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Master-equation approach to deterministic chaos
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A class of exact master equations descriptive of a Markovian process is obtained, starting from
the Perron-Frobenius equation for a chaotic dynamical system. The conditions that must be
satisfied by the initial probability density for the validity of the master equation are derived. The
approach employs projection operator techniques and provides one with a dynamical prescription
for carrying out coarse-graining in a systematic manner.

I. INTRODUCTION

Owing to the exponential divergence of nearby trajec-
tories, predictions on individual histories lose their
significance in chaotic dynamical systems, beyond a time
of the order of the inverse of Lyapounov exponent or of
the Kolmogorov entropy. ' Yet it is well known that
despite its intrinsic randomness, chaotic behavior
displays also some remarkable large-scale regularities.
The question therefore naturally arises of whether such
long-term properties can be forecasted in a reliable
manner. Our purpose in the present paper is to explore
the possibilities afforded by mapping chaotic dynamics
into a well-defined stochastic process described by a mas-
ter equation.

The statistical properties of dynamical systems exhibit-
ing instability of motion in general, and of chaotic attrac-
tors in particular, have been the subject of extensive in-
vestigations. In most studies emphasis is placed on er-
godic properties, and in particular on the existence and
main features of an invariant probability density.
However, some results concerning time-dependent proba-
bilistic behavior, especially for intermittent systems, are
also available. In the present paper attention is fo-
cused on the possibility to cast the dynamics of a chaotic
system in the form of a master equation, describing the
evolution of an initial nonequilibrium distribution toward
the invariant "equilibrium" form. This question can be
viewed as the extension to dissipative dynamical systems
of the familiar question of statistical mechanics, how to
derive kinetic equations for reduced distributions starting
from a "fine-grained" description based on the Liouville
equation. We give a partial answer to this question by
showing how the unstable character of the dynamics al-
lows one to perform coarse-graining in a systematic
manner. Some algorithms for generating well-defined
stochastic processes of varying complexity by this
method are provided.

In Sec. II we use the concept of Markov partition to
obtain the master equation descriptive of a class of chaot-
ic attractors. The conditions that must be fulfilled for the

process to be Markovian are formulated. Special em-
phasis is placed on the restrictions imposed on the initial
probability density. In Sec. III the conditions derived in
Sec. II are verified, both analytically and numerically, on
simple examples. Section IV is devoted to the properties
of the master equation, whereas in Sec. V the main con-
clusions are summarized.

II. MARKOV PARTITIONS AND MASTER EQUATION

x„+&

——4x„(1—x„), 0 & x & 1

(2b)

p„(x)=
[x (1—x)]'.

If the dynamics satisfies the mixing property one can
define a time-dependent distribution p„(x) evolving ac-
cording to the Perron-Frobenius equation

p„(x)= Up„ i(x),

In this section we focus on chaotic dynamical systems
defined by one-dimensional iterative maps' '

x„+,——f(x„,A, )

in a parameter range in which there is a chaotic attractor
possessing a nonsingular invariant probability p„(x). It
is well known that under appropriate conditions involv-
ing time scale separation a wide class of continuous time
dynamical systems (flows) reduce to mappings of the form
of (1). In the analysis carried out in the present section
the specific form off (x, A, ) need not be specified. In most
of the illustrations of the subsequent sections, however,
we will use two simple examples, provided, respectively,
by the tent map and the logistic map in the fully chaotic
region:

2x„, 0&x & —,
'

I+& 2 —2x„, —,
' &x &1

(2a)
p„(x)=1

and
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where the action of the evolution operator U on any posi-
tive normalized function r(x) is given by

Ur(x)= f dy 5[x —f (y)]r(y)
a

1
r( 'x ) .. If'(f. 'x)

I

(4)

and cast Eq. (3) into the form

P„=n Up„,(x),
where the probability vector P„ is defined by

P„=mp„—:[P„(1),. . . , P„(N)],
with

(6)

(7a)

In this latter equation the index o. runs over the various
branches of the inverse mapping f '. For unimodal
mappings, to which we will restrict ourselves for simplici-
ty in the subsequent sections, the number of these
branches is equal to two. The invariant probability p„(x)
to which we alluded earlier in this section is a stationary
solution of Eq. (3), p„(x)= Up„(x).

