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In this paper we show that diffusion processes in a "complex" phase space with many local mini-

ma can be mapped into a random-walk problem on a tree structure. We then rigorously solve the
latter problem for regular trees, under quite general assumptions about the rates. Finally, we extend
our results to the case of inhomogeneous trees.

I. INTRODUCTION

Hierarchies and hierarchical models are now popular
modeling tools in theoretical physics, for at least one
reason: their mathematics is tractable, and yet nontrivial
results can be obtained, such as, for example, algebraic
and stretched exponential decays with temperature-
dependent exponents. '

Recently, this type of model has been used to calculate
an experimental quantity, the ac susceptibility of a spin
glass. ' The good agreement obtained suggests that
hierarchies are more than just toy models. Since, howev-
er, the extent of their applicability to a real physical sys-
tem has not yet been discussed in general terms, we try in
this paper to establish some links to a widely used
dynamical description, which is thermally activated
diffusion in a mountain landscape given by the energy
surface.

We first develop an intuitive picture of the process,
leading quickly to the temperature-dependent exponents
which have been found, for the hierarchical models, by
several different mathematical methods. We then show
that the diffusion problem can be mapped (under certain
restrictions) into a random-walk problem on a suitably
defined tree structure. Finally, we treat the latter prob-
lem in a complete and a more general way than hitherto
attempted. We believe that the ideas developed in this
paper are relevant for a number of fields, such as the
study of chemical reactions, the relaxation in amorphous
materials, and the theory of annealing processes.

II. HEURISTICS OF DIFFUSION
IN A MOUNTAIN LANDSCAPE

We start our discussion by rederiving the temperature
dependence of the exponents of models found in the
literature in a way which emphasizes the difference in the
physical interpretation of the models. Our system is a
particle diffusing in R . Its energy E(x) is given as a
function of the state x ER". Without loss of generality
we assume that E(x) & 0 for all x. One can visualize E(x}
as a mountain landscape over R". The time evolution of
the system is described by the distribution P(x, t ), which
gives the probability to find the particle at state x at time
t We now con. sider a sequence of real numbers V„(the

heights of the passes) and of subsets A„of R (the val-
leys}, which are iteratively defined in the following way.
Initially the particle is confined to a certain valley Ap,
i.e., Ap is the support of the initial distribution. At time
t, the lowest available pass, of height V&, is crossed, and
the distribution relaxes into a new larger valley A, 0 Ap.
In general, we assume that being in A„&, the system
diffuses through the lowest available pass, of height V„,
at time t„, after it started in Ap, into the set A„D A„
Note that since the nth valley includes all the smaller
ones, by construction, there is no difference between the
waiting time in the nth valley and the total time elapsed
since the start of the diffusion process.

At each t„, the diffusion profile P„ is (approximately)
supported in A„. Hence, letting the symbol A„denote
the area (Lebesgue measure) of the valley as well, we set
P„—1/A„. The time dependence of P„ is thus given by
specifying the area of the nth valley and the time the sys-
tem spends in it. The first quantity depends on the
geometry of the phase space only, while the second in-
volves the dynamics of the process under consideration.

Suppose that the nth valley is a rescaled version of the
(n —1)th. Then

A„=zA„ i
——z"Ap .

Assuming that the linear size of the region available to
diffusion (which might not be the whole valley, due to the
presence of high massifs) increases by a factor of m, each
time a pass is crossed, we get

A„=(m f)"=z"Ao,

hence the fractal dimension of the landscape is found to
be

df ——1n(z)/1n(m) .

We have thus related the parameter z to the fractal di-
mension df. It is noteworthy that df~0 when z~1,
which means that in the limit z~1 the landscape is made
up of very high massifs and threadlike canyons, in which
the diffusion takes place.

We now show how different choices of V„and t„easily
lead to the exponents. There are two different types of
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thermally activated dynamics, one with long-range hops
and one with nearest-neighbor hops. Both terms are un-
derstood in the sense of the usual Euclidean metric on
R

The case of long-range hops is not compatible with the
present picture in which the underlying dynamics is just
diffusion, which is intrinsically local. We consider it any-
way for the sake of completeness and take the usual
choice of waiting times, i.e., t„=ex p(V„/T), the Ar-
rhenius law. The second case is more involved, since in
general the waiting time t„will partly be spent in trying
to find the pass, and partly in trying to overcome the bar-
rier. If we assume that the first subtask is completed in a
time proportional to the area of the valley A„, the second
depends on the barrier energy in the usual Arrhenius
way, and they are independent of each other, we get im-
mediately

t„=(z /k ) "exp( V„ /T ), (4)

where k is a free parameter, which accounts for entropic
effects. However, at this level of description we are un-
able to justify the introduction of the parameter k further
and we refer the reader to Sec. IV for a more complete
discuss&on.

