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We derive the correlation of spatially coupled subsystems in the case in which a dissipative organ-
ization is sustained in an open reactive system which operates far from equilibrium. This
phenomenon is viewed in the context of phase-ordering dynamics of thermodynamically unstable
systems, where the organization is achieved by amplification of nonequilibrium fluctuations (as in
spinodal decompositions and in nucleation processes). Thus we show how the correlation of subsys-
tems leads to the contraction of phase space to a center manifold and to the propagation of fluctua-
tions along the center manifold in order to reach the dissipative structure.

I. INTRODUCTION

The onset of far-from-equilibrium organizations in dis-
sipative systems is a problem of active current interest,
especially since such dissipative structures do not enjoy
the status of permanence and stability that equilibrium
structures have.!™* The cooperativity among spatially
coupled subsystems producing collective fluctuations on
long-lifetime modes is poorly understood in the context
of dissipative structures.* Relevant areas of research are,
for example, the nature of intrinsic noise sources in the
order-parameter evolution for the onset of convective pat-
terns,>® intrinsic fluctuations as triggers of dissipative
structures in open reactive systems,“ correlation of sub-
systems in spinodal decompositions,”? etc.

The question of permanence and stability of far-from-
equilibrium organizations has been answered in some
specific instances, for example, when the organization lies
on a locally attractive and locally invariant portion of
phase space known as the center manifold (CM).>*
Essentially, this surface is obtained by a mean-field ap-
proach with a free-energy functional including third-
order terms with mode coupling between order parame-
ters and fast-relaxing degrees of freedom. The order pa-
rameters which arise beyond the critical instability are
the CM coordinates. The surface represents the statisti-
cal enslavement of fast-relaxing modes to the order pa-
rameters.

The nature of the cooperativity involving a large num-
ber of particles in the system and leading to the CM con-
traction of phase space is far from being understood. The
related question which shall be addressed in this paper is
how does the amplification and propagation of fluctua-
tions along the CM occur in order to reach the attractor.
The transient for this process is experimentally accessi-
ble, at least in some instances,”® thus the predictive value
of our theory can be tested. We shall demonstrate that
the onset is not due to a highly improbable large fluctua-
tion!? but rather to the propagation and amplification of
a “primeval” fluctuation along the CM, where the attrac-
tor lies. The origin of this initial fluctuation will be given
later. The process involves cooperativity of spatially cou-
pled subsystems as defined by the following two proper-
ties.

(i) The onset of a CM determines a decomposition of
the system of volume V into cells of virtual volume W, so
that collective fluctuations scale with the small parameter
W/V=L""

(ii) Subsystems whose macrostates lie in the CM are re-
garded as “organized,” and organization is induced from
one subsystem onto another. Moreover, each ‘“informa-
tion carrier” which lies in the CM, excluding the attrac-
tor, has a finite lifetime which depends on the distribu-
tion of probability about the CM.

Thus the process leading to evolution of fluctuations
towards the attractor can be studied by means of a model
consisting of organization carriers which can reproduce,
mutate into one another, and decay subject to the con-
straint of constant overall population. The details of this
model and its implementation and computational
effectivity in order to yield transients or induction periods
for the onset of nonequilibrium organizations will be de-
rived in Secs. II and III.

The analysis of the propagation and amplification of
fluctuations along the CM beyond a dynamic instability is
in the spirit of studies of the decay of metastable states
due to nucleation effects in alloys (spinodal decomposi-
tion) and ferromagnets. The interaction of spatially
correlated subsystems leading to the conservation of the
order parameter has already been considered in the con-
text of spinodal decompositions and other nucleation pro-
cesses. Our analysis is analogous in so far as we consider
the decay of a metastable state by amplification of non-
equilibrium fluctuations among spatially coupled cells.

II. CENTER MANIFOLD REDUCTION

As stated in Sec. I, a CM is a surface in the space of
collective modes of many-body systems. This surface ac-
counts for the phase-space contraction given by the adia-
batic following of certain subordinated modes to the or-
der parameters in the critical regime. A clear illustration
of this is the transition to a convective pattern in a
Rayleigh-Bénard cell, the CM is bilinear in the slowly
varying Fourier modes, and the CM coefficients are ob-
tained by taking the projection of the nonlinear terms in
the Boussinesq flow onto the subordinated Fourier modes
(see, for example, Ref. 5).
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Thus the collective fluctuations introduce a random-
source term on the order-parameter equation. The
effective virtual volume to which such fluctuations are
confined is determined by the dynamics of the particular
unfolding. This is done as follows. First, an integration
of the generalized master equation for the probability
density functional P=P(X,?) (X is the collective modes
vector) along the CM is performed. Scaling relations in-
volving the effective diffusion coefficients as well as the
characteristic kinetic parameters must be introduced in
order to get the adequate smeared Fokker-Planck (FP)
equation for the reduced probability P=P(X,,t) (X, is
the subordinating modes vector). That means, to leading
order in (W /V) (W is the virtual subvolume, V is the
thermodynamic volume), we must obtain a CM-reduced
equation which allows for a continuous flow of probabili-
ty about the CM. In other words, the diffusion pressure
must be given by the correlation of fluctuations in the
CM slow modes exclusively.® This procedure leads to a
decomposition of the system in subsystems of subvolume
W where

(W/V)=L"!, (1)

with L ~! being the scaling parameter for the correlation
of fluctuations in the subordinating modes.

