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Universality classes for deterministic surface growth
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We study the growth of a surface through deterministic local rules. A scaling theory for the gen-
eralized deterministic Kardar-Parisi-Zhang equation B,h =D hh +A.

~

Vh ~, with P) 1, is

developed. A one-dimensional surface model, which corresponds to P= 1, is solved exactly. It can
be obtained as a limiting case of ballistic deposition, or as the deterministic limit of the Eden model.
We determine the scaling exponents, the correlation functions, and the skewness of the surface. We

point out analogies to the Burgers equation (P=2}, for which such detailed properties are not
known.

I. INTRODUCTION

An important growth mechanism for surfaces is
through ballistic deposition. The somewhat simple-
minded, theoretical picture is that particles in the am-
bient atmosphere move ballistically towards the surface.
As a particle reaches the surface it has a certain probabil-
ity to stick at the surface. This sticking probability de-
pends on the local surface configuration. From the point
of view of the surface, it grows through a stochastic
mechanism governed by (approximately) local rules. It is
the locality of the growth mechanism which makes ballis-
tic deposition distinct from diffusion-limited aggregation.

In aB the local growth rules considered so far, the de-
posit is never fractal, although its density may be smaller
than the density of the substrate. Therefore the interest
focuses on the structure of the surface itself. One expects
the surface to be statistically self-similar on a large
space-time scale, i.e., over distances large compared to
typical sizes of the deposited particles and over times
long compared to typical aggregation times. Just as in
equilibrium critical phenomena, self-similarity is charac-
terized by scaling exponents and functions. We would
like to understand how the large scale properties of the
surface depend on the local growth rules. Numerical
simulations establish that (i) the scaling properties of the
growing surface differ from a surface in thermal equilibri-
um' and (ii) the scaling properties depend on the local

rule."
As a first orientation, let us consider the random depo-

sition model. ' Above each site of a reference lattice we
give a surface height h, (t} as a function of time. Each
h;(t) grows independently according to a Poisson process.
The average height (=average mean deposit per lattice
site) grows linearly in t Starting with . a fiat surface, its
width increases indefinitely as &t. The surface is spatial-
ly uncorrelated.

Clearly, the simplicity of the model is due to the ab-
sence of any interaction between different lattice sites.
Edwards and Wilkinson derived a linear Langevin equa-
tion for surface deposition which takes into account some
local rearrangement of the deposited particles. As a re-

where L is the size of the substrate, g and z are scaling ex-
ponents (cf. Sec. II), and the scaling function f (x) has the
asymptotics f (x ~ ae ) =const, f (x ~0)-x ~~'. Howev-
er, the exponents obtained from the linear theory do not
agree with numerical simulations. Kardar, Parisi, and
Zhang (KPZ) argued that a nonlinear term must be in-

cluded to account for lateral growth. They proposed the
following equation for the dynamics of the surface:

—h(x, t)=c+Dbh (x, t)+A[Vh (x, t)]'+ri(x, t)
at

(1.2}

(KPZ equation). h (x, t} is the height of the surface at
time t above the point x in the reference plane. c is the
growth speed and ri(x, t) is white noise in space time,

(g(x, t)ri(x', t') ) =tr'5(x —x')5(t —t') . (1.3)

Going to a frame of reference moving with velocity c, we
may set c =0 in (1.2). Dbh describes diffusional relaxa-
tion within the surface. D is the diffusion coeScient.
The strength of the nonlinearity k is proportional to the
growth speed. The surface gradient Vh is governed by
the well-known Burgers equation' with noise.

With A, =O, (1.2) reduces to the equation of Edwards
and Wilkinson, whereas A, =O, D =0 corresponds to the
random deposition model. Simulations of various local
growth rules in two dimensions (=one-dimensional sur-
face) suggest that (1.2) with A,&0 correctly describes the
large-scale properties of these models. However, we
are far from understanding which set of growth rules lead
to the KPZ equation in the continuum limit. Even
worse, the scaling properties of the KPZ equation itself
are well known only in two dimensions. "" For higher
dimensions there is only a scaling relation"' reducing
the problem to a single scaling exponent. In three dimen-
sions the numerical data for the exponents scatter by
about 15%. ' '

suit, correlations build up in the surface. The surface
width m then evolves according to the scaling form'

m(L, t)=L&f (t/L*),
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In the present paper we investigate the KPZ equation
and related models without noise. With noise, the KPZ
equation describes (statistically) steady growth in the long
time limit. However, without noise, the KPZ equation
models the relaxation of an initially rough surface to a
flat surface. If the initial data are statistically scale in-
variant, this relaxation proceeds in a self-similar fashion.
The large-scale properties of the surface are then
governed by scaling exponents very much like in the sto-
chastic case. In order to account for different universali-
ty classes, we develop a scaling theory for the determinis-
tic KPZ equation with general nonlinearity

~

Vh
~

~, P) 1

(Sec. II). The results of Burgers' are obtained as a spe-
cial case. In Sec. III we introduce a particular local
growth rule. In fact, it is essentially identical to the ele-
mentary cellular automaton 184 in Wolfram's
classification. ' We show that this model belongs to a
diferent universality class than the standard KPZ equa-
tion (1.2) and verify the predictions of the scaling theory.
The surface correlations are obtained exactly, and the
surface is shown to be asymmetric with respect to the
direction of growth. Finite-size effects are also evaluated.
In Sec. IV we investigate the deterministic limit of the
Eden model. Some conclusions are given in Sec. V.

II. SCALING THEORY FOR DETERMINISTIC
SURFACE GROWTH

Let us first consider quite generally the scaling proper-
ties of a surface evolving through some stochastic or
deterministic process. We fix a typical length scale g((

parallel to the substrate. g(( could be the side length of
the system or the correlation length parallel to the sub-
strate. There are then two natural questions to be asked.

(i) What is the typical magnitude g~ of surface fluctua-
tions perpendicular to the substrate which one observes
over the distance g((? For a (statistically) scale invariant
surface gj and g(( have to be related by

(2.1)

where g, 0 & g & 1, is the wandering or roughness ex-
ponent. ' Clearly, g describes the static scaling properties
of the surface.

(ii) What is the typical time r which is required for a
surface fluctuation to spread over the distance g((? Dy-
namic scaling implies then

an ensemble of random surfaces characterized by the co-
variance

(
~
h(x) —h(x')

~
) —

~

x —x'
~

~ (2.4)

for
~

x —x'
~

large with some scaling exponent
0&0& 1.