The first choice of dynamics (long-range hops) yields,
for V„=n,

n(t) = T ]nt,
p(t)=t

(5)

while for V„=ln(n) we find

n(t)=tr,
p(t)=exp[ —(Inz)t ],

(7)

which are the results of Ogie1ski and Stein. The second
choice again, for V„=n, gives

p(r) = r Tlnzl[1 —TIn(k/z)] (9)

which was found by Grossrnann, Wegner, and
Hoffmann ' and others.

Other types of relaxations can be found for various
dependences of V on n. We shall not, however, pursue
this issue further before Sec. IV. In Sec. III we try to de-
velop another formalism for the diffusion problem, which
clearly shows how the tree structures enter the
mathematical description of the problem.

III. FROM DIFFUSION IN R TO RANDOM
WALKS ON A TREE

The rough qualitative picture of diffusion in a moun-
tain range developed in Sec. II has a couple of shortcom-
ings: it contains approximations which are hard to quan-
tify, and it conveys the idea of a strict linkage between
the concept of hierarchy of valleys and the dynamical hy-
pothesis that the lowest pass is always chosen by the
diffusing system.

We show below that a tree structure can be introduced
by geometrical arguments only. There are indeed several
possible ways of obtaining a tree structure from a given

NL =SL (hL ) iSL (hr ) =SL (hL )i U SI; (hL ) . (10)

Since for every x&NL we have hL &E(x) &hL, we as-

sign to each node NL the coarse-grained energy
hL ——(hL +hL )/2. The reader should be aware that at

0

the level of description we are aiming for, any other
height between hz and hL could have been chosen.

0

By construction all the sets NL are disjoint. Now note
that for each node NL there is a unique "parent" node
NL, which surrounds NL, and a node NL may itself have

0

a number of "daughter" nodes NL;, which are in turn
surrounded by N&. The tree is then generated by con-
necting a pair of nodes if they have a parent-daughter re-
lation. In Fig. I the preceding construction is graphically
depicted showing a one-dimensional cut through a state
space. The reader should note that due to the projection
used connected sets may appear to be unconnected.
Another way of obtaining the tree structure is the follow-
ing.

Construction 2. We introduce equidistant energy levels

E(l)=hl

and take S(h)=E '((O, h)) as previously. The set
N(bl)=S(hl)XS(h(l —1)) can be written as a union of
connected subsets NI k,

N(hl)= UN, k .
k

(12)

energy surface, which differ in some details. In a second
step, involving a coarse graining, we then map the origi-
nal dynamics into a stochastic process on the tree. Below
we give two instances of the tree construction.

Construction I. We recall that the energy function E,
defining the shape of the landscape, is non-negative. Let
S(h) be the subset of R below height h, i.e.,
S(h)=E ((O, h)). Pictorially, if the landscape is flood-
ed up to height h, S(h) is the "sea" and R iS(h) the
land.

Let us assume that SL(h) is a connected subset of S(h),
which contains no islands. This assumption can usually
be made without a loss of generality for that part of state
space, which is interesting for the low-temperature re-
gime. For more details see Appendix A. L =La,L, is a
label, which consists of a sequence of digits, with L, be-
ing the last digit and Lo being the sequence up to the
penultimate digit. We now want to follow the connectivi-
ty properties of S(h) as the water level h decreases. On
lowering h two things can happen: either SI (h) divides
at h =hL into two or more connected subsets
SL &Sr 2, . . . , wtth SL(hr )=SL &(hL )USL 2(hL)U. . .
(the generic situation, however, is having two subsets); or
the set SL(h) becomes empty without bifurcating. The
sets SL, might we11 contain islands, which are local ener-

gy maxima. This is not important for our construction;
see Appendix A. For each newly created connected sub-
set SL;(h) the previously described procedure is repeated.

Now we can define the nodes of the tree: for every la-
bel L the node NL is a subset of R given by
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FIG. 1. Tree construction 1 is graphically depicted. The en-

ergy is shown as a function of the state for a one-dimensional

cut through the high-dimensional state space. The heights at
which connected subsets become unconnected or empty are
marked at the left. At the bottom the projections of the con-
nected subset SL and its descendants and the projection of the
node NL and its descendants are shown. One should note that
the connected sets NL appear to be unconnected due to the pro-
jection.

We call N& z a node of the tree. In this notation the first
index indicates the level, while the second gives an arbi-
trary numbering of the nodes within a level. In order to
emphasize the hierarchical ordering of the nodes, it is
more convenient to use the same notation as in construc-
tion one: Let NL be a connected subset at level 1. Then
all the connected subsets of level I —1 which lie in the in-
terior of NL become the daughter nodes of NL and they
are labeled as NL „.. . , NL, . The branching ratio z will

vary now from node to node but the energy is by
definition a linear function of the level. This procedure is
then repeated down to lower levels until a node has no
descendants; such a node contains a local energy
minimum. Note that local maxima will appear as holes
in NL, which are not "filled" with descendants. Again
such an event is most unlikely, for details see Appendix
A. The tree represents again the topological situation
which a random walker in the state space encounters: To
go from node NL, to NL ~ it has to go through NL . Fig-
ure 2 depicts this construction graphically.