The aim of this work is to show how critical fluctua-
tions propagate and amplify along the CM so that organ-
ized states are induced by one subsystem into another.
Thus we need to obtain explicitly the time evolution of
the probability distribution in a suitable coarse-grained
phase space associated to every subsystem.>* The ensem-
ble of subsystems is not an artifact in the Gibbs sense but
it is obtained from the fluctuation-correlation scaling
which holds when a CM is sustained. On the other hand,
the coarse graining is determined by the space of realiza-
tions of the random source in the order-parameter equa-
tion (cf. Ref. 4). Thus the subsystems associated to mac-
rostates lying in the CM are information carriers or or-
ganized subsystems with finite lifetime except those lying
in the attractor (in the case of a hard-mode instability, a
limit cycle). The subsystems whose macrostate lies in the
attractor are information carriers with infinite lifetime.
The lifetime of subsystems in a CM and/or attractor is
determined by the diffusion pressure about the CM.

We shall define an adequate multiplicity for macro-
states not based on equally accessible microstates but
based on cells of microstates, so that the coarse graining
of phase space thus defined is compatible with the ensem-
ble of realizations of the random source (denoted f).
This procedure is carried out by introducing an
equivalence relation “~,” where the cells are the
equivalence classes. The relation is defined as follows:
Fixing arbitrarily a microstate A, all the microstates with
the same macrostate as 4 and connected to 4 by a phase
trajectory with Af=0 are equivalent to 4. We denote
one such microstate as B. Thus we have

A~B—B€Ec(A), ()

where ¢ ( 4) is the cell containing 4. The variation in the
source term f is associated to the displacement along the
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phase trajectory. Thus the coarse-grained phase space is
the space of microstates modulo ~, or the quotient space

3=3/~, (3)

where = denotes the phase space. We need to describe
the time evolution of a probability distribution p defined
on I determined by the distribution P in the space of col-
lective macroscopic modes. The distribution p is made
up of the following thermal averages (the angular brack-
ets represent this thermal average which is in fact the
average over the ensemble of subsystems):

P={Palanc(ares pa=X4) )

where X 4 is the characteristic function for c( 4),

1 if the subsystem is in a microstate

X4= contained in c( 4) (5)

0 otherwise .

Thus p , gives the probability that a subsystem is in cell
c(A) at a given time. Let A contained in = denote the
collection of cells whose macrostates belong to the CM,
excluding the attractor emerging beyond a hard-mode in-
stability. A measure of the degree of organization is then
given by the fraction of organized subsystems,

c(B)YEA

Thus the CM acts as a transient source of free energy
since each information carrier has a finite lifetime given
by the reciprocal of the effective diffusion coefficient

D:S-1<”f”2>1/2, (7)

S being the dimension of the CM or the number of order
parameters.

The parameter L introduced in Eq. (1) is characteristic
of the unfolding and will be used to display the scaling re-
lations involving the following characteristic parameters:

(1) The average Gaussian width of probability density
about the CM, denoted .

(2) The unfolding or bifurcation parameter, denoted
b= q9—9q.-

(3) The scaling factor for the covariance matrix ele-
ments C,»j, for the internal fluctuations.

We shall assume, without loss of generality, that the
system is already in Poincaré normal form.>»> That is, the
fast-relaxing subordinated modes X, and the enslaving
modes X, have been separated. In this (X;,X) repre-
sentation, the explicit form of the covariance C is given
by

C(t,t")=(f(t)f;(t'))=0(L™"), (8)

where the terms f; are the random sources for slow and
fast cooperative modes. We can now outline the CM
reduction. Details of this procedure can be found else-
where.

