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An experimental study is made of the interactions between spin-wave modes excited in a sphere
of yttrium iron garnet by pumping the Suhl subsidiary absorption at 9.2 GHz with the dc field

parallel to [111].The dynamical behavior of the magnetization is observed under high resolution by

varying two control parameters, dc field (580 Oe &0 &2100 Oe) and microwave pump power (1

mW &P &200 mW). Within this parameter space quite varied behavior is found: (i) onset of the
Suhl instability by excitation of a single spin-wave mode with very narrow linewidth ( &0.5 G); (ii)

when two or more modes are excited, interactions lead to auto-oscillations with a systematic depen-

dence of frequency (10 -10 Hz) on pump power these oscillations displaying period doubling to
chaos; (iii) quasiperiodicity, locking, and chaos occur when three or more modes are excited; (iv)

abrupt transition to wide-band power spectra (i.e., turbulence), with hysteresis; (v) irregular relaxa-

tion oscillations and aperiodic spiking behavior. A theoretical model is developed from first princi-

ples, using the plane-wave approximation and including anisotropy effects, obtaining the lowest-

order nonlinear interaction terms between the excited modes. Bifurcation behavior is examined,

and dynamical behavior is numerically computed and compared to the experimental data, explain-

ing a number of features. A theory is developed regarding the nature of the experimentally ob-

served relaxation oscillations and spiking behavior based on the interaction of "weak" and "strong"
modes, and this is demonstrated in the numerical simulations.

I. INTRODUCTION

This paper is concerned with the nonlinear dynamics
of interacting spin-wave modes in a single-crystal spheri-
cal sample of yttrium iron garnet (YIG) excited through
microwave resonance absorption. Spinwave instabilities
were first observed by Damon' and by Bloembergen and
Wang as noisy anomalous absorption which abruptly set
in at a certain microwave threshold power as the reso-
nance was more strongly driven. This phenomena has
been extensively studied; for a review see Zakharov
et al. A theory of the behavior at threshold was given
by Suhl in 1957, who remarked, "This situation bears a
certain resemblance to the turbulent state in Quid
mechanics. " This observation has been validated in the
more recent emergence of dynamical-systems theory and
a corresponding reexamination of spin-wave dynamics,
both experimentally ' and theoretically. '

It was predicted, ' ' and experimentally discovered,
that the behavior beyond the Suhl threshold was, in some
cases, a period-doubling route to deterministic chaos.
Since the wavelengths of the excited spin waves are typi-
cally much shorter than the sample size, the accessible
phase space is very high dimensional, yet low-
dimensional behavior can be observed. This is consistent
with observations on other systems, e.g., Quids, and with
the conjecture of Ruelle and Takens, ' that the dynamics
of high-dimensional systems can be controlled by a low-
dimensional attractor, Since the interactions in materials

like YIG are known from first principles, it is of high in-
terest to more fully compare spin-wave experiments with
theoretical models.

To fix ideas on the physical system, consider a set of
spins S on the crystal lattice of a sphere in an external
magnetic field Hp, with a Hamiltonian

H = —Ry g SJ. 'Ho —2J g SJ 'S& + g Hsipo]e-dipoie
J J~J

where y is the gyromagnetic ratio and J, assumed posi-
tive, is the Heisenberg nearest-neighbor exchange energy.
The Zeeman interaction leads to a uniform precession
(the "uniform mode") of the crystal magnetization M
about Hp at frequency cop=&Hp and to a narrow fer-
romagnetic resonance absorption at m =cop when driven
by a small microwave magnetic field h(t) of frequency
co, perpendicular to Hp. The overall dispersion relation
for Eq. (1) is

co~=(yHo ——,'co +yDk )(yHo ,'co +yDk——
+co sin Oi )

for spin waves of frequency co&, wave vector k, and az-
imuthal angle 0& relative to Hp. Here, M, is the sample
magnetization, co =@4aM„and the exchange constant
D=2JSa ~/Ay.

In the present context a spin wave corresponds to a
spatial variation of the spin precessional phase across the
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sample. We expect spin waves to be excited in pairs, k
and —k, and that in the finite sample there exists
standing-wave resonance modes by virtue of boundary
conditions. We refer to the pairs as (standing-wave)
modes. The exchange and dipolar terms in Eq. (1) pro-
vide nonlinear coupling between the uniform and spin-
wave modes. One imagines the dynamics of the system to
be that of a large number of coupled nonlinear oscilla-
tors, or modes. In a quantum picture one imagines the
system to be represented by coupled quantum excitations,
corresponding to the photons, magnons, and lattice pho-
nons. Magnon-magnon and magnon-phonon scattering
processes have been particularly well studied in YIG
spheres.

Suhl analyzed various orders of instabilities. To re-
view his first-order "subsidiary-absorption" case, which
we study in this paper, imagine a small YIG sphere to be
placed in a microwave magnetic field h at frequency
co =2m. &(9.2X 10 sec '. In an applied dc field

Ho =co /y =3265 G, with h perpendicular to Ho, there is
a narrow uniform mode resonance absorption, the so-
called ferromagnetic resonance. However, if the dc field
is reduced to roughly half this value, the uniform mode
can strongly couple to spin-wave modes, as shown in the
dispersion diagram, Fig. 1(a). Spin waves at co&/2 are
parametrically pumped by the uniform mode "driver" at
co . At the threshold value of the driving field h„the
power received by the spin waves just equals that lost by
relaxation to the lattice at the rate yk', for h gh, the
spin-wave amplitude exponentially increases.

Another case of interest, "parallel pumping" with h

parallel to Ho allows direct resonant excitation of spin
waves at co~/2 by the microwave field at co, without ex-
citing the uniform mode. Still another case, "premature
saturation, " occurs in second order where ~p NQ Np,

'

nonlinear dynamics for this case has been previously re-
ported.