The tree in this construction differs from the one of the
first construction in having the cuts not defined locally by
the height at which sets get disconnected or empty but
globally by equidistant energies. This offers some advan-
tages from a technical point of view. When 6~0, the
multifurcations in the second construction no longer
occur, and the tree appears as occasionally branching
long chains of nodes. All the states lying on each linear
piece of the tree can then be lumped together, at the price

HL

L, 1,1

4E
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FIG. 2. Tree construction 2 is graphically depicted. The
three pictures on the left show a two-dimensional energy surface
from a bird's eye view, the lines represent points of equal
heights. The white area is the "sea." From the top to the bot-
tom the sea level is lowered in equidistant steps 5, the respec-
tive height is given in the upper left corner. As the sea level

sinks, the nodes are created. On the right side the emerging tree
structure is shown.

of changing the hopping rates, and the result is
equivalent to what is obtained in the first construction.

Consider the random motion of a point in the
landscape. Rather than calculating the full time-
dependence of the probability density in R, we can
choose to monitor the presence or absence of the point
from each of the sets represented by a node. Since these
can only be exited by going "uphill" to the parent set or
"downhill' to one of the daughter sets, we have hereby
defined a stochastic process on the tree which, however,
will not in general be a random walk, because successive
steps are correlated.

In order to see how the correlations arise, consider a
landscape where VE/kb T is small everywhere: T is the
temperature and VE/kb T controls the magnitude of the
drift term in the Brownian motion which, by assumption,
is small. A diffusing particle will then cross many times
any boundary line arbitrarily drawn in the landscape.
Hence there will be a positive correlation between a jump
from one set to another and the reverse jump at the next
move, and, at the coarse grained level of description we
have chosen, the system will bounce several times back
and forth between two neighbor nodes in the tree.

However, this situation does not arise under two condi-
tions: (1) roughness of the energy surface and (2) low
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temperature. By a rough surface we mean a surface with

a slope which is weakly correlated over distances small

compared to a typical distance across a node. With low
tempeature we mean that k~T is small compared to a
typical height of the bumps of the surface. This together
with the roughness ensures that the system has lost the
memory of where it entered the node by the time it leaves
the node.

Let us now assume that the temperature is sufficiently
1ow, and the landscape sufficiently rough. The original
diffusion problem can thus be mapped into a random
walk on a tree structure. Instead of deriving the parame-
ters for the random walk fram a given energy surface, we
rather take the viewpoint that the parameters are arbi-
trarily given functions and we then proceed to classify the
possible solution to the diffusion problem on the tree.

IV. HOMOGENEOUS TREES

The preceding discussion has lead to a reformulation of
the diffusion problem in R into the problem of a random
walk on an inhomogeneous tree structure. As shown in
Fig. 2, the tree contains dead ends, which are local (meta-
stable) states. At this level of generality, the problem is
hard to solve rigorously, for reasons which will become
clear later. The simpler case of diffusion on an ul-

trametric space (the baseline of the tree) has recently been
solved by Bachas and Huberman and Kumar and
Shenoy, but has no direct bearing on the problem of
diffusion in a mountain landscape, which, as we have ar-
gued, leads to a nearest-neighbor hopping model in a tree.

We therefore first restrict our treatment to the case in

which the tree bifurcates uniformly, allowing the branch-

ing ratio and the hopping rates to depend in an arbitrary
manner on the level height. In Sec. V we then argue that
the results obtained can be extended to a random tree
structure satisfying some regularity conditions.

F(j ) F(j + 1—) = T ln(kj" Izkj+, ), (14)

which is just detailed balance "the other way around. "
Given F (0) and the rates, any F(j ) can be calculated by
iteration. F acts as an "effective" potential well, in which

the motion up and down the levels takes place.
As previously mentioned, it is convenient to introduce

a parameter k in the model definition, which accounts for
the inner structure of the nodes by enhancing the up-
wards hopping rate relative to what would be obtained by
energy considerations alone. As in Ref. 14 we therefore
take

k~"=k exp( b,
~
/T ), — (15)

an absorbing boundary condition at level (I +1), and ko
is the level of the closest common ancestor of f and i

The equation can be understood by observing that
Q'(f, s

~

i ) —Q' '(f, s
~

i) is the Laplace transform of the
probability of being somewhere in the tree at level f,
starting at level-i node, and having reached but not ex-

ceeded level I. Sine all the nodes with the same level in-

dex are equivalent, the probability of being at one partic-
ular level-f node is obtained by dividing Q (f,s

~

i )

—Q' '(f, s
~

i ) by z' f, which is the number of level f
descendants of a level-I node. In summary, each term in

the sum of Eq. (13) counts the contribution to 6 from the
walks which reach but do not exceed level l.