Since the deterministic dynamics is purely relaxational
and does not generate any proper steady state, we expect
the static scaling exponent g introduced in the preceding
paragraph to be determined by the scale invariance of the
initial data, i.e., g=g. This is most easily illustrated for
the diff'usive relaxation A, =O in (2.3). Then the amplitude
of a surface mode with wave vector q, f(q, t), decays ac-
cording to

~
h(q, t)

~

=-
~
f(q, O)

~

e (2.5)

To characterize the relaxational process we consider the
decay of the density of surface steps, defined by

p(t):= „,fd 'x(iVh(xt)i) . (2.7)

Here L denotes the linear size of the substrate, and the
brackets denote averaging with respect to the ensemble of
initial conditions. Since a typical slope of the surface is
proportional to g~/g((, we conclude from the general scal-
ing picture that

(2.8)

Another quantity of interest is the mass deposited per
unit area up to time t,

Thus the solution factorizes into a static part completely
determined by the initial condition, and a dynamic part
which displays dynamic scaling with z =2 irrespective of
the initial data. In the following we shall therefore treat
the static exponent g as an input parameter given by the
choice of initial conditions.

The relaxation process described by (2.3) is associated
with a growth of correlations in the system. The corre-
sponding correlation length ((t) is the distance over
which smoothing has been effective up to time t. It can
be identified with the parallel length scale g(( introduced
above. Accordingly it grows in time as

(2.6)

(2.2) m(t)= z, f d 'x(h(x t) —h( Ox)) . (2.9)

where z is the dynamic exponent.
Within this general framework we would like to under-

stand the scaling properties of deterministic surface
growth subject to random initial data. Since we expect
the scaling exponents to depend crucially on the form of
the nonlinearity, we generalize the deterministic KPZ
equation to

(2.3)

p&1. p=2 is the standard KPZ equation discussed in
the Introduction. The initial conditions are chosen from

[Note that in (2.3) the uniform part of the mass density,
growing as ct, has been subtracted. ] Since the Laplacian
in (2.3) does not contribute to (2.9), we see from (2.3) that
(d Idt) m (t) -p(t)~, i.e., using (2.8),

(t) —t ( [t(((—g(]zz (2.10)

For any finite sample the growth eventually terminates,
as the surface has become completely flat. According to
our general scaling hypothesis, the corresponding relaxa-
tion time T should be proportional to L'. Thus the
growth law (2.10) saturates at some value m, „,which is

given by
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T1—[Ig(1 —g)]/z L z —p(1 —g)m max (2.11) A. Definition of the lattice model

There is another way to estimate m,„. To this end we
note that the process described by (2.3) is essentially a
filling process, in the sense that local minima are elevat-
ed, whereas flat portions of the surface do not propagate.
Thus we expect m, „ to be of the same order as the max-
imum height difference in the initial surface
configuration. With (2.4) this implies

m max (2.12)

Comparing (2.11) and (2.12) we then obtain an expres-
sion for z in terms of P and g,

z =g(I —P)+P . (2.13)

We note that the scaling relation (2.13) is independent of
dimension. Also for P= 1, z does not depend on g. If
g(1 —P)+P& 2, then the z of (2.13) becomes larger than
the diffusive value z =2. As a consequence, the diffusive
surface relaxation due to the Laplacian in (2.3) occurs
faster than the nonequilibrium process described by the
nonlinearity, thus dominating the asymptotic decay of
the step density p(t). We conclude therefore that a non-
linear term with P)(2—g) j(1—g) is irrelevant to the
long-time behavior of (2.3) subject to initial data with
roughness exponent g. For the deterministic KPZ equa-
tion P= 2, the scaling relation becomes

The cellular automaton to be studied may be thought
of as a limiting case of standard ballistic deposition. Con-
sider a one-dimensional surface configuration parallel to
the x axis of a square lattice [Fig. 1(a)]. Particles move
on straight lines along the y axis and become part of the
deposit when they reach the empty nearest neighbor of an
occupied site. Thus an incoming particle may stick either
to the side edge or to the top edge of an existing column.
Now an incoming particle may not stick at all to the sur-
face, but rather reenter the ambient atmosphere. There-
fore it is realistic to attribute different rates, I „d, and
rt p

to the two sticking processes. We also introduce the
ratio p =I „/I „d,. In the limit p~~ one recovers the

z=2 —g. (2.14)

This has been derived previously for the stochastic KPZ
equation. "' It thus appears to be a general feature of
the gradient-squared nonlinearity.

In the following sections we will restrict ourselves to
two-dimensional models and to initial data with g= —,'. It
has been shown both for the stochastic KPZ equation
and for various lattice growth models ' that the static
scaling exponent equals g= —,

' in two dimensions. This
implies that the surface increments at different positions
are uncorrelated. Equivalently, these surface
configurations may be viewed as graphs of one-
dimensional random walks. With g= —,

' (2.13) reduces to

A ~/ A

w r g r

z =(1+P)/2 . (2.15)
t=o ~ t=t

For P) 3 the nonlinearity is irrelevant. For P=2 we re-
cover the familiar anomalous exponent z = —,

' of the
Burgers equation, ' (cf. also Sec. V. The case P=1 will
be studied in detail in Sec. III).

III. AN EXACTLY SOLVABLE LATTICE MODEL

R

I II I I-

t=Q

We introduce and study a cellular automaton which
can be understood as a discrete version of the KPZ equa-
tion with nonlinearity

~

V'h
~

. The spatial dimension is
d =2, and the surface is a line. Whereas a general non-
linearity

~

V'h
~

~ seems to be difficult to handle analyti-
cally, the particular case P = 1 can be studied in great de-
tail. In fact, we will not only verify the scaling picture,
but also determine the locally asymmetric structure of
the surface and finite-size effects.

FIG. 1. (a) On-lattice ballistic deposition with varying stick-
ing probabilities. Process (1) occurs at rate I „;process (2) at
rate I „d,. (b) Deterministic growth from a rough surface paral-
lel to the (1,1) direction. At each time step, all local surface
minima are filled with new particles. The corresponding lattice
gas evolves according to the automaton rule 184. For t & T, the
surface is flat and the automaton is in the ordered antiferromag-
netic state.
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where hl+, (t)=h, (t). h;(t) denotes the height of the
surface at the lattice site i at the (integer) time t It is u. se-
ful to introduce the surface step variables

(0r)=h, +,(r) h, (r) . — (3.2)

The way we inotivated the model, h, (t) [and o;(t)] have
to be integer valued, and it is this case which will be stud-
ied in the sequel. In fact we will adopt the further
simplification o; ( t) =0, +1. However, the large-scale
properties of surfaces governed by Eq. (3.1) are indepen-
dent of such details provided only the initial surface looks
like the graph of a random walk.