The focus of this paper is a detailed experimental study
of spin-wave dynamics for the subsidiary absorption in-
stability with perpendicular pumping, as well as interpre-
tation from a theoretical model. Above the threshold one
or more spin-wave modes become excited; their interac-
tion leads to a variety of interesting phenomena. The
model starts from the viewpoint of microscopic scattering
processes and makes a connection to the theoretical
framework of nonlinear dynamics. Some new experimen-
tal results reported in Sec. II are as follows. (1) The re-
gions and boundaries of behavior are found in a high-
resolution parameter-space diagram (phase diagram) in
which the dc field and the microwave pumping power are
both varied. (2) In some regions of the phase diagram the
Suhl threshold is characterized by abrupt hysteretic onset
of wide-band chaos. (3) In other regions the Suhl thresh-
old is apparently marked by excitation of only a single
spin-wave mode. At higher powers, when a second mode
is excited, low-frequency collective oscillations (autooscil-
lations) are observed, which may show a period-doubling
route to chaos. When a third mode is excited, the system
may display quasiperiodic behavior (two incominensurate
collective oscillations) with locking and a quasiperiodic
transition to chaos. (4) Spiking and aperiodic relaxation
oscillations are also found. (5) In other regions, well

beyond the Suhl threshold, rather abrupt onset of wide-
band noisy states is observed.

Much of this behavior is predicted by the model. The
fundamental equations governing the spin-wave dynamics
[Eq. (65)] are derived in Sec. III A, including efFects such
as interaction with the resonator and crystalline anisotro-
py. An analysis of the fixed points of the equations is un-
dertaken in Sec. III B, showing the origin of the observed
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hysteresis effects. A theory is presented in Sec. III C re-
garding the nature of relaxation oscillations and irregular
spiking. These oscillations may, as is shown, provide a
mechanism for nondeterministic noise to enter into the
dynamics, even when the system seems to be operating
well above the thermal background level.

The model equations are solved numerically for one,
two, and three modes. These results, presented in Sec.
IV, show many of the types of behavior and bifurcations
observed in the experiment.

II. EXPERIMENTAL RESULTS

The experiments are performed at room temperature
with a sphere of pure YIG (Y&FesO)2) having a diameter
d=0.066 cm, spherical to within b,R/R =6X10 and
highly polished to within 0.15 pm. YIG is a cubic insu-
lating ferrimagnet with a Curie temperature of 559 K; its
properties are reviewed by Geller. The net magnetiza-
tion M, is due to the resultant of two oppositely magnet-
ized sublattices of Fe + ions. At room temperature
4mM, =1750+50 G, and the exchange constant
D =5.4X10 Gcm. The Fe + ions have a (S=—,',
L=O) ground state, and consequently a weak interaction
with the crystal lattice; the ferromagnetic resonance
linewidth is hH =0.4 G, limited by magnon scattering at
surface imperfections.

The gyromagnetic ratio y=1.77&(10 sec 'G '. In
this paper the easy axis [111]was aligned parallel to the
dc field Ho', for this orientation the resonance field is at a
minimum.

Experimental arrangement Figu. re 1(b) indicates
schematically the experimental arrangement as well as

elements of the theoretical model used in Sec. III. Mi-
crowave power from a klystron oscillator (P,„=200
mW) at frequency f =co /2m =9.2 GHz is coupled via a
precision attenuator, circulator, and waveguide to a
loop-gap resonator containing the YIG sphere and lo-
cated in a uniform and stable dc field from a large elec-
tromagnet. The resonator is centered in the waveguide
with its axis parallel to the larger transverse dimension of
the waveguide. It is mounted just ahead of a sliding short
which can be adjusted for critical coupling to the resona-
tor if desired. The sphere is thus subject to both a mi-
crowave field h (t) and a dc field Ho, oriented with h per-
pendicular to Ho, which is oriented parallel to [111]ex-
cept when noted. The fields are varied in the range
0&Ho&4 kG, 0&h&5 G. Microwave power P;„cch z

incident on the resonator and YIG sphere is partially ab-
sorbed by the damping of the resonator, by the uniform
mode, and the spin-wave modes, at rates I, yo, and y&,
respectively. Power not absorbed is refiected back via the
circulator to a microwave diode detector, giving a dc sig-
nal voltage So,' the detector also gives an ac signal voltage
S(t) in the range 10—10 Hz, which is recorded and is the
sample average of the real-time signal of the collective os-
cillations. A power spectrum of S(t) from an analog
spectrum analyzer (HP model 3585A) is also recorded,
with an 80 dB dynamic range, free of spurious responses.

Phase diagram. Figure 2 shows the regions and boun-
daries of observed behavior in the parameter space (Ho,
P;„),where Ho is the dc field and P;„is the incident mi-
crowave (pump) power on a decibel scale; P;„=201og, oh,

where h is the relative microwave magnetic field; at
P;„=200mW, h = 5 G. In regions below the line labeled
"Suhl threshold" the system behaves linearly: the dc sig-

20 I i

High ampiitud e
osciiiations

rr

200

—100

15—

Suhl
threshold

Abrupt
of wide

Very nois E

50 Q)

0
Q.
O.
E
CL

20

0
O

10

I I I I I

1000
«Magnetic field (Q )

I

2000

FIG. 2. Regions and boundaries of observed behavior in YIG sphere in the parameter space (HO, P;„),where Ho is the applied dc
magnetic field and P;„(dB)the applied microwave power at f~ =9.2 GHz.



4226 BRYANT, JEFFRIES, AND NAKAMURA 38

nal So increases linearly with P;„and the ac signal shows

only low-level wide-band detector and amplifier noise
with an rms value S,= —70 dB (relative level). As the
Suhl threshold is crossed, either by increasing P;„or
changing Ho in the range 600~HO &2150 G, there is a
well-defined dip in So. By prebalancing the detector by
an additional bridge circuit, the threshold P;„can be
determined to within 0.05 dB. As the threshold is
crossed, the ac signal may also make dramatic changes
depending on the region in parameter space.