Each Q is the solution of a random-walk problem on a
finite set of nodes, having a discrete set of eigenvalues, A.,',
i =0, 1,2, . . . , l, in order of increasing magnitude. The
small-s and large-time asymptotics are determined by the
behavior of the lowest eigenvalue Ao (which appears as a
pole in Q ). In order to discuss its dependence on l, it is
expedient to introduce a (free) energy function by the for-
mula

A. Propagator formula
kd=1

J (16)

6'(f, s ~i)= g [Q'(f, s ~i) —Q' '(f, s ~i)]z f
I=ko

(13)

holds true. In the preceding formula, the Q's are analog
quantities to G, except that they refer to the random walk
on the levels obtained by projecting the original motion
on the vertical axis. The arguments f and i of Q' must
thus be interpreted as the heights of the initial and final
level. Finally, the superscript l indicates that we impose

Let k" and k" be the hopping rate from a level j node
to its parent node and to one of the daughter nodes re-
spectively. Since all the nodes at a given level are
mathematically equivalent, any quantity will depend on
the level index only. The total rate downwards is zk",
where z, the branching ratio, is assumed to be level in-
dependent for notational convenience, and the total rate
upwards is k".

Let G(f,s
~

i ) be the Laplace transform of the proba-
bility of being at a level-f node, with start point at a
level-i node. As shown by Hoffmann, Grossmann, and
Wegner the basic relation

where b J E( h J + &
) ———E ( h& ) is the energy difference be-

tween adjacent nodes. The factor k is introduced here to
take care of entropic effects: the nodes of the tree
represent a large number of the original states. This
coarse graining of the state space will modify the simple
Arrhenius law which applies for transitions between sin-

gle states, as can be seen from the fact that at equilibrium
the probability of being in one node is proportional to the
appropriate Boltzmann factor and to the node degenera-
cy, i.e., the number of states contained in the node.

The effective potential of Eq. (14) is then

F(j ) =E(j ) T ln(k iz j)—
a formula which clearly suggests that F be interpreted as
a free energy.

Since we are interested in the long-time and small-s
asymptotics of Q'(f, s

~

i ), and the discrete hopping mod-
el is equivalent to continuous diffusion in this limit, we
choose the latter description which is mathematically
easier to handle. The rest of the section is therefore con-
cerned with solving the Fokker-Planck equation
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—Q(x, t ~x;)= +—
Q

8 ( 8 BQ' 1 r)F (

a~
' ' =

ax ax Y ax
(18)

B. Eigenvalues of the diffusion operator in a generic potential

In this section and Sec. IV C we put T = 1 for notation-
al convenience. The transformation

in the interval (0, 1) with reflecting and absorbing bound-
ary conditions at the left and right endpoint, respectively.
Here we have replaced the discrete indices f and i with
the continuous variables x and x, , respectively. F is an
arbitrary function of x. Equation (18) has a discrete spec-
trum for any finite l. In the limit i~00, the spectrum
can either remain discrete or become continuous.

In the former case the smallest pole, which approaches
zero as l~(x), dominates the decay for long-time and
small s. We then find the appropriate one-pole approxi-
mation for Q'(x, s

~
x;), insert it into Eq. (13), evaluate

the sum, and find the asymptotic behavior for G(x, s x;).
If the spectrum of Eq. (18) becomes continuous in the

limit l~ ~, the preceding approximation cannot be ap-
plied. Indeed, both Q' and G become asymptotically
equivalent to free diffusion propagators, and all the
"anomalous" behavior disappears. By varying the
asymptotic behavior of F(x) for x~0() (which can be
done by varying the temperature), transitions between the
previously mentioned regimes become possible.

diffusion on the half line (0, oo ), and thereafter use the re-
sults to construct the solution in (0, I). In the infinite
domain, the right boundary condition must be replaced
by the norrnalizability requirement

f "f(x, s )e
—F'"'"dx & ~ .

0
(25)

Let the two homogeneous solutions of Eq. (24) satisfy-
ing Eq. (22) be f (x,s) and Eq. (25) be f (x,s). Their
behavior in a neighborhood of s =0 is given by the fol-
lowing lernmas.

Lemma 1. Suppose that dF /dx ~ ~ for x ~ (x) . Then

f, (x,s)=exp — + g s" u„(x')dx'F(x)
n=i

(26)

with the functions u„(x) iteratively given by

u (x) =e '"'f "e '" 'dx'
1

X

and

(27)

n —1

u„(x)= —e '"'f e '" ' g u (x')u„q(x')dx' . (28)
q=1

All the u„'s have bounded variation and vanish for
x~00.

The proof of this lemma is deferred to Appendix B.
Since f, (x,s ) never vanishes, a second solution satis-

fying the left boundary condition is

f ( t ) Q( r )eF(x)I2 (19) f, (x,s ) =f, (x,s ) c(s}f f, '(x', s )dx'+ 1
0

(29)

brings the Fokker-Planck equation (18) into its normal
form

where [by insertion into Eq. (22)],

8 (3ff(x, t)= —+h(x)f(x, t),
t3t

(20} ( ) [f ( )
+(F(x)I2—F(0)/2)]21

2 dx x=0
(30)

where the function h (x) is related to the free energy F(x)
by the following formula:

1 dF 1 dF
2 dx 4 dx

(21)

The relevant boundary conditions are

[f(X r )eF(x)/2]
dx x=0

=0 (22)

and

f(l, r)=0, (23)

which describe a perfectly reflecting and a perfectly ab-
sorbing boundary at x=0 and x =I, respectively. The
Laplace transform of Eq. (20) reads

d2
+[h(x) —s]f= —5(x —x')e

dx
(24)

where x is the initial position (level) of the random walk-
er.

