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We study the elasticity, topological defects, and hydrodynamics of the recently discovered incom-
mensurate smectic ( A&c) phase, characterized by two collinear mass density waves of incommensu-
rate spatial frequency. The low-energy long-wavelength excitations of the system can be described

by a displacement field u (x) and a "phason" field u (x) associated, respectively, with collective and
relative motion of the two constituent density waves. We formulate the elastic free energy in terms
of these two variables and find that when w=O, its functional dependence on u is identical to that of
a conventional smectic liquid crystal, while when u=O, its functional dependence on x is the same
as that for the angle variable in a slightly anisotropic XY model. An arbitrariness in the definition
of u and w allows a choice that eliminates all relevant couplings between them in the long-

wavelength elastic energy. The topological defects of the system are dislocations with nonzero u

and m components. We introduce a two-dimensional Burgers lattice for these dislocations, and

compute the interaction between them. This has two parts: one arising from the u field that is short
ranged and identical to the interaction between dislocations in an ordinary smectic liquid crystal,
and one arising from the w field that is long ranged and identical to the logarithmic interaction be-

tween vortices in an XY model. The hydrodynamic modes of the Al& include first- and second-
sound modes whose direction-dependent velocities are identical to those in ordinary smectics. The
sound attenuations have a different direction dependence, however. The breakdown of hydro-

dynamics found in conventional smectic liquid crystals, with three of the five viscosities diverging as
1/co at small frequencies co, occurs in these systems as well and is identical in all its details. In addi-

tion, there is a diffusive phason mode, not found in ordinary smectic liquid crystals, that leads to
anomalously slow mechanical response analogous to that predicted in quasicrystals, but on a far
more experimentally accessible time scale.

I. INTRODUCTION

Following the theoretical prediction' of its existence, a
novel smectic liquid crystal whose x-ray diffraction pat-
tern could be generated by tao collinear vectors k, z and

kzz with k, /k2 irrational was discovered. This phase is

the incommensurate smectic A(Atc), which is quasi-
periodically layered in one direction but liquidlike in the
other two. We construct here a theory of the energetics
and dynamics of long-wavelength distortions and of dislo-
cations in this phase.

In the present work, the Al& is characterized by densi-

ty waves whose Fourier components are nonzero only on
a discrete incommensurate set of reciprocal-lattice points.
Such a density-wave description ' leads naturally to an
elastic theory involving two variables. The first, u (x), is
just the usual layer displacement field describing distor-
tions which look locally like uniform translations. The
new variable w (x) (the phason) (Ref. 5) is the relative dis-
placement of the two fundamental density waves, and
arises as a consequence of their incommensurability. Us-
ing this description, an elastic theory is constructed. The

u dependence of the resulting elastic free energy is identi-
cal to that of a commensurate smectic liquid crystal with
energies for distortions with wave vector q parallel to the
layers proportional to q . The u dependence is similar to
that of the phase variable in an XY model with energies
proportional to q for all directions of q.

The elastic theory is also used to derive the Debye-
Waller factor for this system. It is shown that because
phason fluctuations cost energy ~q in all directions,
they do not contribute to the destruction of true 1ong-
range order. This is effected, as in ordinary smectic
liquid crystals, only by the u field. Thus the x-ray
scattering intensity around each peak has the same
power-law form as in periodic smectic liquid crystals.

Dislocations and a Burgers vector lattice are defined.
It is shown that every Burgers vector must have a w com-
ponent and that hence every dislocation must have a w

field. The x-y-like energetics of the m field therefore lead
to an energy per unit length of dislocation line that is
proportional to the logarithm of the system size, and thus
infinite in an infinite system. By contrast, in periodic
smectic liquid crystals this energy per unit length is in-
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dependent of L. Some remarkable consequences of this
novel behavior of incommensurate smectic liquid crystals
will be explored elsewhere. '

We also construct the hydrodynamic equations"
for the AK. The phason has no inertia since it is a rela-
tive motion of density waves. It thus gives rise to a
diffusive mode not present in periodic smectic liquid crys-
tals. For q normal to the layers, this mode mixes with
the diffusive u mode. First and second sound also exist in
Az&. Their velocities are identical to, but their dampings
differ slightly from, those of periodic smectic liquid crys-
tals. Thus neither sound velocity vanishes or jumps
discontinuously at an A~c-A phase boundary. Both are,
however, expected to display the usual'

~

t
~

' singu-
larities at this transition, where t —= (T —Tc)/Tc is the
reduced temperature of the Azc-A transition, Tz that
transition's temperature, and a its specific-heat exponent.
Shear diffusion throughout the Azc is unchanged from its
form in periodic smectic liquid crystals.

Nonlinearities in the elastic free energy lead to a break-
down of conventional long-wavelength elasticity as in
periodic smectic liquid crystals. ' The same nonlineari-
ties lead to the breakdown of conventional hydrodynam-
ics, in which the three bulk viscosities diverge like 1/~,
which has been predicted theoretically' and observed ex-
perimentally' in periodic smectic liquid crystals. We ar-
gue that our results should, for all practical experimental
purposes, be robust against "lock-in" of k, /k2 to a ra-
tional ratio p/q of relatively prime integers p and q.

The rest of this paper is organized as follows. Section
II identifies the broken symmetry modes of the smectic

Section III uses Landau theory to confirm this
identification and to provide a framework for the devel-
opment of the elastic theory, which is discussed in the
harmonic approximation in Sec. IV. Section V uses this
harmonic elastic theory to calculate the order-parameter
correlation functions, thereby demonstrating that in the
A~~, as in conventional smectic liquid crystals, 1ong-
ranged translational order is destroyed by Auctuations.
Section VI discusses the characterization of dislocations,
their fields, and their energies. Section VII derives the
linearized hydrodynamic equations of motion for the

Section VIII calculates divergent nonlinear correc-
tions to the elasticity theory, correlation functions, and
hydrodynamics. The concluding section, Sec. IX,
demonstrates the robustness of our theory against com-
mensurate lock-in.

II. BROKEN-SYMMETRY MODES
IN INCOMMENSURATE SMECTIC LIQUID

CRYSTALS

As discussed in the Introduction, an incommensurate
smectic liquid crystal (Sm Azc } is a material that is fluid-
like in two dimensions (the xy plane) and quasiperiodic in
one dimension (the z axis). This implies that all vectors
G in the reciprocal lattice LR of the simplest ideal (i.e.,
undisturbed) Azc can be expressed as integral linear com-
binations of two collinear basis vectors k, =k, e2 and
k2 ——k2e„where the ratio k, /k2 &1 is irrational; i.e.,
G =Ge„where

G =pk, +qk2, (2.1)

with p and q integers. Because k, /k2 is irrational, there
is no nonzero pair of integers (p', q') such that
p'k, +q'k2 ——0, and the vectors k, and k2 are integrally
linearly independent. ' ' ' Therefore the vector Go with

p =q =0 is the unique vector in the reciprocal lattice
with zero magnitude. There are, however, vectors G
with arbitrarily small magnitude because it is possible to
find integers p and q such that ~p/q —k&/k2 is less
than any preassigned number. The existence of arbitrari-
ly small G's is a manifestation of the fact that these sys-
tems are not spatially periodic. Rank-r reciprocal lattices
have bases consisting of r integrally linearly vectors. ' '
We will consider here only Sm Azc with rank-2 reciprocal
lattices.