Single modes. When examined under high resolution
the Suhl threshold in the approximate region
1600 &Ho & 2000 G is seen to have a rich structure, Fig.
3(a). As the field Ho is slowly increased at constant putnp
power, a series of sharp dips in the dc signal So is ob-
served, with a spacing AHp=0. 156 G which can be un-

derstood as high-order spatial resonance modes within
the sphere diameter d, as first noted by Jantz and
Schneider. For a small change in wave vector
b, k =old at constant k in Eq. (2), the computed field

change AHO =2Dk hk =0.152 G, using the value
k =3)& 10 cm ' from Fig. 1(a) for 8k ——0. Although this
elementary plane-wave calculation is in good agreement
with the observed splitting, a model of spherical spin
modes would be more appropriate. The individual
peaks show hysteresis if the sense of the field scanning is
reversed.

Collective oscillations The .first few peaks in Fig. 3(a}
are not accompanied by an ac signal S(t), an indication
that only single spin-wave modes are excited. However,
as Ho is increased, we arrive at a point where simultane-
ous excitation of two modes is possible due to mode over-
lap. Nonlinear mode-mode coupling may then result in
the onset of a low frequency autooscillation signal S(t)

(f,v=10 —10 Hz), e.g., Fig. 4(a). In the model, Sec. IV,
this corresponds to a Hopf bifurcation to a limit cycle
when two spin-wave modes are excited. These periodic
collective oscillations are observed in much of the param-
eter space shown in Fig. 2 and display period doubling,
Fig. 4(b), with sharp peaks in the power spectrum, Fig.
4(c), as large as 60 dB above the broadband baseline. [Al-
though we are concerned in this paper primarily with the
case of perpendicular pumping, similar behavior was
found for parallel pumping; Fig. 4(d} shows the power
spectrum for an oscillation which has successively dou-
bled to period 8.] These oscillations may show a period-
doubling cascade to chaos, Fig. 4(e), with very broad
spectra peaks on a higher-level baseline, Fig. 4(f}. This
cascade is induced by small variations in any of the sys-
tem parameters Ho, h, fz, or crystal orientation.

Quasiperiodicity. As the magnetic field is further in-
creased, the signal S(t), e.g. , Fig. 5(a), and the power
spectrum P (f), e.g., Fig. 5(b), give evidence for the onset
of a second oscillation frequency f2, incommensurate
with the first frequency f, . The power spectra show
peaks at the combination frequencies f„=nf&+mf2,
with n, m integers; the intensities rapidly decay with in-
creasing n, m. The frequencies are sensitively dependent
on the system parameters, and are observed to lock,
f, /f2 ~rational number, and to follow a quasiperiodic
route to chaos. The real-time signal, Fig. 5(c), is striking-
ly similar to that of two coupled pendula; Fig. 5(d) clearly
shows locking. The computations of the model, Sec. IV,
predict that this quasiperiodic behavior may occur when
three spin-wave modes are excited. Although we cannot
clearly discern on Fig. 3(a) the point where fz arises, it is
seen nevertheless that as Ho is further increased, more
single modes are revealed, become irregularly spaced, and
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FIG. 4. (a) Observed ac signal voltage S(t) of collective oscil-
lations of spin-wave instabilities in a YIG sphere. (b) Period
doubling. (c) Power spectrum of period-doubling signal, 10 dB
per division. (d) Power spectrum of period-8 signal for parallel
pumping case. (e) Chaotic signal. (f) Power spectrum at onset
of chaos.

overlap, a situation ripe for quasiperiodicity.
Hysteretic onset of chaos. In the region

1200&HO (1600 6 in the phase diagram, Fig. 2, as the
pump power P;„is increased, there is an abrupt onset of
wide-band (deterministic) noise (S,= —20 dB), with no
resolved spectral peaks. IfP;„is decreased, this noise lev-
el persists until it reaches the lower level shown, then

abruptly drops back to the level S, , = —70 dB, normally
observed below the Suhl threshold. Single modes as in
Fig. 3(a) are not observed. The hysteresis itself may pos-
sibly be understood from the model, Sec. III B, as arising
from subcritical symmetry-breaking bifurcations.

Aperiodic "relaxation" oseillations. Between 700 and
1200 6 in Fig. 2 we find just above the Suhl threshold an
aperiodic signal of the general form of Fig. 6(a), which
has no resolved spectral peaks in the power spectrum,
Fig. 6(b). They have a characteristic fast rise time and a
slow decay time. We term these "relaxation" oscillations,
although this word has been applied to a wide variety of
different phenomena in the literature of spin-wave insta-
bilities. As the pump power is increased, the times
change from -10 to —10 sec. There is a fairly
abrupt transition of the power spectrum of Fig. 6(c) to
that of Fig. 6(d). Interspersed in these wide-band high-
level oscillation regions can be found small regions in the
parameter space which show periodicity, doubling, and
quasiperiodicity.

High-amplitude autooscillations. At high pumping
power (P;„&80 mW), with Ho in the range 1800—2000
6, there are high-level periodic oscillations. These are
typically at least an order of magnitude greater in ampli-
tude and frequency (typical frequency now 1 MHz) that
those of the fine-structure regime. At these power levels,
a large number of spin-wave modes become accessible,
and the oscillations may be a cooperative effect involving
many modes. Thus analysis for the interaction of only a
few modes which is presented in Secs. III and IV may be
of only limited applicability in this region. (However, see
the analysis of Suhl and Zhang' ' related to this behav-
ior. ) These oscillations exhibit all of the dynamical phe-
nomena previously described for the fine-structure re-
gime, e.g., period doubling, quasiperiodicity, and chaos.
They emerge in a Hopf bifurcation at the threshold indi-
cated in the upper right of Fig. 2. Their emergence does
not eliminate the noisy oscillations which exist below this
point, however, this noise is nearly negligible compared
to the oscillations when they reach full amplitude. These
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of relaxation oscillations before transition to high-frequency
noise in Fig. 2. (d) Power spectrum after transition.



