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Image evolution in Hopfield networks
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We consider neural networks of the Hopfield type with couplings J;, which need not be sym-
metric. From the master equation for microscopic states we derive an evolution equation for the
probability density of the macroscopic parameters q„, which measure the overlap of the instantane-
ous microscopic state (or image) with one of the built-in patterns. No restrictions are imposed on
the choice of the patterns. For three different temperatures this equation is used to illustrate re-
trieval in the standard Hopfield network and limit-cycle behavior in nonsymmetric models.

I. INTRODUCTION

In this paper we consider a Hopfield model for neural
networks. ' The case of symmetric connections J; be-
tween two neurons i and j has been extensively studied by
Amit, Gutfreund, and Sompolinsky. The study of the
temporal development of such networks seems to be re-
stricted to diluted networks (where many bonds are
cut), to feed-forward networks, or to fully connected net-
works at zero temperature.

It is the purpose of the present paper to show that none
of these restrictions is necessary. In particular we will
derive a flow equation for the macroscopic parameters
q„, which measure the overlap of the instantaneous mi-
croscopic state with one of the built-in patterns. The
starting point for this derivation is the master equation
for the probability at any time to find the neural network
in a certain microscopic state, defined by specifying for
each neuron whether it is on or off. We want to stress
that the transition probability per unit time for a neuron-
al state flip of course depends on the weighted sum of ar-
riving potentials on that specific neuron, but is calculated
without first introducing a Hamiltonian, which, by its na-
ture, would have to be symmetric in the neural connec-
tions.

Another point in which our work is different from
what is known to us in the literature is the fact that the
patterns to be retrieved can be defined as we wish, and
need not be drawn at random from a uniform distribu-
tion. Only at the very end, and only by way of illustra-
tion, did we make this latter choice when the flow dia-
grams of the figure were calculated.

ry if J, . is negative. Neuron j contributes to the local
field at the position of neuron i only if the former is firing.
For the interactions we take

J; =—+PA„„(' (p, v=1, . . . ,p),1

p, v

where each Pk is either +1 of —l. A„„are the elements
of a p Xp matrix, which need not be symmetric. There-
fore, nonsymmetric couplings J; will also be considered.
However, only with a symmetric A can the equilibrium
properties of the system be described in terms of a Hamil-
tonian. The standard couplings' are obtained by taking
the identity matrix for A. The p vectors (P, , . . . , P~)
represent the patterns that are anchored in the network.

Our problem is now to give a rule according to which
an arbitrary initial state of the spins ($„.. . , $tv) will

change in time and to ascertain to what extent, if at all,
one of the built-in patterns will be approached.

In order to do so we assume that for each spin there
exists a probability per unit time w (s ~ —s ) to flip and
that this w only depends on the value of this spin and on
the local field. We take the standard form for w and
write for the probability that spin j will flip in the next
unit of time

w (s, ~ —sj ) = —,
' [ I —tanh(P$J h, )],

where T = I/P is a measure for the rate of spontaneous
spin flips. With the choice for w made, we now write
down the master equation for p(s, t), which is the proba-
bility to find the system at time t in the state
s=(si, . . . , $~):

II. DERIVATION OF THE FLOW EQUATIONS

As in all neural networks of the Hopfield type, ' we
model the neurons as Ising spins s (j =1, . . . , 1V). If
neuron j fires we set s =+1; if it is at rest s = —1. The
local fields h; are defined by h;=g-J;. ($ +1), where J,t
is the strength of the synaptic connection from neuron j
to neuron i. It is excitatory if J, is positive and inhibito-

ap(s, t)
Bt

w ( —s, ~$, )p (F,s, t)
j=i

N—p(s, t) g w($, ~—$, ),
j= 1

where we have made use of the spin flip operator F,
defined by
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Fjp($1~ ~Sj~ ~SN) $($1~ . Sj ~ ~SN) .

Since N is very large, the solution of this equation for
an arbitrary initial state is impossible. This, however, is
hardly a disadvantage because, like in statistical mechan-
ics, me are not interested in the microscopic details of a
state, but rather in the question whether the development
of certain macroscopic features can be calculated. For
these features we take the overlap with the built-in pat-
terns, defined by

where q(s) and g'. are vectors with p components. For
the ideal retrieval of pattern po one should have q"=5„„.PPo

Our aim is to derive from (3) an equation for the proba-
bility of finding the system at time t in a state with mac-
roscopic correlation parameters q=(q„. . . , q ). This
probability is defined as

P(q, t)= gp(s, t)5(q —q(s)) .