Equations (3) and (4) fail to define a physically mean-
ingful stochastic process, owing to the singular character
of the "transition probability" 5[x —f (y)]. We shall
cope with this difficulty by mapping the "fine-grained"
description afforded by (3) into a "coarse-grained"
description. Although quite familiar from statistical
mechanics, " coarse-graining is usually carried out in a
phenomenological manner. Here we show that under ap-
propriate conditions it can lead to an exact image of the
dynamics, in the form of a regular stochastic process of
the Markov type obeying to a closed-form master equa-
tion.

The starting point is to partition the state space of our
dynamical system into a set of N nonoverlapping cells C;
(i =1, . . . , N). We shall come shortly to the properties
that must be satisfied by this partition, but for the time
being we introduce the (noninvertible) projection opera-
tor m through

mr(x)= f rdx, . . . , f rdx (5)
C1

'
CN

Eq. (8) remains fine grained and belongs therefore to a
different class of functions than P„.

Our first step will be to restrict the admissible po(x)'s to
the class of functions taking (like P„) a constant value in
each of the cells of the partition. Actually, since we
dispose of a nonsingular invariant probability p„(x), it
will be sufficient to assume stepwise initial conditions of
the form

N

po(x)=p„(x) g a;y; (9a)

where y; is the characteristic function of cell C, ,

y, (x)=1 if x&C, ,

y, (x)=0 if x EC, .
(9b)

Defining

P„(k)=f p„(x)dx,

Pp(k) = po(x)dx
C~

we can therefore rewrite expansion (9a) as

N

po(x)=p„(x) g '. Po(i)
) P„ i

(loa)

Initial conditions of the form of (9a) can be understood as
perturbations of the invariant probability p„(x) which, in

view of the finite resolution involved in a physical experi-
ment, cannot be described in a degree of detail going
below the size of any of the partition cells.

To see the nature of the expansion coefficients in Eq.
(9a) we multiply both sides of (9a} by gk and integrate
over x:

f 'q „(x)po(x)dx = f 'q'„(x)p„(x)dxak
a a

or

po x Gfx

f p„(x)dx

P„(i)=f dx p„(x) . (jb)
—:p„(x)y+ Po, (10b}

Using Eq. (3) one can thus write the formal solution of (6)
as

where y+ is the column vector,

P„=mU"po(x) . (8) P„(1)
fN

P„(N)
(10c)

In principle, Eq. (8) allows one to evaluate P„ for any
given n starting from an initial distribution po. Our ob-
jective, however, is to obtain a closed-form autonomous
equation for this quantity, which should provide a more
transparent picture of the system's dynamics. For in-
stance, it would allow one to characterize the nature of
the process, to sort out some general trends (like an H
theorem), and to set up, if necessary, suitable approxima-
tion schemes. There are two difficulties with which this
program is confronted: first, owing to the unstable char-
acter of the dynamics, the initial partition is continuously
being refined; and second, the initial probability po(x) in

P„=WP„ (12a)

in which the transition probability matrix W is given by

W=nUp„(x)y+ . . (12b)

Substituting (10b) into Eq. (8) we obtain

P =n.U"p (x)y+ P

If this equation is to define a Markov process, P„
should satisfy a master equation (forward Kolmogorov
equation) of the form
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Comparing (12a) and (12b) and (11)we arrive at the com-

patibility condition

wU"p (x}y+=[n Up„(x}y+]".

Actually, by the principle of induction it will be sufficient
to show that

m U"p„(x)y+ =mU" 'p„(x)y+ nU. p„(x)y+, n &2 .