The mass density of an ideal AK can be expanded in
terms of mass-density waves whose Fourier components
are nonzero only at wave vectors in the reciprocal lattice
L~,

p(x)=po+ g [QG(x)e' '+c c ],. .
G EL~

where
—hatt&(x)

WG(x) =—
I
4~(x) I

e

(2.2)

(2.3)

(t',:—k i u, , P2
——kqu (2.4)

Thus an incommensurate smectic liquid crystal can be
thought of as two interpenetrating sets of equally spaced
layers with respective layer spacings l, and 12 with l, /12
irrational (see Fig. 1}. It is clear that u specifies the ori-
gin of the grid with spacing I . A uniform translation of

The amplitudes
~
QG(x)

~

are assumed to vary very slow-

ly on the scale of G ', and a minimum free-energy stable
(ground) state with gG (x ) =const for all G ELa is as-
sumed to exist. If the thermal averages (fG) were
nonzero, the x-ray scattering intensity from an
would have 5-function peaks of intensity

~
(gG)

~

at
wave vector G. Fluctuations destroy the long-range or-
der implied by a nonvanishing ( PG ) as they do in period-
ic smectic liquid crystals, and the x-ray scattering inten-
sity will consist of power-la peaks at G. As in periodic
smectics, in the system studied by Ratna et al. , there
are observable peaks at only a small number of wave vec-
tors. We will make use of the weakness of these higher
harmonics later when we estimate the strength of those
terms that tend to lock the smectic liquid crystal into a
commensurate structure.

A useful heuristic picture of an AK can be obtained by
considering only the two mass density waves g, —:f& and

I

Pz—= gk associated with the basis vectors. The densities
2

arising from these two waves are
Ik

1 pz
p, ~=Re(g, ~e ) =

~
ttt, 2 ~

cos(k, ~z —P) 2) .

The zeros of the cosine functions in p, and pz define two
grids (sequences of planes) perpendicular to the z axis at
positions z„=n l +u, cx = 1,2 ( n = integer), where
I =—2m/k and
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2

FIG. 1. Schematic representation of an incommensurate
smectic liquid crystal. The parallel solid and dashed lines
represent the positions of the intensity maxima of the coexisting
mass density waves with respective wave numbers k, =2m. /ll
and k, =2m/l, with I

& /I& irrational.

grid a is described by a spatially uniform increment of
u . Such a uniform translation of either grid will change
the relative positions of the layers in the two grids. How-
ever, because l, /l2 is irrational, any sequence of layers in

any finite region before translation can be found sorne-
where in the structure after translation. This implies that
the free energy of the Al& does not change under spatial-
ly uniform changes in either u1 or u2. In the jargon of
condensed-matter physics, u1 and u2 are "broken-
symmetry variables, "" ' or elastic variables of the in-
commensurate srnectic. Spatially nonuniform changes do
increase the free energy which for slow spatial variations
can be expanded in a power series in gradients of u, and
u2. The form of the resulting elastic free energy, as will
be discussed in Sec. IV, is determined entirely by the
symmetry of the SrnA~c phase. It is useful, however, to
use Landau theory to verify that u1 and u2 are indeed
elastic variables and to derive the elastic free energy.
This will be done in Sec. III.

Landau theory begins by assuming that the free energy
F( Ip(x)I ) is an analytic, local functional of the density
function p(x), and hence can be expanded in powers of
p(x) and its gradients. Carrying out this expansion and
using the density-wave expansion (2.2), we obtain the free
energy as an expansion in powers of the set of fields

IPG(x) I and their spatial gradients. To leading (quadra-
tic) order in the gradients of gG and to all orders in the
PG's themselves, the terms in this expansion can be
separated into two classes: those that involve spatial gra-
dients of the gG's (whose sum we will call F~ ), and those
that do not (whose sum we will call Fz). The former will

determine the form of the elastic energy as a function of
spatial gradients of u, and u2. The latter serve to fix the
set of amplitudes

~ gG ~

and phases (j)G of gG that will

minimize F; these will be the ground-state configurations.
Fluctuations will involve departures from this ground
state.

We will not be interested in the determination of the
set of amplitudes

~ PG ~

since these will in general not be
broken-symmetry variables and will therefore have small
fluctuations about some energetically preferred value (i.e.,
they will have a mass). A two component subset of the
infinite set of phases PG will, on the other hand, be
broken-symmetry variables: these are precisely u, and
u2.

We illustrate this in two steps. First, we show that if,
for all G =pk, +qk2, the set of phases g minimizes the
free energy, then the set

(t G Pk1 ~ & +qk2~2+PG (3.1)

(3.2)

where I C2 ) are phenomenological constants and

G =p k, +q k2. (3.3)

For PG(x) =const (by assumption the ground state) this
term will vanish due to the spatial oscillation of the in-
tegrand unless

also minimizes it, for arbitrary constants u, and u2. This
shows that u, and u2 are broken-symmetry variables
since the energy is independent of them as long as they
are constant in space. Second, we show that no other
choice of phases will minimize the free energy. This
shows that u, and u2 are the only broken-symmetry vari-
ables for these systems.

Both results follow from the fact that F2, when derived
as described above, is the sum over all possible sets of
tG )of

m m

F =C fd x exp i g G z ggG (x)+cc.
a=1 a=1

III. LANDAU THEORY
QG = gp k, + gq k, =O. (3.4)

We will now use the Landau theory to demonstrate' '
that u1 and u2 are both broken-symmetry variables, and
furthermore the only broken-symmetry variables of the
incommensurate smectic.

gp =O=gq (3.5)

Because k, /k2 is irrational (again by assumption), (3.4)
can only be satisfied if
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since each p and q is an integer. Note that this con-
straint (3.5), which severely limits the number of allowed
nonzero terms in F, depends crucially upon the incom-
mensurability of k, and k, .

Given (3.5), Fz's independence of u~ and u2 is readily
established: each term (3.2) in the sum for F2 indepen-
dently remains invariant (i.e., keeps its value at PG ——PG )

under the phase change (2.6), so clearly their sum, which
is F2, does. To see this, just insert (3.1) into (3.2), for

{G { obeying (3.4), and find
m

F2-=C2. fd'x H IqG Iexp imp'
a=1 a

Xexp i gp

+ gq k2u2

(3.6)

i@G
~ 0

where 1(tG
—= gG I

e and where we have used (3.5) to
set the phase of the second exponential to zero.

To prove our second point, we show that there is at
least one particular nonzero term of the form (3.2) for
every G which will change if PG departs from (3.1),

a
namely,

F ' =C f d 'x ( q', .q2.y, +c.c. ) . (3.7)

This term is clearly allowed, since the sum of its G's is

p G, +q G2 —G =0. Writing each of the gG's in this
expression in terms of an amplitude and a phase, and us-
ing the fact that p& and $2 are, by definition, just k&u&

and k2uz, respectively, we obtain

F.=C.f d'x
I fi I 6 I I PG I

X(e ~ ' ~'' ~+cc)i(p k u +q k u —4 )

a 1 2 G

(3.8)

F1 ——
—,
'

CG Vz G
G

+ —,
' g CG

I
(V~ iG5n—)QG I

d x .
G

(3.9)

There are in addition an infinite number of terms second
order in gradients involving higher powers of gG. For
many purposes, it is sufficient to consider only g, and 1iz,
in which case

Xcos(p k, u, +q k2u~ —p ),
where P is the phase of PG and we have used the fact

a

that p(x) is real to write 1( G
——gG ——

I gG I

e . Now
in the assumed ground state u, =u2=0 and PG ——@ .

a a
To keep the argument of the cosine in (3.8) and hence the
total free energy invariant, one clearly must obey (3.1).
Thus u, and u2 embody all the broken-symmetry vari-
able distortions of the system.