In general, for S subordinating degrees of freedom and
F subordinated variables, with S 4+ F =N, we have the fol-
lowing general equation:
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In order to integrate this equation, we shall make use
of the factorization of the probability functional which
gives the statistical subordination of fast variables,

P(X;, X, 0)=P(X,0)Q(X/ | X,), (10)
F
OX,|X,)= ]I (gj/‘n')'/zexp{ —gj[Xf,j——Fj(Xs)]z} .
j=1
an

The center manifold hypersurface in macrostate space
need not be calculated here; for details, the reader may
consult Ref. 5. The CM is given by the equations

X, =F/(X,). (12)

The Gaussian widths about the CM will be derived ex-
plicitly together with the scaling relations needed to ob-
tain the smeared FP equation. In general they are given
by the following relations:

e i i i
gJ= 2 gjk H Xs,llxs,zz T Xs,s ’

k=0 i +iy+ o +ig=k
=(2g;)"'* (13

From now on, the discussion will be centered upon the
case of a limit-cycle organization emerging beyond a

+[(i€s 1) 2 cos0+(1C, . )" *sin0]?0% P

i~ )5 IPY—
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zaXf [ij

j=1

(g, 1P}

S
2= G Xf"P

1 »J

dX, .
i=1j=1 “ fj 4

9)

hard-mode instability with the limit cycle contained in a
two-dimensional CM.

We shall now adopt the following scaling relations in
order to explicitly display the relative size of the terms

resulting from the integration process,
C=L"', X,;=0(L~"%,
(14)
w=0(L~'?), b=0(L"'?

where i is the width of the probability density averaged
over the fast degrees of freedom.
For our case of interest, we have

Xs,l —(fh= —WXs,2+ale2,1 +b, XX,

+¢, X2, +O0(L 3%, (15)

X, 2—(a=wX, +a,X2 +b,X, X, ,
+0, X2 +0(L 3%, (16)
—(fly=—AX;+a, X} +apX, +O(L™") . (17

Following the canonical procedure for a Hopf instablity,
we introduce the cylindrical coordinates

X;=X;, X, =rcosf, X ,=rsinf . (18)

Thus we get the following smeared FP equation:

—r~13,{[(q—g.)L ™" *r*+a,r*1P) -3¢l (w +b,r*)P]

+[—3C, 15,1 c0s0sin0+(C; 1. 1 C, 5. 5)"?cos?0+1C, ,. ,5in0 c0sH13,(r ~13,P)
+r 1€ 1:5,1 5in?0—(C o 1:5.1Cs,2:5, i cosBsinB—l—%Cs,z;S’z cos’013,P
+r“2[—Cs’1;:,1 sin6 cosO+2(C5,m 1C 2, DY sinZG—CS,Z;M cos@sinf]19,P | (19)

where the tilde on top of the correlation matrix elements
denotes restriction to the CM. This equation has been
obtained making use of the first-order approximation

w=N"! 2 (2C,; /A", (20)

j=1

where the A; are the damping constants for the X ; and

[

the subindex f has been dropped from the correlation ele-
ments.

Following a standard procedure, we shall get rid of the
angular dependence by factorizing P as follows:

P(r,0,0)=P(r,t)p(0]r) . 3}

This gives, to order L ~!/2, the equation of continuity for
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P which ensures the continuous flow of probability about
the CM and also verifies the validity of relations (8) and
(14),

8,B(r,0)=—13,1[(g—g. )L~ +ar*|P|

+HC 1151+ Cip5,2)0LP (22)

The decomposition of the system in interacting subsys-
tems of volume W follows from Egs. (1), (8), and (14).

In order to describe the time behavior of p, we need to
derive the time evolution of the set of finite-lifetime infor-
mation carriers, that is, we restrict the density to

Pcm={PBlcBren - (23)

The time-evolution of pcy depends on the cell correla-
tions

SAB(Z):((XA(a)XB(B)>a>ﬁ’ (24)

where a and f3 label subsystems in a generic sense. Thus,
for an arbitrary c(B)E A, we have

=1 s %SAB (1—x)(X ;)
c(A)EA
— NIV xp) . (25)

The terms proportional to (1 —x) give the probability
per unit time that a subsystem in a cell c( 4)€ A induces
a subsystem outside the CM to become organized by
evolving to c(B)E A. This is so since the probability that
a subsystem is in a disorganized cell is (1—x). The
remaining term in Eq. (25) corresponds to the destruction
of the information carrier. The variable x () represents
the level of self-organization within the CM. Its behavior
depends implicitly on the kinetic parameters since the pa-
rameters L, D, and S 45 are determined by the CM reduc-
tion. The induction period is given by the length of time
which must elapse in order for the system to evolve along
the CM until the microstates realizing the attractor are
reached by all the subsystems. In other words, the induc-
tion period is the time it takes the fluctuations to propa-
gate along the CM. Thus it is determined by the time
evolution of x. The Perron number (the largest real posi-
tive eigenvalue) Ap, for the matrix [(8/3¢)S 5] coincides
with the effective diffusion coefficient D since the final
stationary state x in the evolution of x is

xo=(1—D /Ap,)=0 . (26)

This relation must hold in order for the attractor to be
reached by all subsystems after the critical fluctuations
have propagated and amplified through the CM. The in-
duction period T 4 is given by

X(de)=xss=0 . (27)

In a simplified model we can impose the restriction of
equal induction probabilities per unit time between any
pair of microstate cells c(4) and c(B). Since L and D
can be obtained from a stochastic CM treatment for a
particular unfolding, the probability per unit time can be
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obtained from the fact that the Perron number is deter-
mined by Eq. (26).