4228 BRYANT, JEFFRIES, AND NAKAMURA 38

high-level oscillations are also observed for parallel

pumping, where they occur over a much wider range of
the dc field.

Frequency of collective oscillations .The frequency f„
of the collective oscillations was generally observed to in-
crease with microwave pumping power P;„.This could
be measured over a wide frequency range in a region of
parameter space near Ho =600 G in Fig. 2. The frequen-
cy data are plotted in Fig. 3(b) and are seen to fit the ex-
pression

f„=K[(P;„/P,) —1], (3)

where P;„is the pump power, P, the value at the thresh-
old of the oscillations, and E is a constant. Numerical re-
sults from evaluation of the model, Sec. IV, with two
spin-wave modes excited, are plotted in Fig. 3(c) and also
fit an expression of the form of Eq. (3). The value of E
differs, however, owing to the dependence E ~ yk on (as-
sumed) relaxation rate. Approxiinate analytical models
also yield an expression similar to Eq. (3).

III. THEORY

This section deals with the analytical formulation of a
model of spin-wave dynamics that may be useful in un-
derstanding the experimental results of Sec. II. The mod-
el equation [Eq. (65)] will be numerically iterated in Sec.
IV and compared to the experimental dynamics.

A. Classical Hamiltonian formulation of the
equations of motion

We now review spin-wave theory and present a serni-
classical derivation of the fundamental equations govern-
ing the relevant spinwave dynamics. In this approach the
classical magnetization M is considered to be an analytic
function of position r and time t, and its dynamics are
considered to be governed by its interaction with an
effective field H(r, t). Suhl's original analysis of spin-
wave instabilities" is also a semiclassical one which starts
with classical equations of motion for M(r, t) and goes on
to find the normal modes of the system and stability cri-
teria for their calculation. Although this approach may
be extended to obtain equations of motion for the spin
waves and their mutual interactions, we take a slightly
different approach here, working with the Hamiltonian
for the system and utilizing many results due to
Schlomann and Zakharov et al. ' ' ' in order to put it
in the most desirable form. Much of this development
has its roots in the quantum treatment of spin waves by
Holstein and Primakoff, in which they developed a se-
quence of transformations to diagonalize their spin Ham-
iltonian. The Hamiltonian formulation has the advan-
tage of giving the equations of motion in their canonical
form. The Hamiltonian may also be obtained in a corre-
sponding quantum form, however, this is not necessary
since the excitation levels of the experiment are usually
far above the quantum regime. Damping is treated phe-
nomenologically, by adding a linear damping term to the
equations of motion for each spin-wave mode.

An effort is made to make the equations general —we

consider oblique pumping, showing quite clearly the con-
nection between parallel and perpendicular pumping in
the subsidiary resonance regime. We also consider many
details omitted in some earlier works such as the effects
of crystalline anisotropy and interactions with the resona-
tor or cavity used to couple the rnicrowaves to the sam-
ple. In the analysis simple spin waves (i.e., plane waves)
are used rather than the true spherical spin modes since
this allows analytic solutions and gives the correct form
for the equations of motion, although it can only yield
approximate values for the various coupling coefficients.

We assume that we are well below the Curie tempera-
ture, so that the magnitude of the magnetization is ap-
proximately a constant, M„the saturation magnetiza-
tion. (4mM, =1750 G at 300 K for YIG). Thus M„M,
and M, are not all independent; it is sufficient to know
just M and M . We also assume that the sample is in a
sufficiently strong uniform external field so that the stable
equilibrium magnetization is uniform alignment with the
field along the z axis. Generally this configuration may
lose stability when the sum of the external, demagnetiz-
ing, and anisotropy fields is reduced to zero. (Exchange
effects are unimportant here for samples larger than
about 1 pm. ) For a sphere, neglecting crystalline anisot-
ropy and exchange effects, the minimum field is 4mM, /3
(about 580 G for YIG at room temperature). Aside from
anisotropy effects (which we discuss later in this section)
the system processes axial symmetry, and this symmetry
suggests the use of a complex representation: we define
the transverse magnetization MT as

MT =M„+I.M, .

For small amplitudes, M, and M behave essentially as
though they were canonically conjugate, while at higher
amplitudes they deviate from this behavior. However, a
weakly nonlinear transformation exists to new variables
s and s which are canonically conjugate for all ampli-
tudes. This transformation previously used by
Schlomann and Zakharov et al. ' ' ' is essentially a
classical version of the Holstein-Primakoff transforma-
tion for the quantum treatment of spin waves. The trans-
formation is

(4)

Mr ——s(2yM, —y ss*)'

c)s (r) . 5H
at

Bs*(r) . 5H
dt 5s (r)

(6)

where the Hamiltonian H is obtained by expressing the
total energy W as a function of s(r) and s*(r) and 5
signifies a functional derivative, i.e.,
5H= j [5H/5s(r)]5s(r)d r. [Note that the effective
field H(r) is —5 W/5M(r). ] Equation (6) is an appropri-
ate form for Hamilton's equations when using the com-
plex representation of the conjugate variables s and s„.