Let us then specify the precise ensemble of initial sur-
face configurations. At each lattice site i we choose cr;(0)
independently to be +1 with equal probability. In order
to have a surface configuration which satisfies periodic
boundary conditions, we impose the additional constraint

L

g u;(0)=0. (3.3)

(L has to be even. ) The resulting surface is then simply
the graph of a one-dimensional symmetric random walk
which moves along the h axis in time i and returns to the
initial position at time i =L. In particular, the mean-
square fluctuation of the surface around the average
height is easily shown to be

random deposition model, where the columns grow in-
dependently according to a Poisson process. ' Here we
consider the opposite limit p~0. Then, as particles are
allowed to stick only to the corners of existing surface
steps, a flat surface clearly cannot grow. A rough surface
with a finite density of steps wi11 be smoothed by the pro-
cess until, for any finite sample, no steps are left and the
growth terminates. It is this nonequilibrium annealing
process that we will study.

Having specified the local growth rule, we must now
give the updating procedure. As we want to study the
deterministic evolution of a random initial configuration,
we suppress any temporal noise by simultaneously updat-
ing all lattice sites from one time step to the next. We do
not expect our results to depend on this choice, since the
present growth rule leads to a decay of the density of
steps irrespective of the updating procedure. To see this,
just note that it is impossible to create new steps, whereas
pairs of steps annihilate each other at local minima of the
surface. Indeed, we have checked numerically that ran-
dom sequential updating merely renormalizes the time
scale of the process, without affecting the detailed dy-
namic scaling properties. ' This behavior is very
different from some other growth models, where the ran-
dom choice of the actual growth site at each time step is
the source of large-scale fluctuations of the interface, cf.
Sec. III B.

With simultaneous updating, the interface dynamics
can be written in the following simple form:

h;(t+1)=m a(xh;, (t), h;(t), h; +(it)),i =1, . . . , L

(3.1)

w(L) =
12

(3.4)

Thus the ensemble is characterized by the static exponent

(3.5)

We also want to determine the dynamic exponent z.
One method would be to expand the right-hand side of
(3.1) in gradients in order to find out the value of P. A
more direct approach is to note that, without further ap-
proximation, the step density

L
p(&)= —g ~

o;(&)
~

(3.6)

is related to the total mass m (t) deposited up to time t by

m(t)= J ds p(s),
0

(3.7)

since each surface step accommodates exactly one new
particle. Therefore we conclude

(3.&)

and according to our scaling theory

z=1. (3.9)

B. The cellular automaton 184

Before turning to the computation of step correlation
functions, we would like to point out a surprising connec-
tion of (3.1) to a seemingly very different deterministic
dynamical system. Let us introduce a slightly modified
version of our model. We consider deposition onto a
one-dimensional surface parallel to the (1,1) direction of a
square lattice [Fig. 1(b)]. The particles are allowed to
stick only at the local minima of the surface. It is easy to
see that the surface configurations generated have local
gradients +1. By adding a particle at site i the gradients
at the bonds (i —l, i) and (i,i + 1) are interchanged.
Thus the model is equivalent to a kinetic Ising model
with asymmetric spin-exchange dynamics. ' Because of
the conservation law the particle language is more con-
venient. We set the local surface gradients equal to
2'; —1, ri; =0, 1. ii; = 1 (0) means that lattice site i is oc-

To actually compute correlation and scaling functions,
the clue is to consider the dynamics of surface steps. We
note that since

~
o, (0)

~

=1, o;(t)=0,+1 for all t under
the dynamical rule (3.1). Clearly, cr; = 1 if there is an up-
ward step at site i, cr, = —1 if there is a downward step,
and 0;=0 if no step is present. When a particle is depos-
ited next to an upward step, the step moves to the left,
whereas a downward step moves to the right. If a parti-
cle is deposited at a local minimum where two steps of
different sign oppose each other, they are annihilated.
Thus the upward and downward steps behave like a col-
lection of "particles" with velocities 21, which annihilate
each other. Initially the particles have an ideal gas distri-
bution.

In this picture the density of steps p(t) is then simply
the total density of particles. Obviously, p(t) decreases in
time and must eventually vanish in any finite system.



38 UNIVERSALITY CLASSES FOR DETERMINISTIC SURFACE GROWTH 4275

cupied (empty). The particles have a simple dynamics.
With rate 1 they jump to the right except when the final
site is occupied, in which case they stay (hard-core ex-
clusion). This is also called the single-step model. It has
been studied both numerically and analytically. ' '
Here we consider the deterministic version. In a single
time step every particle moves to the right subject to the
hard-core exclusion. The configuration g, ( t + 1 ) at time
t + 1 is determined from the configuration rl; (t) by a local
rule which depends on nearest neighbors only. This is
precisely the definition of an elementary cellular automa-
ton as introduced by Wolfram. ' In his notation the
deterministic driven lattice gas evolves according to the
rule 184. For long times the dynamics leads to a trivial
limit cycle. For that reason the automaton 184 has been
dismissed as "not interesting. " However, as we will see,
the approach to the final state has a rich spatiotemporal
structure, especially when interpreted as a surface.

It remains to establish the connection to the lattice
model of Sec. IIIA. For the half-filled lattice in the
steady state of the automaton, every other site is occu-
pied. This corresponds to a "flat" interface along the
(1,1) direction, equivalent to the ordered antiferromagnet-
ic state of the lattice gas. To describe the relaxation into
the steady state, we introduce variables which vanish in
the ordered regions. Hence

(3.10)

Then o;(t)=0, +I, and
~

cr, (t)
~

=1 only if either two
particles or two vacancies occupy adjacent sites. It is
straightforward to check that the dynamics of the o; (t) is
identical to that of the step variables (3.2) governed by
Eq. (3.1).

In the lattice gas variables, the particles with velocity
+1 may be thought of as kinks and antikinks which
separate ordered regions where cr;(t) =0. Thus the order-
ing of the lattice gas proceeds through the decay of the
kink density p(t) defined by (3.6). A similar problem was
studied by Grassberger for the elementary automaton
18.' However, due to the strong correlations between
kinks, the decay of p(t) is not simply related to the
growth of some typical domain size 1=1/p as one might
have expected.