We now turn our attention to F„ the part of the free
energy involving spatial gradients of the gG s. As in
periodic smectic liquid crystals, F1 should be invariant
with respect to rigid rotations of both the smectic-liquid-
crystal layers and the Frank director n—:z+5n specify-
ing the average direction of molecular alignment. In the
Azc phase, the minimum-energy state by definition has n
normal to the layers. This implies that F, must be a
function only of V, gG and of the invariant derivatives
(V~ iG5n)PG—The lo.west-order (quadratic) term in F,
is of the form

F& = f l —,'Cf
I V, yi '+T'C2

I V.q2 I
+-,'Ci

I
(Vi —«~5n}1('i

I
+-,'Cz

I
(Vi &k25n)q2 I—

+ ,'Df(p', Vzp2$—2V,Q))+ —,'D)$2(V~ —ik25n)$2$) (Vj —ik, 5n)li)+ . ]d x, (3.10)

where we have included the lowest-order terms coupling
the gradients of tij, to those of $2. The total free-energy
density describing an incommensurate smectic SmA~C
and phase transitions from the Sm Azc is
F =F, +Fz+F„, where F„ is the Frank free energy' (a
function of n) for a nematic liquid crystal.

IV. ELASTICITY

As we have seen, the free energy of the incommensu-
rate smectic liquid crystal is invariant with respect to
spatially uniform translations of u, and u2. It will, there-
fore, depend only on the spatial derivatives of these vari-
ables. The elastic free energy F,1

of an incommensurate
smectic liquid crystal will thus be the sum of two smectic-
like free energies for the displacements u, and u2 plus

+ —,'B2(B,u, )'+ —,'K,2( V fu, )'

+,'D IV, ,
—V, , I'+B„a, , a, ,

+K,~(V~u, )(V~u2) . (4.1)

coupling terms between them. The most important cou-
pling term results from the fact that there is a volume en-
ergy cost for rotating one of the grids described after Eq.
(2.4) relative to the other. To lowest order, the angle
(Fig. 2} between the two grids is 5Q=V~u, —V~uz, and
there will be a term in F proportional to

I
50

I

. In ad-
dition there will be cross terms proportional to B,u18, uz
and V~u1V~u&. The incommensurate elastic free-energy
density is, therefore,

f= ,'B, (B,u, }'+—,'K„(V—~u,)
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to simplify calculations. u is the usual displacement vari-
able describing common motion of the two sublattices,
and w is the phason variable describing relative motion of
the two sublattices. The phases P& [Eq. (3.1)] can be
reexpressed in terms of u and w via

$G=Gu+aG w+g,
where

(4.4)

6 = —spk
&
+( I —s)qkz (4.5)

is a complementary vector associated with 6 and indexed
by the same integers p and q as G.

The elastic free energy expressed in terms of u and w is

f = —,'B„(B,u} + —,'K„(Vfu)

+8„(B,u)(B,w)+ —,'C
I Vjw

I
+—,'8 (B,w)

where

+ 21K.(Vow)z+K„. (Vz2u)(Vzzw), (4.6)

FIG. 2. Schematic representation of an incommensurate
smectic liquid crystal in which the directions of the periodic
modulation of the two constituent mass-density waves are at a
relative angle 50. There is an energy cost proportional to the
volume times (50)' for such a distortion from the ideal

configuration shown in Fig. 1.

u, =u —asw, uz=u+a(1 —s)w, (4.2)

This free energy could have been derived from the Lan-
dau theory just presented by taking g, (x) and fz(x) to
have constant amplitude (since fluctuations in these am-
plitudes are not broken-symmetry variables) and allowing
only their phases k, u, (x) and kzuz(x) to vary with x.
Upon inserting this into the Landau theory just presented
and minimizing over 5n, we would obtain (4.1) with 8
prop«tio»1 to

I g I

', ted=1, 2, and 8» to
I &i I

'
I Pz I

'.
The other coefficients are more complicated functions of
the parameters of the Landau theory (including the
Frank elastic constants) and of

I g, I
and

I gz I
.

As we have seen, u, and u2 describe translations of the
component sublattices of the incommensurate smectic
liquid crystal. The physics of displacements in which the
layers move together (u, =uz ) differs from that in which
they do not ( u, &u z ). It is therefore useful to make a
change of variables' to an overall displacement variable
u and a relative displacement or phason variable w via

Bu =8 i +82+28]2,
8~=a [s 8, +(1 s) Bz ——2s(1 —s)B,z],
B„=a[—sB

&
+(1 s)Bz+(1——2s)B,z],

C =a a,
K„=E) +K2+2E )2,
K =a [s K~+(I —s) Kz —2s(1 —s)K,z],
K„=a[—sK, +(1—s)Kz+(1 —2s)K&z] .

(4.7}

The choice s =(Bz+B,z }/B„eliminates B„and leads to
8 =a (B,Bz —B~z)/8„. Stability requires that B„and
8 be positive, of course.

Using the Landau theory expressions for 8„82, and
8 &2 derived earlier, we can show that

(4.8)

where cr is a parameter depending on a and s and the
constants in f,~. This equation enables us to predict that
8 will vanish while B„will remain finite at a continuous
transition between the A~c and a periodic smectic liquid
crystal in which one of the components (say, g, ) of the
density wave vanishes. (This is to be expected, of course,
since there is no w mode in periodic smectic liquid crys-
tals). In Landau theory,

I g, I
cc

I
T, —T

I
near the

transition, and hence 8 cc
I T, —T

I
. A more correct

argument, including fluctuations, shows that 8 vanishes
like the superfluid density at the superfluid-normal transi-
tion, which by the Josephson argument implies,

so that
8 ITTI xY (4.9)

u =(1—s)u, +suz, w =a (uz —u, } .—1 (4.3)

The parameters a and s are arbitrary and can be chosen

where viz= —', is the correlation length exponent of the
d =3XY transition, to which universality class the
Al&~ A transition can readily be shown to belong. The
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terms in Eq. (4.6) involving Vtw are subdominant so that
u and w are effectively uncoupled in f

f =f.+f. ,

f„=,'B—„((),u ) + ) K„(V~~u }2,

f = —,'B ((),w)'+ —,'C
i
V,w i'.

(4.10)

f„ is identical in form to the elastic free energy of a
periodic smectic liquid crystal, whereas f is the elastic
free energy of an anisotropic xy model. The presence of
both a smectic- and an xy-like piece in f is responsible for
many of the unusual properties of incommensurate smec-
tic liquid crystals to be discussed below.

and where

k~T
71=

8m+.B„K„

The x-ray scattering intensity is the Fourier transform of
this correlation function, and at wave vector q=(y„q~)
near G=(G, O) is proportional to

~ q, —G
~

+ " for

q) ——0 and
~ q) ~

+ " for q, =G. This is exactly the
same form as the scattering intensity of a periodic smec-
tic liquid crystal. The phason fluctuations alter the
coefficients in front of the preceding power laws but are
not responsible for the destruction of long-range order,
nor do they change the exponent g.