The next step is to expand s and s* in Fourier series,

where s =s +is is a complex representation of the
canonical variables s and s, y is the gyromagnetic ratio,
and s' is the complex conjugate. (Note: in linear ap-
proximation s ~ Mr and s has units of G sec'~ . ) It can
be shown '" that s and s* obey the canonical equations
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V
—1/2 y s ik.r

k

yg —1/2 ~ e ik. r

k

(7)

where V, is the sample volume ( V, = l. 51 X 10 cm in

the experiment). We now obtain Hamilton's equations in
the form

. BH ~s~ . BH=l = —l
Bt Q „*' Bt Bs„ (8)

Wp ——f —[Hp+h(t)] Md r, (9)

where Hp is the dc magnetic field (oriented along the z
axis) and h(t) is the microwave magnetic pumping field
which has arbitrary orientation and frequency co . We
now define a transverse pumping field hT

—=h, +ih and
express 8'0 in terms of the constant Fourier components
MTO and M, o and sample volume V„
Wp = —V& (H p +h

& )Mr p
—

& V& ( h TM rp +h T*MTp ) (10)

WE, the exchange energy The e. xchange field HE and
energy density EE can be shown to be'

[Note: if k was considered continuous rather than
discrete then we would still have functional derivatives,
i.e., Bs(k)/Bt =i5H/5s "(k).]

At this point we need to find explicit expressions for
the different components of the total energy 8'. We will
then form the Hamiltonian by expressing 8' in terms of
sk and sk.

Wp, the interaction energy with external field The.
external field has an interaction energy 8'o with the mag-
netization of the ferromagnet given by

ing factors (note: these must be generalized to a tensor if
the ellipsoid is not oriented with its principle axes corre-
sponding to x, y, and z. ) The demagnetizing factors
satisfy N +Ny+N 1 and for the case of a sphere they
are all equal to —,'. For the more general case of ellip-
soidal samples see Osborn and Stoner. We define

symmetric and asymmetric demagnetizing factors ND+
and DD as

Np+ (N +Ny )I2 Np (N N )I2 (14)

+N, M p] . (15)

The components with k&0 are very diScult to deter-
mine precisely for a spherical sample, but the problem be-
comes relatively easy if we neglect the boundary condi-
tions. Starting with the Maxwell equation V B=O, we
express B as HD+Ho+h+4mM and obtain

V HD ———4mV. M .

Expanding in Fourier components, the corresponding
term in the total energy including all nonzero values for k
is given by

I
k M~

I

'
Wpk 2nV, —— .

(~o) k

=2m. Vs y, I krMT z+kTMT „+2k,Mrs l

k(~0) 4k

In the spherical case ND+ ———,
' and ND ——O. The corre-

sponding energy 8'Do in terms of the transverse magneti-
zation is given by

Wpp=2nV, [N'p+MTpMTp+ 2Np (Mrp+MTp )

DV,
WE —— g k (MnrMnr+M, ~M,'~) .

s k

(12)

Note that Mn, is to be interpreted as (Mn, )' not as
(Mf )q.

8'D, the dipolar energy. For the demagnetizing field we
follow the approach of Suhl and treat the k=O and k&0
cases somewhat differently. For the k=O case, certain
sample shapes including infinite sheets, infinite rods, and
spheres (or more generally ellipsoids) exhibit a uniform
demagnetizing field HDO, in response to a uniform magne-
tization Mo. The demagnetizing field and the magnetiza-
tion are related by

Hpp= —47r(N M p, NyMyp, N M p) (13)

where M 0, M&0 M o are the constant Fourier corn-
ponents of M and where N„,N, N, are the demagnetiz-

HE —— V M, EE g(VM——~)
S S l

where D is the exchange constant (D =2JSa 2IRy G cm2,
where J is the Heisenberg exchange energy.
D= 45&&1 0 Gcm for YIG). From this we obtain an
exPression for WE in terms of Mn, and M, z (the Fourier
components of MT and Mz ),

(18)+O(M~),
where

N„+ 2K, /4~M, , N„——=O for [001],

N„+——( —~K, —~4K2)/4vrM, , N„=O for [111],

N„+=( ——,'K, + —,'K~)/4vrM, ,

N„=(—', K, +—,'K2)/4rrM, for [110] .

Values for the anisotropy factors K& and E2 were mea-
sured by Hansen. The notation used in Eq. (18) was

8'~, the anisotropy energy. If desired, crystalline an-
isotropy may be included in the analysis. Relatively sim-
ple results may be obtained if we restrict ouI'selves to the
lowest-order contributions (order MT) with the z axis
corresponding to [001],[110],or [111],and the y axis cor-
responding to [110] (the three orientations indicated for
the z axis may be obtained by rotating about the [110]
axis). In this case it may be shown" that the anisotropy
energy has the form

W~ =2~V, g [N~+MnMn + )N~-(Mn +Mn']
k
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TABLE I. Anisotropy factors for YIG.

T (K) [100]N„+ [111]N„~ [110]N„~ [110]N„

4.2
77

295

—0.1030
—0.0937
—0.0501

0.0708
0.0644
0.0335

0.0246
0.0223
0.0125

—0.0784
—0.0714
—0.0376

chosen because of its similarity to the demagnetizing fac-
tors ND+ and ND appearing in Eq. (15). Note that for
x~~[001] or [111]the results are independent of the orien-
tation of x and y, although there will be difference in
higher-order terms omitted in Eq. (18). Only the z~~[110]
case leads to a nonzero value of N„.This term breaks
azimuthal symmetry and leads to elliptical rather than
circular orbits for the uniform mode [as does the factor
ND in Eq. (15) which results from shape anisotropy].
Values for N~+ and Nz for YIG may be found in
Table I, computed from Hansen's values for E& and Ez.