It should be mentioned that our deposition model is in
essence equivalent to a two-species annihilation reaction,
A +8~inert, where A and 8 particles move with a rela-
tive drift, in one dimension. Reactions of this type have
been studied by Kang and Redner. ' No attempt to in-
vestigate correlations has been made, however.

Let us comment on the random sequential updating of
the automaton 184. In this case the lattice gas reaches in
the course of time a steady state, where each lattice site is
independently occupied with probability —,. The surface
grows then steadily and is characterized by the roughness
exponent g= —,'. In the continuum approximation, the
model is described by the standard KPZ equation (1.2)
with a gradient-squared nonlinearity. ' Accordingly,
the dynamic exponent is z =—'„but it no longer describes
the relaxation to a flat surface. Thus we see that random
updating not only is a relevant source of noise in this

model, but it also changes the power of the nonlinearity
and thereby the universality class.

C. Step correlations and surface structure in the infinite system

The principle of how to obtain correlation functions is
most clearly illustrated by computing the asymptotic de-
cay of the step density p(t), cf. (3.6). We study directly
the infinite system L ~~. The distribution of the
cr, (0) s is translation invariant, a property which is
preserved in the course of time. Therefore p(t) is the
probability to find a particle at the origin (or any other
lattice site) at time t. Let us assume that the particle at
the origin has velocity + 1 ( —1 follows by symmetry).
This particle must have started at time t =0 at the posi-
tion i = —t. It also has to be annihilated only after time
t. This condition constrains the particles initially present
in the interval [ t, t] by—

X

0;(0)=h„(0)—h, (0) (0
i= —t

(3.1 1)

for all x with t (x —(t Equa. tion (3.11) ensures that the
particle at the origin at time t will be annihilated by a
particle which started outside [ t, t] in—itially. Thus p(t)
equals the probability for a symmetric random walk not
to return to the origin in 2t steps. This is a standard
problem of random-walk theory, with the solution

p(t) = 1

&~t
(3.12)

(3.14)

with the correlation length

g:=2r

and

(3.15)

1

f (&)= 1+k
0 for A. ~1 .

(3.16)

Equation (3.15) confirms that the dynamic exponent
equals z =1.

The functional form (3.14) is familiar from equilibrium
critical phenomena. The correlations have a power-law
decay up to some correlation length g, and decay much
faster (usually exponentially) for l &g. Here the scaling
function (3.16) drops discontinuously to zero at l =g. In
fact, o o and cr& are statistically independent for I & g, i.e.,

for large t. This confirms the scaling prediction (2.8) with
g= —,

' and z = l.
The same method can be used to calculate the two-

point step correlation function

(3.13)

l & 0. The constraint (3.11) is then replaced by a more in-
volved restriction on the initial surface configuration
h;(0). Leaving the computations to Appendix A, we
quote only the final result, valid for large 1 and t,
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(3.17)

X(l, r):= ( [h„+,(t)—h„(r)]')
= f dx f dy(o„(t)o~(t)) '.

Inserting (3.14) into (3.18) we obtain for l & g

(3.18)

cf. Appendix A. The critical limit g~ ao is, according to
(3.15), identical to the long-time limit t~ao. This is a
common feature of all growth models.

An interesting consequence of (3.16) is that the step
correlations are positive. This means qualitatively that
given an upward (downward) surface step at site x, there
is a strongly enhanced probability that the upward
(downward) trend will continue over a range x +0(g). In-
stead of being composed of statistically-independent in-
crements, we therefore expect the surface to consist of
fairly straight segments extending over approximately g
lattice spacings. As a direct measure of the height corre-
lations we compute the mean-square fluctuations on the
scale 1,

accordance with (3.22). As expected, the qualitative ap-
pearance of the three surface profiles is the same. How-
ever, the pictures display some additional interesting
features, the most notable being the asymmetry of the
surface profiles under reflection, i.e., h ~—h. The reader
is invited to turn the figures upside down to fully appreci-
ate this effect. While such an asymmetry is generally to
be expected in growth models with a preferred direction
of growth —Eq. (2.3) is clearly not invariant under sign
reversal of h —it has not been systematically studied in
previous work. We will briefly comment on the possible
occurrence of the effect in other, more realistic growth
models at the end of this section.

A striking feature about the profiles in Fig. 2 are the
plateaus at the local maxima of the surface, which almost
all appear to be of the same width. A quantitative com-
parison reveals that this width equals the correlation
length g'. It is shown in Appendix A that the distance be-
tween an upward step and a downward step to the right
of it, i.e., the width of a local maximum, is always larger

(3.19)

with 20. L = 1024

1~A,—arctan( v'A, ) —1 (3.20) O.

whereas for I & g

X(l, r) =I — ——1
4
7T

(3.21)

-20

200 400 600 800 1000

X(l) is differentiable at l =g. The scaling function F(A, )

is nearly constant on the interval [0,1], decreasing mono-
tonously from F(0)=1 to F(1)=—,'(m/2 —1)=0.856.
The result (3.19) confirms our expectations regarding the
surface structure. The l growth of X is intermediate
between the statistics of a random walk (X-1) and that
of a straight line segment (X-I ). Thus the surface is
straightened on length scales 1 & g, with a sharp crossover
to the random-walk behavior (3.21) at I =g.

At this point, it is useful to reconsider the notion of dy-
namic scale invariance introduced in Sec. II. According
to the general scaling picture, we expect a surface charac-
terized by scaling exponents g and z to be statistically
self-similar with respect to the transformation

50.

0.

-50

100 .

1000 2000
x

8000 4000

h„'(r) =b &hb„(b'r) (3.22)

for any b &0, i.e., h and h' should have the same statis-
tics. In particular, all surface correlation functions
should be invariant under (3.22). As we have argued
above, g= —,

' and z =1 for our model. Thus X(l, t) must
satisfy the homogeneity relation

0.