N N

q"(s) =—g Psj or q(s) =—g gjsj,
j=1 j=1

(4) Using the master equation (3) it is straightforward to
show that

BP(q, t) = —,
' g f dq'p(s, t)5(q' —q(s)) fdx g 5(x—g s, )[1—tanh(pxAq')] 5 q —q'+ 2x

S j=1
—5(q —q') . (6)

The summation over the spin index j will now be per-
formed, using the partition introduced by van Hemmen
et a/. There the set of all indices is divided into subsets

I„, which depend on the built-in patterns P in the fol-

lowing way:
dq = —q+ (g tanh(PgA q) ) z (12)

Equation (10) is the continuity equation for the density
of a flow in the p-dimensional q space. The equation for
the flow itself becomes

[i &N] = UI& where Is ——Ii &N
~

g=g';] .

The number of different p-dimensional vectors g is 2~,

which is much smaller than the number N of vectors g, .
Therefore, the number of indices in each of these sets, to
be denoted by

~ I„~,will almost always be the same for
all g, if all Pk are chosen randomly:

For the time being, however, we will not make use of this
fact and consider

~ I„~ as numbers which can be calcu-
lated for each particular realization of the built-in pat-
terns g&.

It is seen immediately that the overlap functions q(s)
defined in Eq. (4) can be written as

q(s)= —g ~ I& ~
m„(s)g with m (s)= g $

1 1

jEI BP(q, m, t) + 8 (F p)
8 (F p)

Bt „,Bq„" Bm
(13)

This equation still depends on the particular realization
of chosen patterns P. If we would be interested in the
average flow obtained after averaging over these patterns,
we would run into all diSculties connected with non-
linear stochastic differential equations. In this paper we
will avoid these problems by restricting ourselves to the
cases where

~ I„~=2 I'N.
The method described in this paper can be generalized

in different ways. One is to include a neuronal threshold
h„so that the expression for the local field becomes

h, = g Jj($j+1)—h, .
J

It is also possible to add a constant ferromagnetic or anti-
ferromagnetic coupling J/N to the J; of Eq. (1). In this
case Eq. (10) takes the form

With this relation it is straightforward, although rather
tedious, to prove that Eq. (6) can be written in the form

where the flow fields are given by

F„=—q„+( g" tanhP(g A q+ m J +J —h, ) )„ (14)

BP(q, t )

Bt „()q„I[—q +(g"tanh(pgAq)) ]rl
and

Fo = —m + ( tanhp(g A q+ m J +J —h, ) )„.
XP(q, t)], (10)

The variable m is the average spin
where the following abbreviation has been introduced:

(f(vg))„=—g ~ I„~f(rt) . (11)
The equations for the flow become

In the process of deriving Eq. (10) terms of order 1/N
have been neglected, but terms of order X ' are still
present because of Eq. (8).

dqp dpi" =F„and =Fo .
dt " dt

(16)

In principle the variable m should also have been con-
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sidered as a macroscopic variable in deriving Eq. (10).
However, since J =h, =0 it would have had no effect on
the q(t). The equation for m (t) itself would have become

dm = —m +(tanh(PgAq))z,
dt

so that m (t) can be written in terms of rn (0) and q(t).

III. A SIMPLE APPLICATION

(1 0)

0.8 1.2

We will now discuss the results of some numerical
solutions of Eq. (12) for the case of two patterns, i.e.,
p =2. In Fig. 1 we show the flow lines in the q, -qz plane
for three different temperatures and with three different
forms for the matrix A. The first choice

1 0
0 1

corresponds to the standard Hebb connections. The
equilibrium properties of this model have been studied
extensively by Amit, Gutfreund, and Sompolinsky.

We see that for all cases with large T the vector q(t)
approaches the origin, so that no correlations with the
built-in patterns remain. The strongest correlation is ob-
tained for low temperatures. For the third (asymmetric)
A these correlations switch back and forth between the
two patterns and their negatives. This is manifested by
the way in which the state point q(t) traverses the limit
cycle, spending most time near the corners where the
pure states (+1,0) and (0, +1) are found.

A remarkable feature is the fact that for low tempera-
tures the flow lines seem to consist of straight lines con-
nected by sharp bends. This can be explained by observ-
ing that for large p the function tanh(p. . . ) is either +1
or —1, so that in Eq. (12) the second term in the right-
hand side assumes only a few different values ci in a num-

ber of regions RI in the q plane. In each region RI the
solution therefore decays exponentially towards ci, until
it enters another region. Hence the sharp bends.

Q)

-1 0

FIG. 1. Examples of the flow described by Eq. (12).

We want to close this paper with a few remarks about
iluctuations. The equations (12) and (16) are true macro-
scopic equations when the p built-in patterns are fixed.
If, however, the patterns themselves are fluctuating for
some reason, these equations are nonlinear stochastic
differential equations, which only serve as starting point,
from which the average behavior of q(t) and its fluctua-
tions should be calculated.

Another remark is that a description in terms of q(t) of
the evolution of an image may be too crude. It involves,
after all, a reduction of the number of variables from N to
p, which may be too drastic. An intermediate description
is obtained by using the average magnetizations m„(s)
[Eq. (9)] of the spins of the index sets I„,of which there
are 2~. On this level it then becomes interesting to ask
how many images and which ones correspond to a final
state in q space.
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