltonian form. The Hamiltonian H, cor-
responding to the Routh function F, is given by

H(P6y9§P¢>¢; —lz’l/l)
=Ho(pg,60;p4,0)+w(0,4;—1,¢), (17)

where w is the electromagnetic energy density (7) ex-
pressed as a function of /, by means of Eq. (14) and the
Hamiltonian H, [corresponding to the elastic free energy
(9)], is given by

Hy=1(ky, sin®0+ k33 cos?) sinze]_]pi

+3(ky, sin*0+ k3 cos’0)~'pJ . (18)

Notice that in the Hamiltonian H the momentum con-
jugate to the coordinate ¢ is —[, =+ (I /w)e. Since H is
independent of z explicitly, its value E is a conserved
quantity along with the solutions of Egs. (11) and (15).
The quantity H =FE =const has a simple physical mean-
ing. The Hamiltonian H, in fact, has the same numeri-
cal value of the elastic free energy F,. The total Hamil-
tonian H is therefore equal to F =F+w, i.e., to the total
free-energy density F in the sample. We then conclude
that the equilibrium state of the whole system (NLC plus
optical field) is characterized by a uniform distribution of
the total free energy (elastic plus optical) throughout the
sample. This interesting result could hardly be obtained
from Egs. (11) and (15) without using the Hamiltonian
approach.

The Hamiltonian H depends on the difference ¢—¢
only and therefore it is invariant with respect to the
transformation ¢—¢+8;¥—yY+6 (8 arbitrary). By
Noether’s theorem, this implies the conservation of the
sum of the momenta p, and —/,, conjugate to ¢ and ¥,
respectively:

Py+(—1,)=(k,, sin?0+k;; cos?0) sin?6(d ¢ /dz)
+(I/w)e =const . (19)

The conservation law (19) has also a simple physical
meaning. The momentum Py in fact, is the negative of
the angular momentum flux carried by the elastic forces
in the NLC along the positive z direction.'* From Eq.
(14), we see that, therefore, relation (19) expresses the
conservation of the total (elastic plus optical) angular
momentum flux along the beam propagation direction.

V. MAUGUIN THEOREM

The Hamiltonian approach leads also to a new proof of
Mauguin’s theorem of crystal optics.'* Let us consider a
twisted uniaxial structure as it could be obtained, for ex-
ample, by arranging a stack of N birefringent plates with
their optical axes at angles ¢; (i=1,2,...,N) with
respect to the fixed x axis. The number N of plates is as-
sumed to be very high and its optical thickness very
small, so that the discrete distribution of the ¢; can be
approximated by a continuous function ¢(z). The func-
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tion ¢(z) may be arbitrary, but it is assumed to vary very
slowly over the optical wavelength.

A linearly polarized light beam impinges normally
onto the stack with its polarization parallel (or perpendic-
ular) to the optical axis of the first plate, located at the
plane z =0. Then, Mauguin’s theorem states that the po-
larization of the beam follows adiabatically the direction
of the local optical axis in the plates. In particular, the
beam will emerge linearly polarized still parallel (or per-
pendicular) to the direction of the optical axis of the last
plate of the stack. An alternative formulation of this
theorem is to say that, if Q-s==1 [cf. Eq. (13)] at z =0,
then (-s will remain +1 throughout the whole stack. Al-
though originally formulated in the framework of crystal
optics, Mauguin’s theorem finds applications also in the
optics of liquid crystals.!>

Let us consider now an inhomogeneous uniaxial medi-
um having its local optical axis directed along the unit
vector fi(z). Let 6(z) and ¢(z) be the polar angles of f.
The functions 6(z) and ¢(z) may be arbitrary, but slowly
varying over the optical wavelength. Then, the evolution
of the polarization of the light in traversing the medium
is described by the Hamiltonian

H o (=1, 0)=1[A(6)—n,1{I/c)
+w/o) U /0)?—12]"?