It is convenient to consider first the problem of

It follows from Eqs. (22) and (30) that if f happens to
fulfill the left boundary condition as well, then c(s)=0
and f (x,s)=f (x,s). It also follows from Eq. (29) that
the Wronskian of f and f, W(f,f ), equals c(s)—
In summary, the zeros of c(s) coincide with those of the
Wronskian and with the eigenvalues of the problem in
the half-infinite domain. If the diffusion problem has a
stationary solution, there must be a zero eigenvalue.
Since f=e '"'/ satisfies the left boundary condition,
s =0 is an eigenvalue if e '"' is integrable. Thus we
have the following lemma.

Lemma 2. If F(x)~ oo for x ~ ao, such that

f e '"'dx & ~, the diffusion equation has a stationary
solution.

The logarithmic potential is thus excluded. The other
eigenvalues are given by the other zeros of c(s). If
dF/dx~ao for x~~, both f and f are analytic in
s, and so is c (s). The set of the zeros of c (s) has therefore
no limit points. This proves the following.

Lemma 3. If dF/dx~~ for x~~, then the spec-
trum of the diffusion operator in (0, ~ ) is discrete.

We denote the eigenvalues by k&",A,2, . . . , k„, in order
of increasing magnitude. The case F(x)=ax is not treat-
ed in the previous analysis. However, it is immediately
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f f 2(x', s)dx'
f' (x,s)=f (x,s) 1—

x,s cfx

(31)

f' (x,s)=f (x,s) . (32)

The Wronskian W(f',f' ) is then given by

$V(f', f' )=W(f,f )+ J f (x', s)dx'

1
—1= —c(s)+ I f , '(x', s)dx—' (33)

Since the zeros of W(f '„f'
) are close to those of c (s),

Eq. (33) easily leads to the following lemma.
Lemma 5. Suppose that dF/dx~ oo for x~ co. The

eigenvalues of the diffusion problem in (O, l} depend con-
tinuously on 1. For large l we have

)),I, =A, ), +rl„(l), k=1,2, . . . (34)

where the correction term q), (1) is exponentially small,

rig(l) =O(e '").
This is in accordance with the beautiful qualitative ar-

gument of Kramers' about the lowest eigenvalue for the
problem of barrier crossing. Once more, the case
F(x)-ax requires separate treatment. Let o =s+a /4.
An easy calculation yields

f ', (x)=sinh[o'~2(l —x )], (35)

f ', (x)= — „,»nh(o ' "x)+cosh(o) "x ) . (36)

The Wronskian is

clear that, since h(x) = —o /4 [cf. Eq. (20)], the problem
is nearly the same as free diffusion, but with a shifted La-
place variable s'=s+a /4. We therefore conclude the
following.

Lemma 4. For a potential which is asymptotically
linear for large distances, F(x)-ax, the diffusion opera-
tor in (0, ~ ) has a continuous spectrum, given by the
negative real half axis ( —~, —a /4), and an isolated ei-
genvalue at s =0.

Consider now the diffusion problem in (O, l ). The solu-
tions satisfying the left and right boundary conditions
will be denoted by f ' (x,s}and f ' (x,s). They are easily
expressed in terms of the previously derived f (x,s) and

f (x,s). We get, for x&(O, l), and dF/dx~~ for
Q —+00'

The least eigenvalue vanishes exponentially when the
"barrier" height goes to infinity, again as predicted by
Krarners's rule. Let us finally consider the situation
when the potential increases more slowly than linearly.
Then dF/dx~0, for x~ ao, and the function h (x) in
Eq. (24) approaches zero. It follows that the asymptotic
behavior is the same as free diffusion, with one difference:
s =0 is an eigenvalue, which is embedded in the continu-
ous spectrum, for a potential satisfying Je e ' 'dx & ce.
Our results are summarized in the following lemma.

Lemma 6. The spectrum of the diffusion operator in
(0,1), with reflecting and absorbing boundary conditions
at the left and right endpoints, respectively, has, for finite
l, a discrete spectrum. Let the eigen values be
A, '„.. . , A.„', with A, & & A.I, + &. The following holds true.

(1) If F(x) increases asymptotically at least linearly
with x, the least eigenvalue A,I) approaches zero for I~ oo

in a continuous manner, and remains bounded away from
the rest of the spectrum, i.e., there exists a p ~ 0 such that

~
AI) —A, I ~

))u for Vl.
(2) If F(x) increases sublinearly but faster than loga-

rithmically, AI) approaches zero, but also
~

AI) —kI
~

~0
for I ~0. In the limit 1 = ~ the continuous spectrum is
the whole negative real axis, except the point s =0, which
is in the point spectrum (i.e., it is an eigenvalue).