V. CORRELATION FUNCTIONS

The smectic form of f„ immediately implies that there
is no long-range order in incommensurate smectic liquid
crystals as in periodic smectic liquid crystals. This can
be seen from

(y )
~ y ~

e' Ge —()/2)[a (G ) (w (x))+G (u (x))]

an expression which is valid in the harmonic approxima-
tion, where the statistics of u and m are Gaussian.
( w (x) ) is finite since ( w ) -q, while ( u (x) ) as in a
periodic smectic liquid crystal is proportional (in the
harmonic approximation) to lnL in a sample of size L
Thus (u (x)) determines (gG), which is zero for
L ~ ao. The density-density correlation function is then

(p(x)p(0))=g
~ gG ~' ' ' "",(5.2)

G

where g„„(x)= ( [u (x)—u (0)] ) /2 and g„, (x) = ( [w (x)
—w (0)] ) /2. As in a periodic smectic liquid crystal,

VI. DISLOCATIONS

We now turn to dislocations in incommensurate smec-
tic liquid crystals. Dislocations in three dimensions are
the topologically stable line defects ' of any translational-
ly ordered state. In a complete circuit around any path
enclosing a dislocation line, the broken-symmetry vari-
ables change in such a way that the phase of every mass-
density wave amplitude fo changes by an integral multi-

ple of 2vr. This ensures that fo itself has no abrupt
discontinuities in space —a desirable requirement since
such discontinuities would cost a large gradient energy.
In incommensurate smectic liquid crystals (t)G satisfies Eq.
(3.1), and changes in u, and uz by integral multiples of
1) ——2m. /k) and t2 ——.2m. /k2 produce the desired changes
in PG. Thus the broken-symmetry variables u, and u2 in

incommensurate smectic liquid crystals satisfy

J Vu dl =6 =m I, a=1,2 (6.1)

where m is an integer and P is any closed path enclosing

k~T
1nx~, A,z (&x~

B„K„
b

g„„(x)= '

k~T
8m QBK

lnz, A.z ))x g

(5.3} b„

with A, :—QK„ /B„, the splay coherence length, and

d k 1 —e'""
g (x)=J 3 2

~const as ~x~ ~ao .
(2m) B k, +C k2~

(5.4)

Thus the components of the correlation function at wave
number G+0 decay algebraically at large

~

x ~:

where

—2 Gxy, Xz ((x
fG(x)= 'z, A.z ))x i

(5.5)

FIG. 3. The two-dimensional Burgers vector lattice of an in-
commensurate smectic. The vectors in the lattice are indexed
by two integers n and m and are of the form b=(nil, ml2). The
components b„and b„, of a Burgers vector along the displace-
ment and phason directions are its projections onto the b„and
b axes shown in the figure. The tangent of the angle between
the b„and b& axes is irrational so that no Burgers vector lies
precisely on the b„axis, i.e., every Burgers vector must have a
nonzero b„component.
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the dislocation line. The two-component vector (b„b2)
is the Burgers vector of the dislocation. The set of
Burgers vectors define a two-dimensional rectangular
Burgers vector lattice depicted in Fig. 3.

The integers m& and mz are independent. This then
implies that a dislocation with Burgers vector
(m, It, mzl2 ) corresponds to the insertion of m, layers in
the primary density wave g, and mz layers in P2. The
dislocation line is the path of the ends of these extra lay-
ers. An edge dislocation with b=(I, , O) is depicted in

Fig. 4.
Since the conditions of Eq. (6.1) are linear, they can

equally well be expressed with the aid of Eq. (4.3) in
terms of u and w,

VXQ„(x)=m„(x),

VXQ (x)=m (x),
(6.4a)

(6.4b)

where

m„(x)=—gb„' 'f 5(x —x (s))t (s)ds' ', (6.5a)

smectic liquid crystals; dislocations in the latter have
only a short-ranged interaction. This should have a num-
ber of experimentally observable consequences, for exam-
ple, for grain boundaries, which will be discussed in a fu-
ture publication. '

The conditions of Eq. (6.2) imply ' that the curls of
the vector fields Q„=Vu and Q =Vw satisfy

Vu. dl =b„,
m (x)—=g b' ' f 5(x —x (s) )t (s)ds' ', (6.5b)

f Vwdl=b
P

(6.2)

where

b„=(1—s)m, I, +sm2lz ——(1 s)b, +—sb2,

=(b, b, )——.m212 —m]l]
a ' ' a

(6.3)

These equations describe the transformation of the
Burgers vector lattice to the new coordinates b„and b
as shown in Fig. 3.

An important point should be noted about the parame-
trization of the Burgers vector in terms of b„and b . Be-
cause of the incommensurability of l, and I2, b never
vanishes for any point on the Burgers lattice. This is a
general property of dislocations in incommensurate struc-
tures' including quasicrystals. This is important physi-
cally because, as discussed earlier, the w field has no
"soft" directions in which distortions are easy. As a re-
sult, forcing a dislocation to carry a w component (as a
nonzero b„does) makes the energy of a dislocation much
higher, and also (as we shall see) makes the interaction
between dislocations long ranged. This property distin-
guishes incommensurate from ordinary commensurate

are the u and w components of the dislocation density.
In Eq. (6.5), x (s) is the position and t' '(s) the unit
tangent vector of the ath dislocation line as a function of
its arc length s.

The characterization of dislocations in terms of b„and
b is more useful than that in terms of b& and bz because
u and w are decoupled in the elastic free energy [Eq.
(4.10)]. The u and w components of the elastic free ener-

gy can be expressed in terms of Q„and Q as

F„=f —,'(B„Q„,+K„~ V, Q„,
~

)d x, (6.6)

F~= f —,'(B~Q, +C~
~
Q~~

~

)d x .

Q„and Q are determined in the usual way ' by solving

5F
vu =n„

=0 (6.8)

simultaneously with Eqs. (6.4).
It is clear that the solutions for Q„and u in terms of

m„-are identical to the solutions for the corresponding
quantities in periodic smectic liquid crystals, ' since the
conditions (6.4a) and (6.8) and the u-dependent part of
the free energy (6.6) are all precisely the same. Thus we
can just copy the known solution to this problem, and
obtain the desired solution for Q„(m„). The general re-
sult is most conveniently written in terms of the spatial
Fourier transforms Q„(q) and m„(q) of Q„(x) and
m„(x),

iqXm„(q)
Q„(q)=

q

iqz. [q X m„(q) ]q,

q'(q, +A, q, )
(6.9)

FIG. 4. Schematic representation of an edge dislocation with
Burgers vector b= {1,0) in which an extra layer of the grid with
spacing 1 has been inserted from the right.

In two simple special cases, this result simplifies to
u = —[tan '(x ly ) ]b„ /2m for a straight screw disloca-
tion and

u =—4b, [erf(x /&4A.
~

z
~

) + 1 ]sgn(z)

for a straight edge dislocation. Edge and sere~ disloca-
tions lie entirely within and orthogonal to the layers, re-
spectively.