X cos[2(yp—¢)]1} ,
(20)

where —I/, and ¢ are the conjugate momentum and coor-
dinate, respectively. The Hamiltonian H,, is obtained
from Eq. (17) by dropping out the elastic term H,. The
term In, /c already appearing in Eq. (8) has been omitted,
because it is a constant. One can easily verify that the
Hamilton equations associated with H,, are Egs. (12)
[or, equivalently, Egs. (15) and (16)]. The polar angles
0(z) and ¢(z) appear in the Hamiltonian H, as slowly
varying parameters. It is natural, therefore, to search for
the adiabatic invariant 4 of H,, given by

A=$Ldy
=const
=7(I/0){1—(1—e?)"?cos[2(¥—¢)]} Q1
(the quantity A4 is the area enclosed by the curve

H,, =const in the phase space). If 6 and ¢ were con-
stant, then A4 =const would be equivalent to
H,, =const. If 6 and ¢ are slowly varying functions of z,

the Hamiltonian HOpt is no longer constant, but the in-
variant A remains still constant. For transparent media
(I /w=const), Egs. (20) and (21) imply the existence of
the two adiabatic invariants

I,=H,, /{o[fi(8)—n,]} =const ,

I,=(1—e?)"?cos[2(—¢)]=const .

One can easily verify from Egs. (12) and (13) that
I,=Q-s. Then, I,=const implies )-s=const and the
component of the Stokes vector along € is conserved adi-
abatically. If, in particular, s is parallel or antiparallel to
Q (i.e., Q-s==1), it will remain so along the whole medi-
um, as stated in Mauguin’s theorem.

(22)



Equations (22) generalize Mauguin’s theorem to the
case of elliptically polarized light and of slowly varying
angles 0 and ¢. To our knowledge, this is the first time
that the adiabatic invariants I, and I, are derived explic-
itly in the framework of crystal optics.

VI. CASE OF PURE TWIST

The nonlinear equations (11) and (15) can be solved
analytically in the important case of purely twisted struc-
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tures [@=const, $=¢(z)]. This is the case, for example,
of twisted nematic or cholesteric liquid crystals with
large pitch (in these cases 6=m/2), but the solution ap-
plies also to smectic-C liquid crystals having the smectic
layers perpendicular to the direction of the light beam.
In the last case, the angle 6 is to be considered as a given
parameter of the smectic material, since very strong fields
are required to vary it appreciably.

Setting 6 =const, the conservation of the Hamiltonian
(17) yields

k/2(d¢/dz)*+(I/c)n,+(An /2){1+(1—e?)"2cos[2(p—¢)]})=E =const , (23)

where k =(k,, sin?0+ k3, cos’0)sin’0 and An=7(0)
—n, are given constants, characteristic of the material.

The conservation of the total angular momentum
yields

k(d¢/dz)+(I/w)e =M =const . (24)
Eliminating d ¢ /dz between Eqgs. (23) and (24) yields
E=(I/c)(n,+An/2)+(1/2k)\(M —Ie /o)
+(TAn /2¢)(1—e?)? cos[2(p—¢)] . (25)

Squaring this equation and using the second of
Hamilton’s equations (15), we finally obtain

(de /dz)*=(wAn /c) (1 —e?)
—[E —~I/c)n,+An/2)

—(1/2k)M —Ie /0)* Qo /1) . (26)

This equation has the form (de/dz)’=P,(e), where
P,(e) is a fourth-order polynomial and therefore it can be
solved analytically in terms of elliptic integrals. The arbi-
trary constants E and M must be determined from the
boundary conditions. Although the general solution may
be interesting in its own right, a complete discussion of it
is very long and will be presented elsewhere. In this pa-
per, we shall limit ourselves to a discussion of the oc-
currence of the optical Fréedericksz transition in twisted
NLC film.

VILI. OPTICAL FREEDERICKSZ TRANSITION

Consider a twisted nematic liquid-crystal film of thick-
ness d. The sample walls are rubbed for planar alignment
along their respective easy directions and twisted by an
angle a. We assume strong anchoring. Then, without
loss of generality we can pose ¢(0)=0 and ¢(d)=a at the
planes z =0 and z =d, respectively. In the absence of the
light beam, the sample is uniformly twisted:

d(z)=az (0<z<d), (27

with a =a/d. With the light beam present, the uniform
distortion (27) is perturbed. The perturbation is in gen-
eral small but finite, even if the light intensity I is weak.
No threshold occurs in these conditions. The occurrence

f

of the OFT requires, in fact, that the distortion (27)
remain unchanged, even in the presence of a finite light
intensity I. For the uniform twist (27) we have
p=1/2ka’=const. Then the angular momentum con-
servation Eq. (19) yields /, =const and Egs. (11a) and (14)
yield sin[2(yy—¢@)]=0 and e=const. The condition
sin[2(¢¥y—¢)]=0 implies y—¢=0 or 7 /2. Finally, Egs.
(15) yield

dy/dz=—(w/2c)An[e/(1—e?)"/?]=const .  (28)

30 T
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FIG. 2. Lowest intensity threshold Toper as a function of the
twist angle a for two sample thicknesses: (a) d=1; (b) d =3.
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30

FIG. 3. Lowest threshold Iopr as a function of the reduced
thickness d for a planarly aligned (a=0) nematic sample.