(3) If F(x) increases logarithmically, the situation is as
under (2), except that s=O belongs to the continuous
rather than the point spectrum.

F(x} xf& (x, s )-exp — +s u)(x)
2 0

(40)

We now have to evaluate Ig (x, s)dx [see Eq. (33)].
Supposing that F(x)/2 sf ou)(x')d—x' is an increasing

function of x, it has its maximum at x = l, the endpoint of
the integration interval. Expanding the exponent to first

order, we easily obtain the integral and hence the Wron-
skian. The zero of 8'closest to s =0 is then easily found
to be at

C. Least eigenvalue

The least eigenvalue A, I) of the diff'usion operator in (0, 1)
is the zero of the Wronskian W(f',f' ) which is the
closest to the origin in the complex s plane. The Wron-
skian can be calculated by a slight modification of the
method of steepest descent: First we approximate
f (x,s) by discarding all the terms in the exponent
which are of order two or higher in s. Therefore

W(f'&, f' )= ——sinh(o'~ 1)+cosh(cr' l lo'~ (37)
F)l)Fi I)—

"e-F'"'dx
0

(41)

a
o = ——oe " +O(e ')

2
(38)

or

(39)

The only zero of 8'for o. positive and s negative is given
by

Note that it does not matter in this approximation
whether one chooses l or ~ as the upper limit in the in-
tegral. Equation (21) agrees with Eq. (20} when
F(x)=ax. It has the following nice interpretation: the
rate of escape from the barrier is proportional to the
probability of being at I in the infinite system, which is

—F(l)/ I —F(x')d
0
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—F(x)

0

(42)

times the drift velocity F'(1). This is the well-known
Kramers argument. The residue of the propagator at
s = —Ao is found by a simple calculation to be

of the tree, k is a positive constant, E is the energy, and x
the height. The branching ratio z can depend on x in an
arbitrary manner. Reintroducing the temperature in our
expression, rescaling the time (i.e., the Laplace parameter
s), and omitting all unimportant (i.e., constant) factors,
we find

We then see that the probability distribution in the time
domain is given for long times as

Q'( f,s
~

i ) = s+ A' (44)

e
—F(X)

Q'(x, t)=e
0

(43) with

—[6/T —1n( k /z) ] (45)

D. Linear potential: Recurrence and transience

We now go back to our original problem of the ran-
dom walk on a tree. The problem was mapped into that
of diffusion on a line, with a potential F(x)=E(x}
+ T ln(z /k )x [cf. Eq. (17)],where z is the branching ratio

Here we have adopted the same notation as in Ref. 14.
The linear case for the free energy has a special pecu-

liarity: a transience-recurrence transition. Here we will
just recall the major steps for showing that and refer the
reader to Ref. 14 for a more detailed description. Insert-
ing (44) into (13) we find up to constant factors

00 oo A
—1E A (1+1)ez~

y QI(f
~

)
—t —(1 g)gf s

—~»~»" —' y ( 1)' +(1 5 )
I=k I —at/z "'" (~'+'z)-' —1

0

+ y( 1)l ls
1=0

lns (A'+'z) —k

—e(s) —ko 5+, „— . . . ( —5+, „) (46)

where we have introduced a parameter

lnz

lnA

T lnz

b+ T ln(z/k )
(47)

which is, in general, a noninteger quantity. Accordingly,
the Kroneker 5's which appear in Eq. (24) are zero, ex-
cept for special values of the temperature, at which loga-
rithmic terms appear.

We now disregard the s dependence of e(s) in Eq. (46),
and denote the singular part of the propagator by s
This defines the exponent

lnz b, —T ink
ln A 6+T ln(z /k )

(48)

Let T, =b,/In(k). Now for 0& T & T, , P is positive,
G~ ~ for s~0, and the walk on the tree is recurrent.
For T, & T, P is negative, G ~const & ~ for s ~0, and
the walk is transient.

V. INHOMOGENEOUS TREES

In Secs. II—IV we treated trees with a uniform branch-

ing ratio z. For notational convenience we wrote down

the equations for a branching ratio which did not depend
on the level k. All the basic ideas we used can still be ap-
plied in the case where z only depends on the level k, but
is uniform on every level. In the following we sketch an
argument which allows us to calculate G(f, s

~

i ) even in
situations where z is random variable for every node. We
assume that all the z's are independently distributed ac-
cording to the same distribution. Before we start our ar-
gument we want to point out that random trees have al-

ready attracted some interest. ' '
If we now cut off subtrees at level 1, then these subtrees

are different, but statistically they are equal in the sense
that the average number of nodes at level j D'(j ) is the
same and

D'(J}=&.&'- . (49)

It is convenient to split off this random part from the free
energy I',

F'(j )=F(j )+T lnD'(j), (50)

(51)

linear. We note that this is in a sense the most interesting
case. Indeed if I' is sublinear, then I' is still asymptoti-
cally linear due to Eqs. (49) and (50). If F increases faster
than linearly, the random part of the free energy is negli-
gible for large I values.