Now that the various contributions to the energy have
been evaluated [Eqs. (10), (12), (15), (17), and (18)] we may
combine them to form to obtain an expression for the
Hamiltonian,

H4 ———,
' Y (2&k, -k, —

Qk,
—

Qk, }
k[, k2, k3

XSk Sk Sk Sk +k —k

—(Fk sk sk sk sk ~k +g +c.c. )

where

I
kr

I

'
Qk yDk +——cD 5kND++(1 —5k )

2 +N„+
2k

cu =4m.M, y, and c.c. denotes complex conjugate,

H3 ———Y' g Jk'sask sk +k+c.c. ,
k, k)

where

k, kTJ„=co (1—5k )
2k

and

(27)

(28)

(29)

(30}

H = Wp+ WE+ WDp+ WDk+ W (19)
2Ek=yDk +N- 5kN, +(1 5k) k2— (31)

Naturally, we will want to express the Hamiltonian in
terms of the canonical variables sk and sk. This may be
accomplished using

Mrk ——M, Y' sk —
—,
' Y g sk s& sk +& k +O(sk)

k), k2

and
T

M, k ——M, 5~——,
' Ygs~ s)',

k[

(20)

(21)

where Y—=2y/M, V„5&=—1 for k=0, and 5&=0 for k&0.
Since the resulting Hamiltonian is a lengthy expression,
we break it into components as follows:

H =const+Hz+Hz+H3+H4+

and

kr
Fk co~ (1 ———5k ) q +5kND +N„

2k
(32)

sk ——Xkvk —Pkv k

The coefficients A,k and pk are given by

(33)

Note that while we have included in H4 its dependence
on the anisotropy factors N~+ and N„,there are addi-
tional contributions to H4 from terms of order MT in the
anisotropy energy. However, anisotropy is not very
strong in pure YIG and it may be reasonable to neglect
these terms in first approximation.

H2 may be diagonalized by the Bogoliubov transforma-
tion

where Hz consists of terms involving the pumping fields
h T and h„H2consists of quadratic ter~s in sk, H3 of cu-
bic terms, and H4 quartic terms. The results are

and

' 1/2
A k +co)

Ark
2cok

(34}

Hz ——yh, g sksk —y Y ' (hTso +hr'so),
k

H2 —g Aksksk+. —,'(Bksks k+c.c.),
k

where

Ak ——y(H0+Dk )+co 5kND+ N, +N„+—

(23)
Bk""= ~a„[

where

' 1/2
A k

—
CO)

(35)

I kr
I

'
+(1—5k )

2k
(25)

is the spin-wave dispersion relation. A, k and pk satisfy

4—
I S k I

'=1 (36)

kT
k ~m 5kND —+NA —+( 5k }

2k
(26)

which is required in order that the transformation be
canonical, i.e., that Hamilton s equations give the correct
equations of motion,
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. dH
Vk =1

Bvk

aH
Vk= —l

()Vk
(37)

Keeping only two-mode couping terms with slow time
dependence, H4 becomes

The Bogoliubov transformation puts the quadratic term
in the desired form,

~ 4 —~ x kk' vkvk vk'vk'+ 2
~ kk' vk v kvk'v —k' &

k, k'
(43)

H2 g CdkvkVk
k

The pumping term now has the form

8k
Hp =Yhi g VkVk — Vkv k+C. C.

Nk 2 cOk

—YY ' [(bohr PohT)vo+c c ] )

(38)

(39)

where

+Xk k Vk Vk Vk +k +C.C. ) )1' 2 1 2 1 2
(40)

k(, k2 k)(Mk)Pk2~k)+k~ k(~k)~kpk)+k~ )

Xk),k2 Jk(~k)~kpk)+k2+~kpk)~kpk)+k2

+Jk(+k, ~k(PkPk(+k, —Jk,

Pk)@krak,

+k,

+k Jk +l ~k ~l ~l +l

(41)

(42)

note, if ND +X„ is negligibly small then Xo=l and

po ——0 and therefore vo=so. The h, vkv*k term gives
parallel pumping and the hTvo term gives perpendicular
pumping. The transformed cubic term is

H3 ———Y g ( Uk k vk vk v (k +k )+c.c.1/2

k1,k2

where the parameters f'kk and Skk may be obtained in

terms of the previous parameters by substituting Eq. (33)
into Eq. (29) and collecting all terms of the indicated
types.

While we have found terms in H4 which directly cou-
ple two spin-wave modes (of the same frequency) there
are no such terms in H3. H3 is still needed, however, be-
cause the H3 terms are much larger than the H4 terms
and there are second-order contributions from H3 which
do couple k and k'. These occur through the off-
resonance or virtual excitation of the modes k+k' and
k —k'. These modes will not normally have the same fre-
quency as k and k', however, they may nevertheless be
forced into a weak response at this frequency, which in
turn produces a weak coupling between k and k' which
may be of the same order as the terms in H4. There are
two essentially equivalent ways of dealing with problem.
One approach is to explicitly determine the response of
these off-resonance modes from the equations of motion.
Since these modes are strongly detuned they will not
behave as dynamical variables —their amplitudes may be
expressed directly as a function of vk and vk. The second
approach, which we follow here, is to introduce another
canonical transformation to new variables bk and bk
which eliminates all of the cubic terms in the Hamiltoni-
an. The appropriate transformation is

k', k —k' k' k —k'
vk=ok+ L +

k' ~k k' k —k'

(Xk, k' +Xk', k )b k'b k+ k +
~k+ k' k+ k'

(Uk k +U„„+U„(k+k )
)bkb' (k+k)

~k+ ~k'+ ~k'+ k
(44)

and

H3 ——0 (45)

Hamilton's equations in the bk variables are correct
through quadratic terms but deviate from the correct
equations of motion by cubic terms. These errors can be
canceled by adding the appropriate quartic terms to the
Hamiltonian. [Note: These correction terms could be
generated by adding the appropriate cubic terms to Eq.
(44).] The transformation itself also generates new quar-
tic terms and as a result 1kk and Skk. are "renormalized"
to new values Tkk and Skk. . Thus we now have

However, there are some very important consequences
for the perpendicular pumping term [see Eq. (39)]. In the
vk notation, the transverse field hT only couples to the
uniform mode vo which is off resonance. This in turn
couples to a spinwave pair, vk, v k, via terms in H3 like
Xk kvkv* kvo. In the bk notation, however, H3 has been
eliminated to this mechanism no longer exists. Instead,
we now have new terms appearing in H whereby the
external field couples directly to spin-wave pairs just as it
does for the parallel pumping term. The important part
of H may now be expressed,