III. DISCUSSION

The model given by Egs. (23)-(27) is isomorphic to
Eigen’s selection model for biopolymer information car-
riers.” This isomorphism can be made explicit if we
adopt the following representation:

Ya=pP4/Xx . (28)
Then Eq. (25) reads

}}A = 2 MABYB —Ya 22 MCB.VB ’ (29)
c(B)EA c(C),c(B)EA
where
M5 =(1—x)3/31)S ;5 —N'(||f|>)1/%8y », . (0

In Eigen’s selection model, the information carriers are
the biopolymers which in our model have been replaced
by subsystems lying in the CM. The macromolecular in-
formation carriers are subject to mutations with rates
w;;y;, for a mutation i —j (i,j two biopolymers), and au-
tocatalytic self-replication with rate 4;Q;y; (where 4, is
the rate constant, Q; the quality factor, and mass-action
kinetics is assumed).

If we now impose the constraint of constant overall
population (Y, y,=const), thus adjusting the dilution
fluxes to account for the metabolic turnover, we have an
explicit isomorphism between Eigen’s model and the evo-
lution of organized subsystems given by the map: organ-
ized subsystem — macromolecular information carrier
(linear biopolymer); 4;—i; (3/31)S 4 A/_(l—x)—»w,-j (if
i#j), A ij (otherwise); D — D (death rate for an infor-
mation carrier).

The system defined by Egs. (23)-(27) provides an
efficient algorithm for computing lag times required to
reach a dissipative structure emerging beyond a hard-
mode instability. This is a central problem which to the
best of the author’s knowledge has received little atten-
tion so far. The rates of decay of other metastable states
are well determined theoretically as well as experimental-
ly. Instructive examples are the condensation of supersa-
turated vapor, the nucleation phenomena leading to
phase transitions in alloys and magnets, and the
amplification of disturbances in superfluids; in this case,
the disturbance starts as a vortex ring of critical size.

In order to appreciate the advantages of the represen-
tation introduced in this work, let us remark that if we
were to proceed following the classical theory of decay of
metastable states for the region of propagation of fluctua-
tions along the CM, we would need to consider the time
evolution of the distribution p=p({7}), where

(ny={m,m. ..o} 31
represents a particular configuration. The order parame-
ter evaluated at subsystem «, 7, (a=1,2,...,L) is
defined as
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Ne=nla)= 3 Xpla). (32)
c(B)EA
Thus we get the general master equation for p as
a ’ ’ ’
t%ﬁi = [on TP, (7)ol
—P({n'}, (n}eln)], (33)

where the coupling to the statistical reservoir is explicitly
given by the transition rates between any two given
configurations. These rates are denoted P and they have
the form

P({n},{n')= XTI 8(n;—n))R:({n},{n'}), (34)
i ji

where the transition probabilities R; can be written as

R,--——fdsfds'

X8[e(s)+E{n}—e(s")—E{7n'}], (35)

where s and s’ denote states of the bath, €(s) and €(s’) the
energies for these states, Z the partition function for the
statistical bath, and E {7} and E {7'}, the energies of the
two configurations, respectively. The reader can readily
see that the conservation of energy is satisfied by Eq. (35).

The main difficulty in evaluating the T’s lies in the fact
that the system is not evolving to equilibrium. Therefore

—e(s")/kT

E——Z—R———~ T:(s,m;;s',m;)
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the T;’s are dependent on the full configurations {7} and
{n'}, since organized subsystems induce phase trajec-
tories into the CM thus organizing disorganized subsys-
tems spatially coupled to them. For this reason, the clas-
sical representation, widely used in nucleation phenome-

na, is to be replaced by the more convenient one as given
by Egs. (23)-(27).

IV. CONCLUSION

We have demonstrated explicitly the role of correla-
tions of spatially coupled subsystems at the onset of a
center manifold in open reactors which operate far from
equilibrium. Thus such dissipative processes can be
viewed in the same context as spinodal decompositions,
where the correlation of cells leads to the conservation of
the order parameter,® or in the amplification of nonequili-
brium intrinsic fluctuations in nucleation phenomena.
The organizing dynamics for subsystems lying in the
center manifold was shown to be rigorously equivalent to
the selection process in the self-reproduction of macro-
molecular information carriers as given in Eigen’s
model.’
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