(13)

To see the implications of this condition we first evalu-
ate the transition matrix W. Taking notice of (4), (5),
(10c) and of the fact that U commutes with the invariant
probability p„(x), we can write the matrix elements of W
as

W,, = f dx p (x)—g, , q(f 'x). I
f'(f. 'x)

I

, dg p„(g)%;(g)

g p(C; n CJ
' ):— . p(C; n Ci '),1

(14)

where C ' is the pre-image of cell C. under the effect of
branch a of the inverse mapping f ' and p(c) denotes
the measure of set C. The compatibility condition, Eq.
(13), now becomes

'. p(c, nc; )P„ i

1'
. y p(c, nc„-'"-") p(c„nc,-'),

(15)

where the indices i,j,k run over all members of the parti-
tion (1 to N) and C "is the set of all pre-images of C un-

der the effect of n reverse iterations of the mapping. No-
tice that Eq. (14) guarantees that, whatever the partition
might be, 8',-J is a stochastic matrix. Indeed, evaluating
the row sums of W one finds that

g W;~ = g p( C, n C~ ')1

1
p(c; ngc) }

00 J

1
. p(C;)=I,P„(i)

properly the states of the underlying process. Moreover,
Markov partitions are well suited for a symbolic descrip-
tion of the orbits of the dynamical system. ' The sym-
bol space is the set of (infinite) sequences involving a
number of symbols equal to the number of cells of the
partition, in which the dynamics f [Eq. (1)] induces a
shift map of sequences. We refer to this dynamical sys-
tem as subshift of finite type In. view of the shadowing
lemma' one expects that the orbit realized by this pro-
cess for a j7nite time interval, n «n & n2 gives an approx-
imation to some orbit of the full system.

An important class of Markov partitions are the gen-
erating partitions. They enjoy the property that a partic-
ular realization of the subshift process for —~ &n & 00

specifies uniquely an orbit of the underlying dynamical
system (1). If the successive states of the process are un-
correlated the partition will be referred to as Bernouilli
partition. ' In general it is very difficult to construct ex-
plicitly a generating partition fulfilling this property.

Ordinarily, the statistical description of unstable
dynamical systems is based on the computation of transi-
tions between cells of a generating partition, induced by
the dynamics and weighted with the invariant probability
p„. Such a view cannot lead to a well-defined stochastic
process: on the one side the underlying dynamics and
p„(x) remain fine grained; but on the other side the out-
come of the individual transitions is integrated over the
cells of the partition, thus providing information on cell
to cell transitions in terms of coarse-grained quantities.
The main originality of our approach is (a} to set up a
closed-form description associated to a well-defined sto-
chastic process by dealing solely with coarse-grained
quantities, (b} to explore wider classes of partitions than
the generating partitions, and (c) to incorporate explicitly
in the description the evolution of an initial probability
distribution Po toward the stationary solution P„. To
achieve this we need, however, to define the range of va-
lidity of the compatibility condition, Eq. (15). The inere
choice of Markov partition does not guarantee this validi-
ty. Indeed, the definition of Markov partition is purely
topological: it specifies nothing about the invariant mea-
sure or the initial condition, both of which play an impor-
tant role in our formulation. We shall therefore regard
Eq. (15}from now on as an additional condition to be im-
posed on the partition. In Sec. III we prove analytically
its validity on some concrete examples and report on the
results of numerical experiments in a number of represen-
tative situations.

III. PROOF OF THE COMPATIBILITY
CONDITION AND NUMERICAL EXPERIMENTS

where the second equality follows from the definition of
the invariant measure.