If 8 were equal to C, the free energy for w would be
identical with that for the phase variable in an LY model.
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In that case we would have w = —Ob for both screw and
edge dislocations and, indeed, for any straight dislocation
regardless of its orientation. (Here 0 is the angle the ra-
dius vector from the dislocation core makes with some
fixed axis orthogonal to the core. ) The anisotropy im-
plied by C &B leads to differences between edge and
screw dislocations. We, therefore, present the general
solution for Q for an arbitrary complexion of disloca-
tions, and then use it to obtain the specific solutions for
the special cases of straight screw and edge dislocations
as well.

Like any three-dimensional vector, Q can be written
as the sum of a curl and gradient,

dicular to z and, where we have arbitrarily chosen the
edge dislocation to run along the x axis. Using Eq. (6.15),
it is straightforward to show that

w(x~)= —tan '(xly)bw/2~ (6.18)

for a screw dislocation and

w (x)= [2 tan '(z/y) —tan '(v yz/y)]2' (6.19)

for an edge dislocation, where y=C /B . In screw
dislocations, w(x) and u (x) have the same linear depen-
dence on 8=tan '(x/y). Thus

Q =V&& A+V/ . (6.10)
Ob

u =, a=122' ' (6.20)

VX(VX A)=m (6.11)

Using the vector calculus identity V &(( V &( A)
=V(V A}—V A and our earlier gauge choice V A=O,
we obtain

This decomposition is somewhat arbitrary. This arbitrar-
iness is a gauge freedom, and may be eliminated by
choosing the gauge V A=O. P drops out when (6.10) is
inserted into (6.4b), leaving

for screw dislocations.
The elastic energy arising from dislocations follows

from the free energy [Eqs. (6.6) and (6.7)] and the solu-
tions for Q„and Q in terms of m„and mw. The result-
ing dislocation energy is

H(m„(q), m (q))= —,
' f [m„;(q)U,"(q)m„( —q)

q

+m;(q)U; (q)m, ( —q)],

m (q)
A(q) =

q
(6.12)

after a Fourier transform in space.
Now we can determine P from the Euler-Lagrange

equation

with the potentials U;,
"' (q) given by

2P; K„qq
Uj" (q) 2 2 4 +5j Ecore

q, +A, qz

and

(6.21)

(6.22)

w Vw=Ow

=B r},(Q ), +C Vi (Q )i ——0 . (6.13) U '(q)=(5jB +5; C )C /(B q, +C qj )+5; E„„,
Fourier transforming this and our decomposition (6.10)
of Q, inserting the latter into the former and using our
solution (6.12) for A(q}, gives us a simple linear algebraic
equation for P(q) in terms of m(q), whose solution is

(C B)q,z—(qXm )
P(q) =

q (B q, +C„q~)
(6.14)

( C B}qq, —
; z [qXm (q)]8 q, +C qJ

(6.15)

The dislocation line of a single straight screw disloca-
tion is parallel to the z axis and

m =5 (x~)b„z (screw) . (6.16)

The path of single straight edge dislocation is perpendic-
ular to z. This leads to

m =b 5(y)5(z)x (edge), (6.17)

where xj is the projection of the position vector x perpen-

which, when reinserted back into the Fourier transform
of (6.10) along with our solution (6.12) for A(q), gives us
our final expression for Q (q),

T

Q (q)=, qXm (q)
q

(6.23)

where 5;—:5; —5;"; 5; =1, i =j=z and 0 otherwise; and

P,
&

——5,.~
—q;qj/qj. In deriving these results, we made

use of the fact that V m(x) =O=q m(q). The most im-
portant thing to note about these expressions is that for
most directions of q (q, =0 being the only exception), the
u-u interaction is short ranged (in the sense that U;j
remains finite as

~ q —+0), while Uj is long ranged for
all directions (diverging as 1/q as

~ q ~

~0). Thus the
energy per unit length of a single straight screw disloca-
tion is Esqre„E,prebg+CwbwlnL and that of a straight
edge dislocation is E,d, E„""'b„+b Q——C B~lnL.
Similarly, the interaction between the w part of disloca-
tions is long range ( ec ln

~

x
~

), whereas that between the
u part is short range as in periodic smectic liquid crystals.
In light of this fact, it is extremely significant that b can
never be zero for any dislocation, since this then implies
that all dislocations must have some long-range interac-
tion. This is in direct contrast to conventional commens-
urate smectic liquid crystals, where only the U;" term in
the interaction is present, and hence interactions between
dislocations are short ranged.

VII. HYDRODYNAMICS

The long-wavelength, low-frequency excitations of in-
commensurate smectic liquid crystals are naturally de-
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a, a, +[~„~,) +r„=o.aF aF
(7.1)

Here [ I is a classical Poisson bracket, and I, is a ma-
trix of kinetic coefficients. Since ' '

[g(x},u (x')I =[z—Vu (x)]5(x—x') (7.2)

for a=1,2 we see, using the definition (4.3} of u and tii,

that

and

Ig(x), u (x')
I
= (1 —s)[z—Vu, (x)]5(x—x')

+s[z —VM2(x )]5(x—x )

= [z—Vu (x)]5(x—x'}

Ig(x), w(x'}I = a '[z —Vu2(x)]5(x —x')

—a '[z —Vu, (x)]5(x—x')

= —a 'V(u2 —u, )5(x—x')

= —Vile (x)5(x—x') .

(7.3)

(7.4)

scribed by hydrodynamic equations. The hydrodynamic
variables are the momentum density g, the mass density

p, the energy density c, and the broken-symmetry vari-
ables u and w. In order to keep the analysis simple, we
will ignore the energy density in what follows. A detailed
analysis shows that the only effects of including it are
the usual ones, namely, the following.

(1) It introduces a new diffusive mode, which is, of
course, thermal diffusion,

(2) It slightly modifies the sound speeds and dampings.
The dynamical equations are derived most convenient-

ly using Poisson brackets. For a general set I A, I of
variables, governed by an effective free energy F, the hy-
drodynamic equations are

coupling between layer compressions and overall changes
in the density. These two terms of course also arise in
periodic smectic liquid crystals. The third term in U is a
coupling between the w field and the density. That it
must in general be present can be seen as allows. The in-
dividual sublattice displacement fields u, and u2 must
couple to the density through terms of the form 5p B,u,
and 6p B,uz. The coefficients of these terms will in gen-
eral be unequal, since no symmetry dictates that they be
equal. When these terms are combined, therefore, both
the C and the D terms in [Eq. (7.5)] will result. The
fourth term in U is just the elastic free energy from Eq.
(4.10) except that now the elastic constants are appropri-
ate derivatives of the free energy evaluated at constant
density p rather than at constant pressure P, as in (4.10).
In general, the choice of s in the definition (4.3) of u and
w that we made earlier, which makes the B,uB, w cross
term vanish in a constant pressure ensemble, will not
make it vanish in a constant density ensemble. There-
fore, to simplify our analysis of the dynamics, we will
make a different choice of s that makes this cross term
vanish in the constant density ensemble, rather than our
earlier choice. This amounts to a different definition of u
and w from that which we used earlier, and also leads to
slightly different values of the elastic constants. To avoid
confusion, we will denote the new u and w fields de-
scribed above as ud and wd, and will use a superscript d
to denote the new elastic constants. This replacement is
necessary to ensure that when 5p is integrated out of the
partition function Z=—fD 5pDuDule ~ the resultant
effective free energy for u and w along be that given in
Eq. (4.10).