—100

5000 10000 15000

X(bl, bt) =bX(l, t) (3.23)

which is indeed true both for (3.19) and (3.21).
To illustrate the dynamic scale invariance, we compare

in Fig. 2 three surface configurations at times t =8, 32,
and 128, with the proper rescaling of the h and x axis in

FIG. 2. Surface profiles generated from random initial data

by the dynamics (3.1). The three plots show typical
configurations at t =8, 32, and 128. The correlation length is

(=L /64 in all cases.
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than g. But then, if the steps are more than g lattice
spacings apart, they are uncorrelated, and thus their dis-
tance exceeds g by an amount proportional to the inverse
density of steps. Since p(t)-t ', we conclude that the
width of the local maxima is given by

I,„=(+0(t'"). (3.24)

In comparison, the local surface minima are much nar-
rower. Indeed, there is no lower bound on the distance
between an upward step and a downward step to the left
of it. The distribution function for the width of the local
minima is approximately calculated in Appendix B. Nor-
malized to unity, the result is

s(l, t):= (p(l, t) )
(I t)2 3/2 (3.29)

D( x, y, r):=(0 „(r)~Q(r)oy(r)) . (3.30)

The calculation of (3.30) is sketched in Appendix A. The
result is

It is easy to check that s is negative for a surface com-
posed of convex arcs. Furthermore, one expects

~

s (I, t)
~

to have a maximum when l equals the typical arc length.
While the denominator in (3.29) is closely related to

X(l, t), the calculation of (p ) clearly involves the three-
point step correlation function

1 . 2 if I &g
1+—

0 if I&g. (3.25)

D(x,y, t)= j'(x/g, y/g)
1 1

(2m')'" xy(
for x,y )0 with

if 0&A, , A, '&1

0 otherwise .f AA'=

(3.31)

(3.32)

The distribution is thus concentrated at small I, with the
first moment

To proceed, we first note that

( I;„)=(m —3)(=0.14$ . (3.26)
(p(l, r)') =-', t', [h, (r) h, (t)]—[h, (r) h, ( —)r]') (3.33)

p(l, r):=-,'[2h, (t)—h, (r) —h, (t)] . (3.27)

p describes the height fiuctuations at the origin relative
to a local mean height defined by

The drastic difference between local maxima and mini-
ma gives a first quantitative measure of the asymmetry of
the surface. For a more complete description of the
effect, we consider moments of the quantity

since the third-order terms [ho(t) —h+1(t)] vanish due
to symmetry. Some further manipulations show that

(p(l, t) ) = ——,'f db f dx f dy D(x,y, t) . (3.34)

The evaluation of the integral is tedious but fairly
straightforward. We only present the final result for
s (I, t). Since s is a dimensionless quantity, cf. (3.29), sta-
tistical self-similarity (3.22) requires that it is a function
only of I /t. Indeed, the result can be written as

h (I, r) = ,' [h, (r)+h—,(r)] . (3.28)
s (I, t) = s(I!g(t))—, (3.35)

Since we are interested in the surface asymmetry, we
must compute odd moments of (3.27). More specifically,
we want to calculate the local surface skewness ' defined
by

with s & 0. As s (I, t) has no explicit time dependence, it is
a true invariant of the surface dynamics. The scaling
function s is given by

A (A, )

a(x)'" for 0&A, & l

s(A, )= . —3v'2

—3v'2
'lT

2

(n /3 1)—
6 3

7T 2

B (A. )

3/2 for k ) 1

A ( A, ) +2A, arctan &2k, —1 —v'2A, —1 ——(2A, —1 )
~

6
for —, &A, &1 (3.36)

where

min(A, , 1 —A, )
A (A, )= '

dp(&A+parctan&k. p &A, —p—arc—tanV'A, +p)0
(3.37)

and
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4(1+A, ) arctanv'1 —(2A, + I ) arctanv'2A, —(4—&2)V'A, for 0 & A, & —,
'

B(A.)= .
4( 1+I, ) arctan&A. —4&A, ——A. + 1 ——for —' & A, & 1 .

2 4

(3.38)

s(A, ) is a smooth function with a single maximum at
A, =0.55, where it takes the value s,„=0.47 (Fig. 3).
For small A, , s(A, ) grows as A, , while the decay for
A, ~ co is algebraic, cf. the last line in (3.36).

It is tempting to speculate whether a nonzero local sur-
face skewness could be a general characteristic of surface
growth models with a symmetry-breaking term like the

nonlinearity in (2.3). Wolf ' investigated the global skew-
ness, i.e., (3.29) with I =L, for the Eden model. He ob-
served changes of sign as a function of time but was un-
able to extract the asymptotic behavior. On the other
hand, for the two-dimensional single-step model, the
steady state is explicitly known to possess reflection sym-
metry. We have performed some preliminary sirnula-
tions of two-dimensional standard ballistic deposition and
found a negative surface skewness of the same order of
magnitude as in the present model, on a length scale of
10—20 lattice spacings. ' We are further investigating
this point, as well as the possible relevance of our findings
for the experimentally observed microstructure in thin-
film deposits.

Let us add that both X(l, t) and s(l, t) have been com-
puted by a direct numerical simulation of Eq. (3.1). Pro-
vided that the correlation length g is much smaller than
the system size L, we find excellent quantitative agree-
ment with the analytical expressions (3.19) and (3.36).
The additional effects which occur when g=L will be the
topic of the next section.

T =L/2 (3.39)

in accordance with the scaling theory of Sec. II and z = 1.
Let us now investigate in more detail how the step den-

sity p(t) crosses over from the power-law decay (3.12) for
t ((T to the flat surface, p=0, for t = T. In addition to
(3.11), the random walks contributing to p at time t must
then satisfy the periodic boundary conditions (3.3). The
calculation of p(t) for the restricted ensemble is given in
Appendix C. The result is a simple modification of (3.12),
namely,

(3.40)

where, of course, t /T may be replaced by g/L.
Next we consider the mass deposited per unit area up

to time t, related to the step density by (3.7). Inserting
(3.40) into (3.7), we obtain for t & T,

cease to be valid when t approaches T. In fact, this state-
ment can be made precise without any further calcula-
tion. To see this, we pick a typical initial configuration.
Its maximum consists of a pair of an upward and a down-
ward step at adjacent lattice sites. Under the dynamics
the steps move apart and, due to the periodic boundary
conditions, they will annihilate each other after L/2 time
steps. Since this is the last pair of steps that vanishes, we
conclude that the surface becomes totally flat at time
t =L /2. Thus the relaxation time T is given by

D. Finite-size scaling

In equilibrium critical phenomena, finite-size effects set
in when the correlation length becomes of the order of
the system size. In the present model, the correlation
length grows linearly with time according to (3.15). Thus
we expect, for a system of size L, a time scale T-L, such
that the asymptotic laws derived for the infinite system

m (t,L)=m, „(L)F(t/T),

where

m, „=v'(m. /8 )L

and

F(A, ) =—[arcsin(V'A, )+&A, cos(arcsinv'A, )] .