To proceed further we need to specify the nature of the
partition [C,. I. We shall choose from now on a Markov
partition whose principal property ' '

f(c„)n c,~y-f(c„)~c,
implies that the boundaries between cells are kept invari-
ant by the dynamics. This allows us therefore to define

We consider the particular class of Markov partitions
provided by the endpoints 0 and 1 of the phase space and
the (unstable) periodic orbits of (1). We first focus on the
two-cell partition of the tent map [Eq. (2a)] involving

C, =[x: 0&x &xI, Cz ——Ix: x &x &1I,
where x =—', is the position of the unstable fixed point,
and prove Eq. (15}analytically in this case. Notice that

p „(x)= 1 for the tent map.
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p(Cz R C, ")= —,'[—', —p(Cz R C, '" ")]
or, more explicitly,

n
( 1)k —1

p(Cz R C, ")= g
k=1

A similar argument for p(Cz R Cz ") leads to

t (C, RC;")=-,'[-,' —q(C, RC "-")]
or, more explicitly,

p(Cz R Cz ")= g
n

( 1)k

6 2k

(18a)

(18b)

(19a)

(19b)

As for the other elements, they are immediately deduced
from the property that the invariant measure is con-
served by the backward transformation:

p(C& RCi ")=—', —p(Cz RCi "),
p(C& RCz ")=—,

' —p(Cz RCz ") .

(20a)

(20b)

Substitution of (18)—(20) into Eq. (15) leads to an identity.
We have therefore proven that the master equation, Eq.
(12a), with a transition matrix given by (17) describes a
Markovian process. The latter is the image of the exact
dynamics [Eqs. (1) and (3)]. In other words, the coarse-
graining operator defined by the projection of the proba-
bility mass on the cells of the partition commutes with
the dynamical evolution operator, and this allows one to
propagate an initially given coarse distribution for all
subsequent times according to a well-defined stochastic
game.

The class of partitions defined by the points k/2
(k=0, . . . , 2 ') is of special interest. For m =2 one
obtains the well-known two-cell left-right partition; the
four-cell partition corresponding to m =3 is defined by
the rniddle point x =—,

' and its two pre-images x = —,
' and

x = 4, and so forth. The first few transition probability
matrices are

1 1

2 2

(two-cell partition),
. 2 2.

(21)

0 0

0 0

0 0

(four-cell partition) .

In the probabilistic formulation induced by the above
partition one deals only with two states, which we num-
ber by 1 and 2. Since Ci ' ——(0, —,')U(z, , l) and

Cz ' ——( —,',—', } one obtains, using Eq. (14), the transition ma-
trix

1 1

2 2

W= (17)

To evaluate p, (Cz R C i
") we observe that each backward

iteration of C, transfers on C2 half of the length of
C&

'" " that was not on Cz to begin with. Since the
length (which plays here the role of invariant measure) is
conserved by the backward transformation, this leads to
the recurrence relation

Pk =P&(i )pW~ . . . W (22)

where W; =Pz(i j )/P, (i) were subsequently checked us-

ing these values, and excellent agreement was found up to
k =7. The agreement was further corroborated by sta-
tistical tests such as the X test. Interestingly, taking a
partition provided by an arbitrary set of points (e.g., a
three-cell partition with x, =0.1, xz ——0.65) one is led to
a complex process which does not satisfy the test of Mar-
kov process of order up to 7.

An interesting question is whether the Markovian
character subsists when some of the cells of the above
partitions are lumped two by two and the transitions be-
tween the states of the resulting (coarser) partition are
studied. For partitions of the type J3 or J5, lumping of
the first two cells and of the first two and last two cells,
respectively (see Fig. 1), keeps the process first order
Markov. On the other hand, lumping of two cells in par-
titions of the type J3 or J5 induces a second-order Mar-
kov process. In other words, there exist partitions in-
volving the same number of cells (Jz and the lumped J&
or J4 and the lumped J5) exhibiting quite different prop-
erties as far as memory and range of correlations are con-
cerned.

Let us sketch the proof of this property for partition J3
in which the last two cells are lumped. We call 1,2,3 the
states of J3 and I,II those of the lumped partition. Using
the property

P(, II, . . . }=P(.. . ,2, . . . )+P(. . ., 3, . . . ),
we obtain the transition matrix W of the lumped chain in
the form

Notice that they are doubly stochastic.
By construction, these partitions satisfy the Markov

condition [Eq. (16)]. They are also generating: the two-
cell partition is known to provide a full symbolic descrip-
tion of the orbits, ' and all other partitions constitute
refinements of the above. The proof of the compatibility
condition [Eq. (15)] is straightforward, noticing that
p(C; R C "}=p "=P„"(j) when C; R CJ "&p and that
all P„(j)'s are equal. Actually, for the two-cell partition
one can prove the much stronger Bernouilli property
(zeroth-order Markov process).