The hydrodynamic equations which follow from the
preceding analysis are

B,p+V g=0,

The remaining Poisson brackets are the same as those of
an ordinary fluid. ' The effective free-energy governing
the variables g, p, u, and tii is F,s = fg /2p+ U(p, u, w),
with

2
5p 5p Bu 5p Bw

U p, u, w = — +C +D
2 po po Bz po az

5F 5F
B,u —v, +v.Vud+I „+I„„=0,"5ud ""

5wd

B,w+v. Vwd+I „+I =0,5F 5F
ud Wd

6F
B,g;+V (g;v) V, (rl jklVkg—l)+PV';

P

(7.6)

+fo(u, w) d x, (7.5)

5F 5F
+(5;,—V;ud ) —V;wz ——0,

5Qd 5wd

where po is the average density and A, C, and D are phe-
nomenological constants. The first term in F,z. is the ki-
netic energy. The first term in U describes, in the har-
monic approximation, the energy cost of long-wavelength
changes in the density, and the second term describes the

where v =g/p, and I „, I „, and I are kinetic
coefficients governing permeation and phason relaxation.
They are expected to be of approximately the same order
of magnitude. Since the SmAI~ has uniaxial symmetry,
the viscosity tensor g; k& has the same form as it does in a
periodic smectic liquid crystal, "

lijkl 12 5il5jk +5jl5ik + 13 12)[5jz(5i!5kz +5lz5ik }+5iz(5jk5lz +5kz5lj }]

+( 74 12}5ij5kl+( 11+ l2 4 13+ 14 15}5ijkl+( l5 14+ l2}(5ij5kl +5kl5ij } ~

where the symbols 6' and 6'kI are equal to 1 when all of their indices =z, and zero otherwise.
Linearization of the equations of motion, and Fourier transformation in space and time gives

(7.7)
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[—ical+I „(B„q,+K„q )]ud+I „(B"q, +C q )wd ——(I „C+I„D)q,5p
Po Po

[ ic—o+I (B q, +C„q )]wd+I „(B„q,+K„q )u& ——(I D+I „C)q,5p=O,
Po

[ i~—+v„(q)]g, +v„(q)g, +[(B„C)—q, +K„q, ]u, D—q, w, + q, 5p=O,d 2 d 4 2 i(A —C)

Po

I', A
[—&~+vii(q}lgi+v, i(q)g, Cq—l q, ud Dq—,q, wd+ q, 5p=0,

Po

[ iso—+v, (q)]g, =0,
i co5—p+i (q,g, +q,g, ) =0,

(7.8)

where gi is the component of g orthogonal to z in the q-z
plane, g, is the component of I orthogonal to both q and
z, and v„(q) =ri3q j +ri&q, , v,z(q): (ri3+—ri&)qiq„ri|i(q)
—:( riz+ ri4)q f + ri3q, , and v, ( q )

—=g2q i + ri3q, . Note that
all of the v's are 0 (q 2).

These equations show that for most directions of q, in-
commensurate smectic liquid crystals have the usual first-
and second-sound modes and transverse shear mode asso-
ciated with g, that are found in periodic smectic liquid
crystals. " In addition, they have a new diffusive mode,
namely, that of phason relaxation. ' ' ' We will first
consider the mode structure for these generic q's, and
then we will consider the two exceptional cases q, =0 and

qj ——0.
Turning first to the generic case, we seek the pole

structure of the equations of motion (7.8). We shall do
this in two steps. First, we will seek eigenfrequencies co

of the equations of motion with co=cq to leading order.
This will determine the speeds of the propagating sound
modes. Corrections to these frequencies at next order in

q give the damping of sound. Next, we look for frequen-
cies of order q; one of these is the aforementioned trans-
verse shear mode, and the other gives the relaxation rate
for phasons.

First we seek frequencies co=cq. For such modes the
I

wd equation of motion (7.8) immediately implies that

d1„8„
Nd = —l qz lid

cq

D2 q,
5p,

po cq
(7.9)

where D2 = I D + I „C. This expression for md implies
that md is negligible to leading order in q in all other
equations of motion. The remaining leading order in q
terms in those equations are precisely the same as those
for a periodic smectic liquid crystal;" thus we find, as
there, that there are two pairs of propagating sound
modes with speeds c, (8) and c2(8) given by

po(c, +cz)= A +(B„"—2C)cos 8,
poc fc z

——( AB„" C)sin 8 c—os 8,
(7.10)

co =+cj(8)q iq c ( 8)
—s(l8) .

The sound attenuation coefficient si(8) is given by

(7.11a)

where 0 is the angle between the direction of propagation
(q} and the z axis.

Using these results and Eq. (7.9), we can now compute
the eigenvalue co to next order in q. The result is that the
complex frequencies co (j =1,2) of first and second
sound are given by

e (8}= sin 8cos 8[Ari, +(A +B„2C)(F2+—ri4)+2(C —2A)F3+2(C —A)ri&]
2p c, (8)[c,(8)—c2(8)]

+ ri3[ A +(B„2C)cos 8] —pocj ( 8 )[q3+—ri&cos 8+ ( ri2+ ri4 )sin 8]

+I'„B„(A+D —C)cos 8+ sin 8cos 8—poc (8)d 4 D(A —C)

poci (8)

+D, B„cos 0—C+
A (B„—C) B„cos 8

2
cos 0 sin'0 cos 0+ DD2 2

'i" ~ s
poc, (8) poc, (8)

(7.11b)

q, (m, 8)= +i (~a, 8),
c (0) (7.12)

and we have defined D, = I „C+1„„,D and
D2 =—I „D+ I „C. In ultrasonic attenuation experi-
ments, the quantity of interest is q(co):—

~

q(cu) i, rather
than co(q). From Eq. (7.11a) we find

where a(co)=c, ( 8)co .

Now we seek the frequencies of order q . From the
equation of motion for u, we find that for such modes
g, —O(q u, q w, q5p). Inserting this into the equation of
motion for g, shows that g, is itself negligible to leading
order in q in its own equation of motion. Thus we can
solve that equation for 6p, finding
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5p iqz [(8„—C)ud —Dwd] .
po

(7.13)

Inserting this into the equation of motion for 5p shows
that for these modes gi is O(q ud, q wd), which in turn
implies that g~ is also negligible for small q in its own
equation of motion. We can thus solve that equation for
5p, finding

—lcoud+1 „C q~wd —g, =0,d 2

O(qi )ud+( its—+D3q3 )wd+O(q j )g, =0, (7.17)

direction of q. Inserting this into our earlier solution for
g~ enables us to establish its irrelevance in the g, equa-
tion of motion. Using (7.14) in the g„u, and w equations
of motion then leads to a closed system of equations for
these fields, which, neglecting irrelevant terms, reads

Po

lqg
(Cud+Dwd ) . (7.14) (8„'q,'+K„'q,')ud+ O (q', )wd+( i c—o+ rl3qz )g, =0,

DC
C2

Q

which can be combined with Eq. (7.14}to give

iB„Dq,

Po AB'-C' '

(7.15)

(7.16)

Inserting (7.15} and (7.16) into the equation of motion
(7.8) for wz gives an equation for wd alone,

Requiring that this be consistent with (7.13) enables us to
solve for ud in terms of wd,

where 8„'=8„—C/A. Solving these eigenvalue equa-
tions shows that wd decouples completely from ud and g,
to leading order in q. The modes involving ud, as a re-
sult, are determined by the system of equations

gz—l loud — =0,
Po

(7.18)

(8„'q, +K„qi )ud+( ice—+ri3q J )g 0,
which are precisely the equations for the u mode in this
limit in periodic srnectic liquid crystals. The resulting
eigenfrequencies are

( io3+Djq—j +D,q, )wd —0,
with D~—:I C and

—l 'g3q g +
2

I d 2
'B„E„

q + —
4Po Po

1/2

(7.19)

D, —= I „
BdD2

Bd
AB —C

This can be trivially solved for the eigenfrequency of the
phason mode to = i (Di qi—+D,q, ), which as can be seen
is diffusive but anisotropic. Had we included the energy
density in our hydrodynamic variables, we would have
obtained two coupled (phason and thermal) diffusive
modes here, instead of just this one phason mode. The
diffusive character of this mode remains, however.