Note that by replacing z by (z) in Eq. (17}we have,
for E(j )=bj,

F'(j)=F(j )+1TIn(z ) . (52)

We now proceed to show that the basic result for the
homogeneous tree carries over to the inhomogeneous one
with (z ) replacing z.

Let n, and nf be the in. itial and final nodes, and f and i
their respective level. We can derive a formula for the
propagator G(nf, s

~
n; ) by arguments similar to those

leading to Eq. (13). We first introduce the probability I' '

where F'(j ) is now the (averaged) free energy in a subtree
of height 1 and F(j ) contains the rest; here we take

F(j ) = ( b T ink )j—
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that a walker starting at n; has never left a subtree of
height l. The probability that the walker has exactly
reached level 1 on its random walk is then given by
P '—P ' '. This probability will then quickly equilibrate
in the subtree of height l according to the appropriate
Boltzrnann distribution. That means the fraction
e ' '/Z' is in node nf, with

Z I y F'(j )—IT

J =I
(53)

In this way we get the probability for all paths leading
from n; to nf and reaching exactly level l as their maxi-
mal level. Summing now over all level I & kp where kp is
the level of the closest ancestor of n; and n&, we find

oo —F(f)/T
G(nf, s

~
n, )= g (I' ' I' ' '—)

I =ko Zl (54)

The P 's are given for the interesting long-time limit by
Kramers's formula as

S+Xp
(55)

where kp in the least eigenvalue for the random walk on a
level l subtree. This time scale is given by the slow prob-
ability Aux out of the subtree, as can be seen from Eq.
(41) for a continuous walk.

We now note that

—F(f)/T —F (f)/T —F(f)!T
Zl Zl Z

(56)

where

z y —F(j)IT

j=1
(57)

The l-independent factor can then be taken outside the
sum and, by reshuNing the terms, we get

e
—F(f)/T

G(nf, s
~

n;)=(1 —(z) ') y (z) 'P'
I=ko

VI. CONCLUSION

In this paper we show how an arbitrary diffusion pro-
cess in a potential field can be mapped by a coarse grain-
ing into a dynamics on a tree. Roughly speaking, the
coarse graining consists of lumping all the states of the
system which can be reached from a given state with a
certain energy change into one mode of the tree.

The procedure only uses the connectivity of the dy-
narnics. The choice of diffusion in 8"as an example was
only made for convenience. Other Markov processes,
like simulated annealing of any combinatorial problem
with a Metropolis dynamics, can also be treated in the
same fashion, provided the energy is a slowly varying
function. In other words, the energy change associated
with a single move should be small compared to the typi-
cal energy difference between two connected nodes of the
tree. Otherwise, the concept of an energy surface as used
here is no longer meaningful.

The coarse-graining procedure is interesting and help-
ful if the resulting dynamics on the tree is Markovian,
i.e., a random walk. This is the case, at least approxi-
mately, if the original problem has a high density of local
energy minima. Exactly this situation is expected for re-
laxation in frustrated physical systems, like spin glasses,
and in the simulated annealing description of hard com-
binatorial problems.

Having argued for the applicability of the concept of
random walks on a tree to a wide class of problems, we
develop in a rigorous and general fashion the theory for
homogeneously branching trees. The algebraic relaxation
with the temperature-dependent exponents, which has
previously been found by many authors, is shown to de-
pend on the asymptotic behavior of an appropriately
defined energy function: This function, however, cannot
freely be chosen to define the model, being subject to cer-
tain restrictions in order to keep the mathematics self-
consistent. The energy must go to infinity at least linear-
ly with the height of the tree, in order to give meaningful
exponents.

Finally, we give heuristical arguments supporting the
thesis that nonhomogeneously branching trees can be
treated in the same way as homogeneous ones by replac-
ing the branching rate with its average.
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Here we have neglected P, which is not important at
long times. Equation (58) differs from the corresponding
equation for the homogeneous tree only by containing
(z ) rather than z; see Eq. (4) of Ref. 14. In Eqs. (54) and
(58) we have approximated the average of the propagator
over the ensemble of possible trees with an expression ob-
tained by using the average of the least eigenvalue in
Kramers's argument. In other words, Auctuations in the
partition function Z' have been neglected. This is reason-
able since our preceding argument deals only with the
average of the propagator. A thorough analysis of the
Auctuations has yet to be accomplished.