We now turn to the logistic map, Eq. (2b). We consid-
er the Markov partitions defined by the unstable fixed
point (x =0.75), the cycle of order two (x, =0.345,
xz ——0.905), the fixed point X and its pre-image x '=0.25,
and the cycle of order four (xi ——0.277, xz ——0.637,
x& ——0.801, X4 ——0.925). We also analyze the two generat-
ing partitions defined by the middle point (x =0.5) and
the middle point along its pre-images (x, =0.15, xz —0.5,
xz =0.85}. Figures 1(a)—1(g) depict these partitions.

In each case, starting from numerically computed
values of }Lt(C;RCJ ), the compatibility condition (15)
was verified up to n =14. An alternative test of the Mar-
kovian character was conducted by following the
system's trajectory for a very long period of time and
evaluating numerically the probabilities P, (ip ),
PZ(lp&tp&l i &tp+ 1 )p. . . r Pk(tp&tpyl igtp+ 1& . ~ ~

& lk itp+ 0
—1). The conditions for Markovian process,
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W=
I 1

2 2

1 2 ~

. 3 3.

(23a)W~BC =
P(a)W p

Ia, Pl C I2, 3l

We next proceed to construct higher-order conditional
probabilities. ' Thus,

P(alay )

Ia, P, yl C I2, 3l

+ABCD
a, p r»l c I2

P(aPy5)

P(a)W p
Ia, Pl C I2, 3l

(23b)

WABCD WABC WBCD (24)

If the process is to be second order Markov, the following
conditions must be satisfied:

where ABC denote I or II, aPy denote 1, 2, or 3, and the
sum acts over states that are 2 or 3. Similarly,

I

or, using (23a) and (23b) and the Markov property of the
process in J3,

Ia, p, r»l C I2, 3l

. I~ P rl c I2, 3l
P(a)W pWpr Wrs ——

P(a)W pWpy

IP yl c I»3l

IP, y»l c I2, 3l

P(P) Wpr

P(P) Wpr Wrs

(25}

Using the invariant probability vector P=(0.4,0.4,0.2}
and the explicit form of the transition matrix

110
f(x) 0

~ Q

/
I

f(x)

0 1 1

1 0 0

(26)

x x

one can verify the validity of (24). Furthermore, one sees
that k»» is zero whereas @'», is finite. This rules out
the possibility that the process reduces to a first-order
Markov chain. It should be pointed out that this result
depends on the specific structure of the transition matrix

In general, the lumping will destroy the Markov
character altogether.

f(x) "'

(I3) J2

IV. PROPERTIES OF THE MASTER EQUATION

The master equation on the chaotic attractor [Eq.
(12a)] is a linear equation which adtnits a unique station-
ary normalized solution given by

Xq X~1 x P x'
X

p„(j)=g W; p„(i) . (27)

Moreover, since W is a stochastic matrix the master
equation satisfies an H-theorem" implying monotonic ap-
proach of any initial probability vector toward P„. The
general form of the H-functional is

P„(k)
H„= g P„(k}F (28)P„k

S„=—g P„(j)lnP„(j) .
J

(29)

In this case, therefore, the 0-theorem describes a mono-
tonic evolution of S itself. Notice that P„need not evolve

where F is a convex function of its argument. A familiar
choice of F is F(x)=x lnx, yielding a quantity identical
(up to the sign} to the relatiue entropy. ' If P is constant
(as in the case of generating partitions or of partitions of
the type J), relative entropy is identical (up to a constant)
to information theoretic entropy,

f(x) "
1-

0 xq xg xg 1 x

(e) J~4, g

f(x) '

0 x2 x3 XI, 1

C

0 Xj Xg Xj Xg 1 X

(f) J~ (g) J~
FIG. 1. The seven Markov partitions of the logistic map con-

sidered in Secs. III and IV.
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monotonically. For instance, for partition J& one finds

that the transition matrix W has two zero eigenvalues,
one eigenvalue equal to one, and a pair of complex conju-
gate eigenvalues equal to +iO. 5.