We now turn to the two special cases q, ~A,q~, and

qz ——0. When q, &A,q~, the propagating second-sound
mode splits into a pair of diffusive modes. The other
features of the mode structure remain unchanged. The
analysis of this case proceeds as follows: First, we note
that in the limit q, &&q~, and under the assumption
co «cq for any c (as will be verified a posteriori), the gj
and g, terms in the g~ equation of motion are negligible
for q~0, co &&cq compared to the 5p, ud, and wd terms
therein. This can be shown for g, by solving the ud equa-
tion of motion for g, and using the result in terms of 5p,
ud, and wd in the g~ equation of motion, ' every term
thereby generated is manifestly higher order in q than at
least one of those already present. That g~ is likewise
negligible follows from inserting this solution for g, into
the equation of motion for 5p; then solving the resultant
equation for g~ in terms of 5p, ud, and wd, and finally
substituting this solution into the gz equation of motion.
Again, each term thereby generated is higher order in q
than one of those already present.

Having justified neglecting g~ and g, in the g~ equation
of motion, we can solve this equation for 5p in the limit

q, «q~; doing so shows that Eq. (7.14} still holds in this

( ico+D3q,—)ud+ ioi
D

+D4q, wd ——0,
poc i(0)

( ito+Dsq —)wd+D6q, ud ——0,2 2

where we have defined

I „8„(A C)+D, (B„' C)— —
poci(0)

(7.20)

(7.21)

D4=—
I „8 (A C) DiD— —

poc i (0)

D2D
D,:—I B"—

5 W W

D6=1 „B„+D2

and

B„"—C

A —C

When q~ =0, the g~ equation cannot be used to deter-
mine 5p in terms of ud and wd, and Eq. (7.14) no longer
applies. In this case there are two coupled u-w diffusive
modes and gj and g, diffusive modes.

The analysis of this case proceeds as follows: First we
note that Eq. (7.13) still holds for modes with q3 =0,
since its derivation did not depend on any assumptions
about the relative magnitudes of q, and qj. Now when

qj =0, we can irnrnediately solve the continuity equation
for g„obtaining g, = /toq, 5P. This, together with (7.13),
allows us to write a closed system of equations of motion
for u and w, for this special case qi =0, which read
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2
[D7+[D 7+4(D4D6 D5—D3)]' j (7.22)

where D7 =D3 +D
& +D6[D /poc &

(0)]. These eigenfre-
quencies can be seen to be purely imaginary (which physi-
cally implies that the modes are purely diffusive) provid-
ed D3, D4, D, , and D6 are all greater than 0, as required
by stability. In particular, the argument of the square
root in (7.22) is positive definite, ruling out the possibility
of any propagating character to these modes. Had we in-
cluded the energy density in our formulation, we would
have gotten three coupled diffusive modes here (thermal
diffusion again mixing in with the phason and phonon
modes). Again, the diffusive (co iq —) character of these
modes would remain, however.

VIII. NONLINEARITIES

All of our static and dynamic results presented thus far
have been derived using the purely harmonic elastic
theory developed in Sec. IV. It is known' that in period-
ic smectic liquid crystals anharmonicities in Vu couple
thermally excited undulations of the layers to the longitu-
dinal modes and lead to a qualitatively different form for
the elasticity, fluctuations, and hydrodynamics' of the u

field at long wavelengths. Precisely the same anharrnoni-
cities are present here, and they lead to precisely the
same quantitative effects on the elasticity, fluctuations,
and hydrodynamics of the Arc.

We will consider first the anharmonic effects on the
elasticity. These can be summarized as follows: at finite
wave vector q, the u field behaves as if the quantities B„
and E„ in Eq. (4.10) were wave-vector dependent, with

—4/5

B„(q)=B„(A) 1+ ln
5y A

64m q

E„(q)=E„(A) 1+ ln5y A

64~ q

2/5 (8.1)

where A is an ultraviolet cutoff of order k, or kz. Here
also

y=k~T
B„(A)
K„(A)

is a dimensionless parameter which is of order 1 in con-
ventional smectics, and most probably of that order in in-
commensurate srnectic liquid crystals as well. For many
applications, this weak logarithmic dependence can be ig-
nored, and B„and K„can be treated as constants since
the length scale

2'
Ars.

2m. 64~
exp

A '5y
on which B„(q&L ) and K„(q&L) begin to differ appreci-

c, (0)=[(A +B„2—C)/po]'

is the first-sound speed for 0=0, as obtained from Eq.
(7.10). Solving Eqs. (7.20) and (7.21) for the eigenfrequen-
cies gives two modes with co-0 (q ),

ably from their values at q =A can be very long for typi-
cal values of y (e.g., for y = 1 and 2m. /A =20 A,
l~L =582X10 km, which is roughly the distance from
here to Jupiter). In addition, for our choice of s, there are
no relevant anharmonicities involving w (i.e., none that
qualitatively change the long-wavelength behavior), so
the quadratic terms displayed explicitly in (4.10) accu-
rately describe the elasticity and fluctuations of w at long
wavelengths.

This may all be seen as follows: the nonlinearities in
question arise by making the free energy invariant under
uniform rotations to all orders in Vu, rather than just to
quadratic order, as in Eq. (4.1). This can be accom-
plished simply by replacing r), u, z everywhere they ap-
pear in (4.1) by the fully rotation invariant objects
E& &=r), u, z

——,
'

~

Vu, z ~

. [The same substitution must

be made into the free energy (7.5) coupling u and rc to 5p;
the only change that affects the long distance properties
is the replacement of r)u/r)z in the second term of that
equation by E=—r), u ——,

'
~

Vu
~

]. Making the necessary
changes in (4.1), and changing variables to u and rc, we
find

f=f „, B„rJ, )—V

+

+o(
~

V ~', a,.
~

V ~', a,.V V.), (8.2)

where f~„,d is the quadratic free energy (4.10) and B„(s)
and B„(s)are as defined in Sec. IV.

The terms cubic and quadratic in u are precisely those
found in periodic smectic liquid crystals; since the quad-
ratic part of the u Hamiltonian is also the same, these
will lead to precisely the effects found in periodic smectic
liquid crystals. ' ' The

0(
~

Vw ~, r), u
~
Vw, r), u Vu Vut)

terms can be shown by power counting in graphical per-
turbation theory to be irrelevant at long wavelengths.
The same power-counting argument shows that the
r), w

~

Vu
~

term would lead to significant long-
wavelength effects; however, for our choice of s this term
vanishes since B„does.