APPENDIX A

In this appendix we treat the question of islands in the
first construction or of daughter nodes with higher ener-

gy than the parent node in the second construction. The
reason for both phenomena are local maxima in the ener-

gy surface. This is a most unlikely event for the low-
energy parts of the state space. Usually for any given
state one will always find a neighboring state with higher
energy. As an illustration consider an Ising spin glass,
where for a low-energy state nearly any spin Aip will in-
crease the energy.
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Apart from the preceding arguments there are simple
technical remedies for those situations. For the first tree
construction one has just to enlarge SL (h) with all the is-

lands it has in it. For the second tree construction the
holes with the higher energy should become part of the
parent, keeping the energy of the parent unchanged. As
a system random walking in state space can enter and
leave a local maximum only through the node represent-
ing the surrounding area, the previously described pro-
cedure is the appropriate method to coarse grain the local
maxima away.

n —1

u„(x)=e~'"'f "e—~" g u, (x')u„,(x') dx' .
q=1

(B10)

An application of the L'Hospital rule shows that, for
x~ao, u&(x)~ —(dF/dx) ', which by assumption van-
ishes. By Eq. (B9), u, is negative. Furthermore,

u&(x)= — e '" e '"'dx'+. 1
dF 00

dX X

APPENDIX B: PROOF OF LEMMA 1
& e '"'f e '" 'dx'+1 —0

x dX
(Bl 1)

We wish to solve the equation

f"+ [h(x) —s]f=0, (Bl)

Hence u1 is monotonously increasing to zero. From Eq.
(B10) we see that u2 is positive. We also find that by Eq.
(B8),

where h(x)=F"(x)/2 —[F'(x)/2] and s is a small pa-
rameter. Equation (Bl) can be mapped into the Riccati
equation

u'(x)= e '"' e '" 'u (x') dx' —u (x)dF 00

dX X

&u (x) F'e '"'f e ' 'dx' —1 &0
x

(B12)

u +v'= —h(x)+s (B2)

by the transformation

f=exp f u(x')dx' (B3)

This is the first step in the derivation of the Green-
Liouville (or WKB) approximation, ' the next step
usually being the zeroth-order approximation
v =&—h (x)+s. We can do better, however, by exploit-
ing the fact that one solution of Eq. (Bl) is, for s =0,
given by f(x)=exp[ —F(x)/2]. We therefore write the
ansatz

We now show by induction on n that u is negative and
increasing for odd q, positive and decreasing for even q.
The assertion holds for q = 1 and 2. Assume that it holds
for all q &n.

When n is even, the indices n —q are odd for odd q and
even for even q. By assumption each u„(x)u (x) is
then positive and decreasing. We than have, by argu-
ments similar to those leading Eq. (B12),

n —1

u„' & g u„q(x)uq(x) F'(x)e f e ~ '~dx' —1 &0
q —1

(B13)

u(x) = —— + u (x,s),1 dF
2 dx

where the unknown function u (x,s) obeys

dF
u +u' — u=s .

dX

A formal series solution is given by

u(x, s)= g s "u„(x) .
n=1

(B4)

(B5)

(B6}

Hence u„ is positive and decreasing for n even. The same
line of reasoning applied to n odd completes the induc-
tion proof. It is now easily proven that the partial sums

P(x, s, m)= g squq(x)
q=1

(B14)

satisfy, for m )2 and regarding only terms up to order m,
the equation

dP dF(x,s, m ) = P(x, s, m )+s P(x,s, m —1)—,

dF
u', (x)— u, (x)=1

dX
(B7}

and

By insertion of Eq. (B6) into Eq. (B5) and comparison of
the coefficient to each power of s, we easily obtain

(B15)

while, for m =1, P(x, s, 1 }=u,(x)s. The integral version
of Eq. (B15) is

P(x, s, m)=su&(x)+e '"'f e '" 'P (x', s, m —1)dx',
X

(B16)
n —1

u„'(x)— u„(x)=—g u (x)u„q(x),
q=1

which is solved recursively by the formula

(BS) which gives the following bound for P(s, m)
=sup„„~ P(x, s, m ) ~:

P(s, m ) &P(s, 1)[s+P (s, m —1)]

u (x)= —e '"'f e '" 'dx'
1

X
(B9) =

~
u&(0)

~
[s+P (s, m —1)] . (B17)

and It now follows that P(s, m) approaches a finite limit for
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X
2

1/2
—4s (B18)

m ~ oo if the function f:x~
I
u&(0)

I
(s+x ) has an at-

tractive fixed point with a basin of attraction including
the point xo P——(s, l)=s

I
u&(0) I. A calculation shows

that

from the fact that (dF/dx )P(x,s, m ) is a bounded func-
tion of x, which by Eq. (B15) again implies that
(dP/dx )(x,s, m ) can be bounded by a constant (indepen-
dent of x).

To prove the boundedness of (dF/dx)P(x, s, m), we
note that, by multiplying Eq. (B16)with dF /dx,

is a real, attractive fixed point for

1

4
I
ui(0)

I

'

dF P(x,s, m ) &s+P (s, m —1) .2

(B19) Insertion into Eq. (B15)yields

(B20)

The other fixed point is a repellor. We have thus proved
that, for

I
s

I
& 1/4

I
u &(0) I, the series (B6) is uniform-

ly convergent. To complete the proof, we have to show

that g~, s~u~(x) is uniformly convergent. This follows

supv„(x, s, m) (2[
I
s

I
+P (s, m —1)]

dP 2 (B21)

which approaches a constant less than for m ~~.
Q.E.D.
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