H4 QTkk bkbkb„bk——+ 2Skk. bkb' kbk b-
k, k'

(46)
Bk Xk, —k

Hp = g ——,'Yh, —'Y(AohT PohT')—
COO

—2COk

The transformation leaves the quadratic part of the Harn-
iltonian in diagonal form,

Uo k+ Uk, o+ U„*—'Y(~ohT* Bohr ) — bkb —)
COO+ 2COk

H2 ——g ~kbkbk .
k

(47) +C.C. (48)
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where we have omitted the direct coupling terms

ATbp+c. c., since these are now unimportant for the sub-

sidiary absorption. If we restrict our attention to the case
where ND and N„areboth zero, as occurs, for exam-

ple, with a spherical sample with Ho parallel to [111]or
[100],then A.0= 1 and go=0 and Eq. (48) simplifies to

8'aveguide-resonator coupling. In the waveguide there
is an incoming wave h;„and an outgoing wave h,„,. For
simplicity we will assume a complex representation with
the amplitude of h;„equal to the square root of the input
power P;„

=P'
in in

Hp ——g ——,'yh,
COk

r

~~ p~ J—~~&~
COp+ 2Nk

bkb* k+c.c.

Jkkk —Jk k~k—yhT
coP —2Nk

(49)

Both h;„and h,„,are taken to be the effective amplitude
of the waves at the location of the sample. The outgoing
wave h,„,is made up of two components: h;„is refiected
at the end of the wave guide and becomes the first com-
ponent; the second component is the emission from the
resonator and is assumed to be directly proportional to
the resonator amplitude R,

The first term corresponds to parallel pumping by the z
component of the microwave field h, . The second term
corresponds to perpendicular pumping by the component
of the transverse field with counterclockwise circular po-
larization. The third term corresponds to perpendicular
pumping by the component with clockwise circular po-
larization. (This term is weak and may usually be ig-
nored. )

Resonator dynamics. In the experimental setup, the
microwave pumping field is generated by a resonator
which surrounds the sample. This device serves the same
purpose as a cavity, i.e., to intensify the field, and a simi-
lar analysis to that presented can be applied to that case.
The resonator amplitude will be represented by R, a com-
plex variable, chosen so that R and R ' behave as canoni-
cal variables and contribute a term HR to the Hamiltoni-
an

h,„,=h;„+iPR, (55)

where I „,is resistive damping, I „dis radiative damping
(I'„,and I „dare both assumed real), and a is a complex
coupling parameter. (Note that we have omitted the cou-
pling term to the uniform mode, of the form G*bp, since
it is of no importance if co &coo. Its only efFect is to
slightly shift the resonant frequency and damping. ) Con-
servation of energy determines the relationship between
a, P, and I «d,

where p is a complex constant. Ignoring the weak cou-
pling to the uniform mode, the resonator obeys the equa-
tion

R = —(I„,+ I'„d)R+i cote R +ah;„+g 0 &blab
k

(56)

HR ——ERR R, (50)

where coR is the resonant frequency. By equating the
maximum field energy with Htc we find that the field h„
is given by

I „d———,aa*aR,1

p=Q cog

For critical coupling h,„,=0 and this implies

(57}

(58)

h

' 1/2
27TNR (R+R'),

R
(51)

or

(59)

H = g CqRbqb' j,+c.c. ,
k

where for the simpler case [Eq. (49)]

(52}

1/2 ~k
cosOR

where VR is the effective volume of the resonator
(Va =2.06&&10 cm ). Since we wish to consider ob-
lique pumping we assume that hR is linearly polarized,
lies in the x-z plane, and makes an angle OR with the z
axis. Thus h, =hR cosOR and h T =hR sinOR. This may
now be inserted into the expression for H, obtaining

(60)

where Q is the quality factor of the resonator
(Q —= co+ /21 „,).

i
a

i
can be set to the critical value by

adjusting a single experimental parameter, e.g., the slid-
ing short at the end of the waveguide.

Elimination of resonator uariable. Under certain condi-
tions the resonator may be eliminated as a dynamical
variable. The main requirement is that the damping of
the resonator must be much greater than the effective
damping yk for the spin-wave modes being excited. We
will now change to slow variables ck defined by

2&coR
' 1/2

sinO„
Jk~k Jk ~1J k

cop —2' k

Jk Pk —Jk~&k+
COp+ 2COk

(53}

I co I /2

ldll

b) =eke, R =Re (61)

Assuming quasiequilibrium for the resonator (R =0}one
can solve for R in terms of the input field and spin-wave

amplitudes and substitute this into the equation for ck,
obtaining
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ck ——( —yk+i AQk)ck G—kP „c
+t g [2Tkk'

I
Ck'

I
Ck+(Skk. +Rkk )Ck C k C k],

k'

(62)

We will now consider nontrivial (or nonzero) fixed points.
Since we are still considering the behavior of a single
mode, the equation ck ——0 [from Eq. (65)] can be put in
the simple form

where

R kk.
——2iG k Gk/(I —i b, Q~ ) (63)

2
Ck

M+N
~
ck

~

=
2

——point on unit circle, (68)

and

2Cka
Gk ——

I —i AQ~
(64)

B. Fixed points and stability

with 1 = I„,+ I „d, 6 Qk ——cok —co&/2, and D Qz ——co+
iq&—co~. Assuming a standing wave so that t." k ——e "ck,

where qk is a real phase factor, we may transform to a
iq& /2

new variable ck=cke, and obtain our final form of
the equation,

ck ——( —yk+ i EQk)ck —GkP,'„ck
+& X»kk l

&k'
l

ck+(~kk+Rkk')ck'ck .
k'

This equation is the principle theoretical result and will
be numerically iterated in Sec. IV.