(3.41)

(3.42)

(3.43)

0. 6 The expression (3.42) for the total mass deposited up to
t = T has a simple interpretation. Consider again a typi-
cal initial configuration h of length L. With the periodic
boundary conditions, we may shift the boundaries in such
a way that h takes on its absolute maximum h,„at
x =0 and x =L. Then h forms a pit which is simply
filled up with particles during the growth process. The
total deposited mass, m, „L, thus equals the volume of
the pit, i.e., the area under the graph of h,„—h„:

0. 0
0

m,„=—I dx ( (h,„—h„) ) = ( h,„)L o
(3.44)

2t
FIG. 3. Skewness scaling function as given by Eqs.

(3.36)—(3.38).

and a simple calculation shows that (b,„) agrees with
(3.42). The scaling of m, „with L was anticipated in

(2.12). For t « T, (3.41) reduces to
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(3.45)

which confirms the general scaling form (2.10}. Finally
we note that the scaling function (3.43) approaches its
saturation value F(1}=1as

F(1—8)=1— 8 /
3' (3.46)

L
w(t, L)~=—g [h, (t)—h(t)]

i=1

where h(t) is the mean surface height

(3.47)

(3.48)

For t =0, w is given by (3.4}, whereas clearly w =0 for
t )T. Thus we expect the following scaling form:

w(t, L) = g(t/T),
12

(3.49)

Both (3.40) and (3.41) were confirmed by direct numeri-
cal simulation. In fact, we expect a finite-size scaling
form similar to (3.40) and (3.41) to hold for the time evo-
lution of any well-defined quantity in our model. As an
example, we calculated numerically the mean-square sur-
face fluctuation

IV. DKTKRMIMSTIC EDEN GROWTH

Among the local growth rules, the one introduced by
Eden has been most thoroughly studied. ' In the sim-
plest version of the model, a new particle is added to a
randomly chosen empty perimeter site of the cluster. In
order to reduce the corrections to scaling of the surface
width, Wolf and Kertesz developed the method of noise
reduction. A counter is put at every growth site (=emp-
ty perimeter site). Each time the site is chosen by the
random-number generator, the counter is incremented by
one. When the counter reaches a prescribed value m, the
growth site is filled and the counter is reset to zero. As
m —+ 00, the growth proceeds layer by layer. The growth
rule may then be formulated deterministically, and sim-

ply amounts to filling all available growth sites simultane-
ously. The model becomes a cellular automaton of the
kind studied by Packard and Wolfram in two dimen-
sions.

In this section we outline the connection between the
deterministic (m = ~ ) two-dimensional Eden model and
the lattice model (3.1). It will turn out that depending on
the growth rule and the orientation of the substrate,
deterministic Eden growth is either a trivial displacement
of the surface as a whole, or it is described by (2.3) with
P= 1. We will also gain some insight into the physical
significance of the nonlinearity in (2.3).

Let us first rewrite (2.3), for a one-dimensional surface,
in terms of the surface gradient u =Bh /Bx. Then

1.0-

0.8.
U

0. 6-

0.4-

0.2-

L = 256

o L = 51Z

L = 1084

IP

Ra

0. 0
0.0 0.5

t//'
1.0

FIG. 4. Numerical data for the surface width m(t, L) scaled
according to (3.49). Each set of data points was obtained by
averaging over 400 initial configurations.

where g (0}= 1 and g (1)=0. We note that (3.49) is exact-
ly of the form (1.1) with g= —,

' and z =1, although the
scaling function is different in the stochastic case. While
we did not push to calculate the scaling function g analyt-
ically, the numerical data for various values of L
displayed in Fig. 4 clearly demonstrate that such a scal-
ing function exists.

—u (x, t)=D u (x, t)+Ac(u (x, t)) u (x, t),
Bx

where

(4.1)

c(u)=psgn(u)
~

u ~8 (4.2)

v (f}—vo cosp
&(p)=

sing
(4.3)

Clearly, b,(P) can be identified with the convection speed
c(u). If the growth velocity is independent of the slope,
v (P) = vo, then b(P) = —,

'
vog for small P. Thus c (u) u-

and P=2. This is the derivation of (1.2) for lateral
growth as given in Ref. 9.

However, for deterministic Eden growth, v (P) depends
on the orientation. If the x axis is chosen as the lattice
axis of a square lattice, the normal growth velocity for
the standard nearest-neighbor (NN) Eden model is

v(P) =max(
~
sing ~, ~

cosP
~

) (4.4)

Equation (4.1) is a diffusion equation with a nonlinear
convection term. A piece of the surface with slope u is
translated along the x axis with velocity c (u). For layer-
wise growth, c (u) is related to the directional dependence
of the normal growth velocity. We consider a sharp
corner ~here two straight surface segments meet. One
segment is parallel to the x axis and the other one is tilted
by an angle P, cf. Fig. 5. Let vo be the growth velocity
normal to the x axis, and v (P) the normal velocity of the
tilted segment. After one unit of time, the position of the
corner is then shifted by an amount b, (P} along the x
axis. The geometric construction in Fig. 5 gives
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"o

-1 0 1

Sg Eden modeL
-1 0 1

NNN Eden modeL

FIG. 5. Geometric construction used to calculate the hor-
izontal displacement of a surface step in layer-wise growth.

FIG. 6. Orientational dependence of the normal growth ve-

locity for the deterministic NN and NNN Eden models.

on the circle n&—P &. m. To discuss growth from a sub-

strate parallel to the x axis, we may restrict ourselves to
the range

~ P ~

(n/4 S.ince. overhangs and high steps
are strongly suppressed by noise reduction, the initial
surface configurations contain no segments with more
than unit slope

~

tang
~

& 1. Within this range,
U(P)=cosg and therefore 5(P)=0. Thus the corners do
not propagate, and the dynamics is a trivial displacement
of the surface h;(t +1)=h; (t)+1.