For more general types of partition like those formed
by the points on the unstable cycles, P„ is state depen-
dent. Let us analyze the time evolution of S in this case.
We have [cf. Eq. (12a)]

1.0

0.9

0.8

A ~ .~t'

~ ~

hS„=S„—S„

S„=—g g (W");~PO(i}ln g (W");.Po(i} .
(30) 0.7

Suppose that the system is started with probability one
from a particular cell a of the partition Po(i)=5;".
Equation (30) becomes

(31)

For a single step (n = 1) one obtains, upon averaging over
all a's using the invariant distribution,

Sx ———QP„(a}W Jina ~
&0 . (32)

V. DISCUSSION

The mapping of chaotic dynamics to a master equation
developed in the present paper should constitute a natu-
ral tool for describing a variety of complex systems en-
countered in nature and forecasting their future trends.
Our formulation takes fully into account the structure of
the attractor [through the presence of the invariant prob-
ability p„(x) in Eq. (10b)] as well as the possibility of ini-
tial conditions far from the steady state [through the
presence of Po in Eq. (10b)]. Actually, since p„(x) is an
invariant of the evolution operator U one might equally
well introduce a projector n. containing p (x ) as a
weighting factor and an initial condition po independent
of p (x). The two formulations are naturally identical

This quantity is usually regarded as the analog of Kolmo-
gorov entropy, measuring the average amount of infor-
mation created by the system in one unit of time. We see,
however, from Eq. (30}that Sx is not identical to the full

balance, b S„ofinformation entropy: AS„may not be al-

ways positive, reflecting a nonmonotonic evolution of S„
itself. For instance, for partition J3 the transition matrix
[Eq. (26)] has one eigenvalue equal to one and a pair of
complex conjugate eigenvalues equal to +iO. 50. Starting
initially with the probability mass concentrated entirely
in a cell yields a variation of ES„displaying an oscillato-
ry trend before finally approaching to zero. Figure 2 de-
picts the corresponding variation of total entropy S„.
This result means therefore that during the evolution in-
duced by the dynamics on the state space defined by our
coarse partition the system may create as mell as compress
information. '

0.6
0 10

FIG. 2. Nonmonotonic time evolution of information entro-

py for the Markov process generated by partition J3. Solid,
dashed, and dotted lines refer, respectively, to initial conditions
on cell 1, 2, and 3.
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for systems like the tent map admitting the Lebesgue
measure as invariant measure.

The approach followed in the present paper has many
similarities with the theory of nonunitarity transforma-
tions for conservative strongly unstable dynamical sys-
tems, developed by Prigogine et al. ' ' Our work has
been concerned more specifically with coarse-grained
probabilities, for which one can define a perfectly regular
stochastic process. The main point is that no phenome-
nological assumptions similar to those made traditionally
had to be invoked. In fact, the possibility to formulate
the compatibility condition (15) and check its validity in
a number of cases provides us with a dynamical formula
tion of coarse-graining.

An interesting question relates to the class of attractors
for which the compatibility condition (15) can be expect-
ed to hold. In particular, if the dynamics is highly
nonuniform as in intermittent systems it is not clear
whether a finite partition of state space suffices for secur-
ing the Markovian character of the process. In such
cases it may be necessary to envisage the generalization
of our method to partitions containing an infinite (but
countable) number of cells.

Finally, our approach suggests that continuous time
dynamical systems (fiows) exhibiting chaos may also gen-
erate Markovian stochastic processes, defined on parti-
tions of the state space delimited by the unstable mani-
folds of certain distinguished trajectories.
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