We now turn to the dynamical effects of these anhar-
monicities. In periodic smectic liquid crystals, the non-
linear coupling of the momentum density to the undula-
tion mode (that is, to displacements with the wave vector
parallel to the layers) gives rise to a breakdown of con-
ventional hydrodynamics. ' The viscosities g, , g4, and g~
are predicted' and observed' to diverge as 1/co at low
frequencies co. It is straightforward to see that this also
happens in the incommensurate smectic liquid crystal.
This is because the calculations in Ref. 16 of the fluctua-
tion corrections to the viscosities depended on only the
following three features of that problem.

(1) The form of the static u-u correlation function,
(2) The form of the nonlinearities in u in the equation

of motion for g,
(3) The decay rates in the linearized equations of

motion of the eigenmodes associated with u for wave vec-
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tors q, «qi (the region where the static u-u correlations
are largest).

All three of these features are exactly reproduced in in-
commensurate smectic liquid crystals. We have already
demonstrated (1) in our discussion of the static correla-
tion functions. (2) follows from the fact that the anhar-
monic in u terms in f are precisely the same as in period-
ic smectic liquid crystals, coupled with the fact that the
terms involving u in the g equation of motion all arise
from precisely the same functional derivatives (i.e.,
5F/5u and 5F/5p) as in periodic smectics, and with pre-
cisely the same dependence thereon. Furthermore, the
additional nonlinearities in the equations of motion (e.g. ,
those involving w) are readily shown by the power-
counting arguments of the type used in Ref. 16 to be ir-
relevant at long wavelengths (i.e., they do not change the
asymptotic hydrodynainic behavior as q and co~0). (3)
was verified in Sec. VII.

This completes our demonstration that the divergent
fluctuation contributions to the viscosities in these sys-
tems are exactly the same as in periodic smectic liquid
crystals. In particular, it implies that the direction
dependence of the resulting anomaly in the sound at-
tenuation is identical to that in periodic smectic liquid
crystals, and that the relation hr), b, r)4=(b, r)5) for the
divergent parts Ag, of the viscosities still holds. We have
also checked that the inclusion of the energy density as a
hydrodynamic variable does not modify this result, just
as it does not in periodic smectic liquid crystals.

The viscosities appearing in the expressions (7.11) for
the sound damping must therefore be interpreted as
singular frequency-dependent quantities, not constants.
No such complication arises for the phason mode or for
the transverse shear mode, since fluctuation corrections
to g2, g3, and I „are regular for q ~0, w ~0.

IX. PHASONS IN NEARLY INCOMMENSURATE
SMECTIC LIQUID CRYSTALS

Our argument that the phason field w was a broken-
symmetry mode depended crucially on the incommen-
surability of the ratio k2/k, . Since arbitrarily close to
any irrational number we can find a rational number, it
clearly behooves us to consider what happens when the
ratio k, /k2 locks in to a rational value p/q, where p and

q are mutually prime integers. In particular, we wish to
focus on "nearly incommensurate" structures where

q &&1. We will argue that for sufficiently large q, u, and

u2 will still behave like broken-symmetry modes of the
system out to length scales L that grow exponentially
with q. In practical terms, using realistic numerical esti-
mates for the values of various Landau parameters, one
only need worry in actual experiments about lock-in to a
relatively small ( &10) number of commensurate ratios
k2/k&. If one can establish experimentally that k2/k& is
not equal to any of these commensurate ratios, then one
will have established that for length scales of order a cen-
timeter or less, the system will behave like a truly incom-
mensurate smectic liquid crystal.

The argument goes as follows: if k, /k2 ——p/q for rel-
atively prime integers p and q, then the nonvanishing

fG d(w) —=Ci1 i I ~,w
I

'
~

Fourier transforming in space, we obtain

fo„d -—C, haik, w

(9.2)

(9.3)

The incommensurate hydrodynamics we develop here will
also describe the commensurate system for k, 's

sufficiently large so that (9.3) is much larger than the w-

dependent part of (9.1). For small w, Eq. (9.1) can be ex-

panded,

f =const 'q k2
~

g—,—~i'~ Pz ~'rC w (9.4)

This "mass" term will be negligible relative to the incom-
mensurate smectic elastic term (9.2) for wave vectors k,
that satisfy

k, )&k, = Cuq

C',

1/2

To estimate quantitatively the value of k„we need to es-

timate the ratio C /C&. We can do this by dimensional
analysis: C, has the dimensions of E/p V, where E, p,
and V are energy, mass density, and volume, respectively,
while C~ ~

has the dimensions E/p +~V. Their ratio thus
has the dimensions of I/p +~

Now we can estimate the numerical value of this ratio
as ( I/pd, „P+'i . Our choice of the characteristic den-

sity p,h,„cannot be either g, or $2, since, by the rules of
the Landau-theory game, parameters of the Landau
theory must be taken to be smooth through any phase
transitions, while gi and f2 vanish singularly there in-

stead, and hence are unsuitable choices for p,h„. The

term of lowest order in f, and $2 coupling spatially uni-
form u, to u2 in the Landau expansion (and hence the
largest term since, as mentioned earlier, 1(, and $2 are
small in real smectic liquid crystals) is

F =—,'C f d x[P(gz )~+c.c. ]

=C, q I
i}'i

I

'
I 4 I

'Jd x cos(qk2w), (9.1)

where we have used pk, =qk2 and w=u& —u2. This
term clearly gives an energy cost to spatially uniform w,
thereby eliminating w as a broken-symmetry mode, and
leaving only uniform translation u as a broken-symmetry
variable.

Since Pi and gz are both "small, "we see that for large

q (i.e., lock-in to high commensurability structures), this
term will be exponentially small as q~00. To estimate
quantitatively the length scale at which, for a given q,
this lock-in term becomes important, we need to look at
the terms it competes with, namely the gradient energy
for w. Clearly, for sufficiently long wavelengths, (9.1) will
dominate any gradient terms. An estimate of the critical
wavelength l, beyond which (9.1) dominates can be ob-
tained by estimating, from Landau theory, the magnitude
of these gradient terms.

As shown in Sec. IV, the lowest order (in powers of
g, z and the gradient operator) gradient terms in w are
(focusing just on the V, P terms)
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only other quantity in the theory with the dimensions of
density is the background mass density po, which is
smooth through all transitions. Taking this to be p,h„,
(9.5) becomes

Po Po
qk2 . (9.6)

We can estimate the numerical values of the ratios in
(9.6) fairly easily. $&lpo and $2/po are just the ratios of
the changes in the mass density as we move through the
density wave to the background density. Typically, in
smectic liquid crystals, these ratios are small ( &0. 1).
Thus, for p +q & 20, and k2-2n /(20 A), we get
k, ~ 2'/(20 cm), or l,:2trl—k, & 20 cm, which is a mac-
roscopic distance. Thus, with x-ray measurements of
peak positions sufficiently precise to show that
k&/kz&p/q for p+q &20, which would require measur-
ing k, /k2 to an accuracy —1% (which should be practi-
cal) and eliminating -30 pairs of (p, q), experimentalists
can show that their system behaves according to incom-

mensurate smectic hydrodynamics as developed here out
to macroscopic length scales. More generally, the limita-
tion (9.6) on the validity of incommensurate hydro-
dynamics can be applied, using the experimentally deter-
mined values of p, /po and pz/po, these just being the
square roots of the ratios of the integrated intensities of
the peaks at k, and kz to the peak at G =0, all of which
can be measured experimentally.
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