For comparison, we introduce the next-nearest-
neighbor (NNN) Eden model, where both the nearest and
the next-nearest neighbors of an occupied site are possi-
ble growth sites. In the deterministic limit, the normal
growth velocity is now

U (P) =
~
cosP

~
+

~

sintI)
~

(4.5)

Inserting this into (4.3) gives, for
~ P ~

& m/4,

b, (P) =sgn(P) . (4.6)

Thus c(u)-sgn(u), and the surface relaxes with a non-
linearity exponent p= l. In fact, the growth rule for the
deterministic NNN Eden model may be written as

h, (t+1)=max(h; &(t), h;(t), h;+&(t))+I (4.7)

which is identical to (3.1).
Why are the NN and the NNN rules so different? In

Fig. 6 we show polar plots of v(P} for the two models.
Apparently, the plots are equivalent up to a rotation of
n. /4. Indeed, if one considers growth from a substrate
parallel to the lattice diagonal, the properties of the two
models are interchanged. Now the NNN rule is trivial,
whereas the NN rule leads to surface relaxation. Thus
the directions of nontrivial (relaxational) growth dynam-
ics are associated with the cusps in U(P). Wolf ' has
shown that the asymptotic shape of an Eden cluster is
determined by U(P} through the well-known Wulff con-
struction. Accordingly the cusps in u(P) give rise to
facets in the asymptotic cluster shape, which is a dia-
mond for the NN rule, and a square for the NNN rule.
In that sense, we see that (2.3) with p= 1 describes the
growth of facets on an initially rough crystal surface.

V. CONCLUSIONS

We have studied deterministic surface growth and
achieved (i) a general scaling theory and (ii) an unusually
detailed analysis of the deterministic KPZ equation with
nonlinearity

~

(8/Bx)h (x, t)
~

. We want to comment on
two issues. (i} How are Burgers's results related to ours?
(ii) What do we learn about the stochastic growth?

(i) If in the deterministic KPZ equation we set
u (x, t)=(B/Bx)h (x, t), then u is governed by the Burgers
equation

a = a' a—u (x, t) =D u (x, t)+1, u (x, t)
dt Qx Bx

(5.1)

3z =—
2

(5.2)

and a t ' decay of the step density. According to
Burgers, "(u (x, t)u (y, t)) becomes so complicated, that
there is little hope for its evaluation. " So why could we
do better for our case? With nonlinearity

~

(8/Bx)h (x, t)
~

the surface gradient is governed by

a—u(x, t)=D u(x, t)+A,
i
u(x, t)

iBx
(5.3)

Now the characteristics have only velocity +k, in con-
trast to Burgers's equation, where they have a general ve-

locity 2A,u (x). Clearly, this latter case is more difficult.
(ii) When starting our investigation we hoped that the

deterministic growth would yield some information about
the dynamical exponent z of the stochastic KPZ equa-

Since, at time t =0, h (x) is the graph of a random walk,
its increments u (x) are stationary and essentially un-

correlated. One has to solve then (5.1) subject to these
random initial data. This is precisely the problem investi-
gated by Burgers. ' He shows that in the long-time limit
u(x, t) is composed of linear pieces with slope —1/t
separated by shock discontinuities. The shocks move at
constant velocity. Upon collision they coalesce and con-
tinue with a new velocity. The surface height h (x, t) con-
sists therefore of downwards parabolas joined at kink
discontinuities. Their curvature flattens out in the course
of time. Burgers showed that (

~

u (x, t)
~

) = t ' and
that the typical arc length increases as t . This fits with
our general scaling theory: Since g= —,', p=2, we must

have
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tion. Now we see that this hope is futile, although in a
somewhat subtle way. Within our general scaling theory
we recover, for P=2, the scaling law (2.14) relating the
static and dynamic exponent in the stochastic case."'
However, the significance of the static exponent g is quite
different in the two cases: For stochastic growth g is the
static scaling exponent of the steady state and thus given
indirectly by the dynamics. For deterministic growth g is

given by the initial conditions. Therefore the determinis-
tic case can teach us only how the dynamic and static ex-
ponent are coupled, but not their specific numerical
value.

Moreover, as we mentioned at the end of Sec. III B, the
nonlinearity exponent P could be affected by the noise.
While the stochastic growth models studied so far appear
to belong to the P=2 universality class, ' ignoring the
trivial cases of diffusive relaxation ' and random deposi-
tion, ' one cannot exclude the possibility of a stochastic
growth rule leading to a value of P other than 2. Follow-
ing the arguments of Sec. IV such a rule would be expect-
ed to display strong lattice anisotropy even under the
influence of noise. The derivation of the correct form of
the nonlinearity from a given growth rule is a nontrivial
problem which clearly requires further investigation.

Note added in proof. The following two articles have
been brought to our attention: one by Kida studies the
deterministic Burgers equation (P=2) with random ini-
tial data corresponding to the two cases (=0 and I/2;
the other by Elskens and Frisch also derives the decay
of the average step density, Eq. (3.12).

and

h (x') &h (I) for x'E[1,1 +2t] . (A lb)

Our goal is to compute the relative weight of initial
profiles which satisfy (A 1) within the ensemble of all
one-dimensional random walks. Let us denote by
Qr(x, x') the probability for a random walk to go from x
to x', x'&x, in time T without returning to x. Setting
y:=h(l) and z:=h(1+2t) the weight of a random walk
which satisfies (A 1) is then

W(y, z) = Q, (O,y)Q„(y, z), (A2}

The contribution from two particles with velocity —1 is
identical to (A3) as can be seen from a symmetry trans-
formation.

Next we consider the case when the left particle has ve-

locity + 1 and the right particle has velocity —1. Then
the initial positions are x =0 and x = I +2t and the parti-
cles approach each other. Fixing again h (0)=0, the con-
dition for the initial profile is

and

h (x) & 0 for all x F [0,2t] (A4a)

where 0&y &z. To obtain the total contribution to the
correlation function, we must integrate (A2) over the ad-
missible range of y and z, i.e.,

G++(t, t) = f dy f dz Q&(O, y)Q2, (y, z) . (A3)

h (x') & h (I +2t) for all x'E [1,1+2t] . (A4b)
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APPENDIX A: DERIVATION OF STEP
CORRELATION FUNCTIONS

We want to compute the probability for finding, at
time t, two particles at a relative distance I. By transla-
tional invariance we may assume the positions of the par-
ticles to be x =t and x =t +I. The history of the parti-
cles then depends on the initial data in the intervals
[0,2t] and [l, l +2t], respectively, as shown in Fig. 7. In
particular, if these intervals do not intersect, i.e., if I p 2t,
the particles are statistically independent and (3.17)
holds. Clearly this is a consequence of the short-range
correlations among the o, (0).