The last equation is compatible with the requirement
sin[2(¢—¢)]=0 only if dy/dz=d¢/dz=a. This finally
leads to a relation between the ellipticity of the polariza-
tion of the light beam and the twist constant a:
a
¢ [(wAn /2c)?+a?)? 29)

The condition ¥ —¢ =0 or 7 /2 is satisfied in all points
in the sample so that the polarization ellipse rotates rigid-
ly as the beam propagates in the medium, following adia-
batically the local optical axis, as stated in Mauguin’s
theorem. It is worth noting, however, that this particular
solution obeys Mauguin’s theorem for any value of the
light intensity I. For this reason, we will refer to the par-
ticular solution of Egs. (11a) and (15) having 6=const,
Y—¢=0or m/2, and e given by Eq. (29) as the Mauguin’s
solutions. For a homogeneously aligned sample (a =0),
the Mauguin solutions are linearly polarized.

The OFT in twisted nematics can be observed only for
Mauguin’s solutions. Mathematically, the OFT corre-
sponds to a Hopf’s bifurcation of Mauguin’s solutions.
The threshold intensity I,;, where the bifurcation occurs
can be found by investigating the stability of Eqgs. (11a)
and (15), after having linearized them around the Mau-
guin solution. The standard Lyapunov stability criterion
leads to the following transcendental equation for the
threshold intensity I :

d?+4a*=(d*+4a*—x?)(sinx)/x , (30)
where
x={d*+4a>F[2],d*/(d*+4a*)'?]}!?

and T, and d are the dimensionless threshold and thick-
ness given by
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Tyn=(c/w) 1y /ck An),

d=(w/c)And .

Equation (30) has no positive root when the upper sign
is taken. This means that the Mauguin solution with
¥—¢=0 is always stable and no reorientation can be in-
duced in the sample for any intensity I of the incident
beam. This result may be useful when one wants to
prevent reorientational effects in the sample, e.g., to
study the contribution of thermal effects only.

When the lower sign is taken (Yy—¢=m/2), Eq. (30)
has multiple roots for I, for fixed thickness d, and twist
angle a. The threshold Iopy for the optical Fréedericksz
transition is given by the lowest of the roots of Eq. (30).
In Figs. 2(a) and 2(b), Tpr is plotted as a function of the
twist angle a between the rubbing directions on the sam-
ple walls for d =1 and d =3. We note that Iy is an in-
creasing function of @, having discontinuous jumps at
critical values of . In any case, the lowest threshold is
obtained for a homogeneously aligned (a=0) sample.
The threshold Iogr for a nontwisted sample is reported in
Fig. 3 as a function of the reduced thickness d. As previ-
ously noted,'? Iy scales as d ~2 as d —0. The jumps in
Fig. 3 are due to the successive excitation of higher-order
modes. The threshold increases, since higher modes have
higher elastic free energy. On the average, the threshold
Topr increases with the sample thickness.

VIII. CONCLUSIONS

We have presented a Hamiltonian approach to the
problem of the propagation of a light beam in an arbi-
trarily oriented liquid-crystal sample, for normal in-
cidence. The Hamiltonian equations for the molecular
director and for the evolution of the beam polarization in
the medium were derived from the same Hamiltonian.
The conservation of the total (elastic plus optical) angular
momentum [Eq. (19)] and total free energy [Eq. (17)] was
derived from Noether’s theorems. The use of the theory
of the adiabatic invariants led us to give an alternative
rigorous proof of Mauguin’s theorem of crystal optics.
We presented also a general analytical solution of the
propagation problem in the important case of pure twist.
The solution is expressed in terms of elliptic integrals.
Finally, the occurrence of the optical Fréedericksz transi-
tion for twisted structures was investigated. An analyti-
cal formula [Eq. (31)] for the optical threshold was also
presented.
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