The correlation function (3.13) decomposes into four
terms, corresponding to the possible combinations of ve-
locities of the two particles. Let us first consider the case
when both particles have velocity + 1. Then at t =0
their positions were x =0 and x =1. Let h (x) denote the
initial condition and fix it at the origin, h(0}=0. Then
both particles survive up to time t if

W, (y, )z=Q„(O,y)Q, (y, z), (A5)

where y =h(2t) &0. If z &0, (A4b) implies (A4a) in
[1,2t], and the weight is

8'2(y', z) =Q/(O, y') g2, (y', z) (A6)

and now y'=h (1) &z. Taken together, we obtain the fol-
lowing contribution to the correlation function:

C 2t 2t+ 4

Here we must discriminate between z =h (I +2t) & 0 and
z &0. If z ~ 0, then (A4a) implies (A4b) within the over-
lap interval [1,2t], and the weight of an admissible walk is

h (x) &0 for x E [0,2t] (Ala)
FICT. 7. Space-time diagram used in the derivation of the step

correlation functions in Appendix A.
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G+ (1,t)= — f d& f dy Q2 (0 y)QI(y z)

+ f dz f dy Ql(0~y )Q2t(y, z)

(A7)

6+ is negative since the particle velocities have
different signs.

The last case to consider is the one where the two par-
ticles move apart at time t. Then initially the left particle
was at x =2t and the right particle at x =1. But since
1 & 2t, this implies that their trajectories must have
crossed, and thus they cannot be present at time t. We
conclude that these pairs do not contribute to the correla-
tion function. Stated differently, this implies that a local
surface maximum at time t must have a width of at least
2t, cf. Eq. (3.24).

In order to evaluate the integrals (A3) and (A7) we
must still specify the propagator Qz (x,x'). We will use a
continuum approximation, which becomes exact when
x,x'&pl and T&&1. Then, for x'gx,

Inserting this into (A3) and (A7) and adding up the
different contributions according to

G(l, t)=2G++(l, t)+G+ (1,t) (A9)

D(x,y)=f (x,y) f (y, x)—, (A10)

one obtains (3.14).
The computation of the three-point function (3.30}

proceeds along the same lines. Again the correlations
vanish if the distance between any two particles exceeds
2t. There are eight contributions to the correlation func-
tion, corresponding to the different combinations of par-
ticle velocities. However, now the (+ + + ) —and the
( ———) —terms have different signs and thus cancel.
Furthermore, since no left-going particle can be within 2t
to the left of a right-going particle, the terms ( —+ —},
( ——+ ), ( —+ + ), and (+ —+ ) also vanish. One is left
with two terms which are related by a change of sign and
an exchange of the arguments (x,y), i.e.,

Qr(x, x') = (x —x')e1

(2~T')'" (AS) with

f (x,y)= f da Q„(O,a)f dc f db Qz, (a, b)Q~(b, c)+f da Q„(O,a)f dc f db Q~(a, b)Qz, (b, c)

(Al 1)

APPENDIX 8: DISTRIBUTION OF LOCAL
SURFACE MINIMA

Here we want to identify those initial surface
configurations which admit, at time t, a local minimum
with a plateau of length 1. The two steps which consti-
tute the plateau were initially at a distance I +2t and at
the same height hc which we set to hc ——1 in units of the
lattice spacing. They approach each other and will an-
nihilate at time t + 1/2. Thus the initial surface
configuration must satisfy

h (x) &0 for all x E-[0,1+2t], (Bl)

x; &2t, i =1, . . . , n+1
n+1
g x, =l+2t .

(B2)

The propagator which takes the walk from y; to y,-+1 is

where we have assumed that the left downward step
starts at x =0. Furthermore, since the plateau is to be
completely Hat at time t, all the surface fluctuations ini-
tially present between the two steps must have been
smoothed by that time. This implies that the downward
excursions of the initial configuration away from the
h =0 line cannot extend over more than 2t lattice spac-
ings along the x axis. The most general random walk
which contributes to a local minimum of width I at time t
will thus return to the h =0 line n times, h (y;)=0 for
i =1, . . . , n, and the points of return will be distributed
in the interval [0,1+2t] such that their differences
x; =y;+1—y; for i = 1, . . . , n and x +1.——1 +2t —y„
satisfy

I

given by (AS) with T =x; and x —x'=1. The contribu-
tion of all walks with n returns which satisfy (B2}is then

—1/2x;

I„(l,t)= f dx, f dx„
, (2mx,3)'"

x5 g x, —1 2t—(B3)

Let us try to estimate the integral for large t. If each of
the xi is of the order t, the integrand is of the order
t '"+"~ . The volume of integration, defined by (B2), is
proportional to t". Together this implies

I„(1,t) =0 (t '"+""). (B4)

Thus for large t the lowest order term, n =1, dominates,
and it is sufficient to compute I, (1,t)

When n =1, then (B2) can be met only if 1 & 2t. This
implies that, to leading order in t ', all local minima
have a width smaller than 2t. With some rescaling of
variables, the integral (83) with n = 1 becomes

1/[ Tz(1 —z)]
I&(l, t) = T dz

27K I/T [z(1—z}]
(B5)

where T:=I+2t. Within the range of integration, the
argument of the exponential function is always much less
than unity. The exponential factor can thus be dropped,
and one obtains

I (1 t)= —(2t) 1
2 1 —I /2t

(B6)
7T (1+1l2t)'

Normalizing this to unity on the interval [0,2t] finally
produces (3.25).
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h (x) &0 for all x K[0,2t] . (Cl)

Here we have set h (0)=0. In a finite system of length L
with periodic boundary conditions, h (x) has to satisfy

h (L)=h (0}=0 (C2}

in addition to (Cl). On the interval [2t, L], there is no re-
striction like (Cl) on the random walk. The weight of
such a walk may therefore be written as

APPENDIX C: STEP DENSITY IN THE FINITE
SYSTEM

As in Sec. III C, we consider a particle with velocity
+ 1 which starts at the origin at time t. It survives up to

time t if the initial configuration h (x) satisfies f dy W(y, t)=

The total weight of walks which satisfy (C2) is clearly
given by

PL (0,0)= 1

2rrL
(C6)

Since we are interested in the probability of 6nding a par-
ticle at time t within the restricted set of initial conditions
subject to (C2), we must normalize (CS) by (C6) to obtain

is the probability for an unrestricted random walk to go
from x to y in time T. Taking the integral of (C3) over
the intermediate positions y & 0 results in

' 1/2

(C5)
2t

W(y, t }=Q2, (0,y)PL &, (y, 0),
where y =h (2t ) & 0, Q is defined in (A8), and

(C3)
p+(t, L)=— Vl 2t/L—1 1

(C7)

P ( y)
—(x y) /2T—1

&2' T
(C4) Together with an identical contribution from particles

with velocity —1 this adds up to (3.40).
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