where N = —i(2Tkk+Skk+R kk )/GkP „and M is
defined previously [Eq. (67)]. This equation has a simple
geometrical interpretation, as shown in Fig. 7. We plot
the point M and the unit circle in the complex plane. If
we are below threshold then M lies outside the circle. We
draw a line from the point M making an angle arg(N)
with respect to the real axis. Typically this line will ei-
ther miss the circle as in (a), in which case there are no
nontrivial fixed points, or it will intersect the circle in two
points as in (c), in which case there are two pairs of non-
trivial fixed points +ck' and +ck . Nontrivial fixed
points always come in pairs because of the symmetry of
the equations mentioned previously. The transition be-
tween the two cases occurs when the line is just tangent
to the circle. This is a saddle-node bifurcation with the
saddle being the intersection point closest to M. Above
the Suhl threshold M is inside the circle and there is al-
ways one intersection point as in (b). There are two pos-
sibilities for what may occur when crossing the Suhl

As a first step to understanding the behavior of excited
spin-wave modes, we will consider the case where only
one spin wave is excited. Examining Eq. (65) we find that
ck ——0 is always a fixed point —this is true regardless of
how many spin-wave modes are excited to nonzero
values. However, this fixed point need not be stable, its
stability depends on the relative strength of the damping
term —ykck and forcing term —GkP „ck,An impor-
tant feature to note about Eq. (65) is that there is inver-
sion symmetry; if ck(t) is a solution then so is —ck(t).
This is also true for arbitrarily many modes: the sign of
each may be changed independently without effecting the
validity of the solution. To determine the stability of the
fixed point ck ——0, we need only consider the linear part of
the equation,

Cp C&

ck ——( yk+i b—Qk)ck GkP „ck— (66)

Solving for the eigenvalues we find the stability condition

~

M
~

& 1 for ck ——0 stability, (67)

where M =( yk i b—,Qk)/—GkP„.The condition

~

M
~

=1 corresponds to the "Suhl threshold" for the
mode k. Since

~

M
~

is inversely related to input power
P;„,

~

M
~

~ 1 is below threshold and
~

M
~

& 1 is above
threshold. Above threshold the origin is a saddle point,
as it always retains one stable eigenvalue. Immediately
below threshold the origin is a stable node with two nega-
tive real eigenvalues. However, the eigenvalues may split
into a conjugate pair below a lower threshold, which cor-
responds to a change from a stable node to a stable focus.
This occurs for

I

Fc
I

Fc

FIG. 7. Nontrivial fixed point analysis. (a) No intersections
with unit circle implies no nontrivial fixed points. (b) One inter-
section with unit circle implies one pair of nontrivial fixed
points. (c) Two intersections with unit circle implies two pairs
of nontrivial fixed points. (d) Supercritical symmetry-breaking
bifurcation. F is the level of forcing (pump power), F, is the bi-
furcation point or Suhl threshold. Solid lines, stable fixed
points; dashed lines, unstable fixed points. (e) Subcritical
symmetry-breaking bifurcation, preceded by saddle-node bifur-
cation of nonzero fixed points. Displays hysteresis as shown.
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threshold and these are illustrated in Figs. 7(d) and 7(e).
In the first case, which occurs for Re(M/N) & 0, we ob-
tain a supercritical symmetry-breaking bifurcation as a
complimentary pair of stable nontrivial fixed points
emerge from the origin as the origin is changing stability.
The second case, which occurs for Re(M/N) &0, in-
volves the existence of the saddle and node below thresh-
old. In this case we obtain a subcritical symmetry-
breaking bifurcation, where the unstable nontrivial fixed
points (the saddle points) converge on the origin as it
changes stability. There is a hysteresis loop as shown be-
cause the system must jurnp from the origin to one of the
stable nodes which are at finite amplitude.

In the event that R~ may be neglected [i.e., it is much
smaller than Sz& as may be the case if the resoantor
damping is sufftciently large, see Eq. (63)], the type of bi-
furcation can be changed by changing the sign of AQ&.
We find this experimentally in the region where the fine
structure is observed (as mentioned previously in Sec. II)
but here the hysteresis is also a very fine effect, occurring
over a very small range in parameter space. However,
there is a region indicated in Fig. 2 in which the hys-
teresis occurs over a substantial range in parameter—
much more than can be attributed to a single mode. This
is likely to be due to a related effect in which more than
one mode is simultaneously excited.

A +D
~
c,

~

' & I stable

~ +p~2 & 1 unstable, (69)

where A = —y2 —i 602, 8 = —62P„,D = —2iT& &,

and F = —i (Sz, +R&, ). The assumption that c2 is
below its Suhl threshold (for c, =0) implies that

~

A
~

&
~

B
~

. There are four general cases for the be-
havior of the stability of c2 as a function of c, . Case 1:

~

F
~

&
~

D
~

. In this case, as
~
c,

~

is increased for any
particular phase P =argc &, a point is reached beyond
which the denominator in Eq. (69) becomes larger in
magnitude than the numerator, and stability is lost. The
point of stability loss is a function of P and has inversion
symmetry as shown in Fig. 8(a). Case 2:

~

F
~

&
~

D
~

and K &
~

BF ~, where

K—= [(
/

A
/

—/B
/

)( [D
/

— F )]'~ ReAD' .

In this case the point c2 ——0 is a stable fixed point for all
values of c, as shown in Fig. 8(b). Case 3:

~

F
~

&
~

D
~

and — BF
~

&K & ~BF ~. In this case there are two
symmetrically located stability zones in the c, plane as
shown in Fig. 8(c). Case 4:

~

F
~

&
~

D
~

and
E & —

~

BF
~

. This case has a annulus of instability as
shown in Fig. 8(d). The general stability boundary for all
four cases can be expressed as a quadratic solution,

C. Relaxation and spiking-behavior analysis (70)

In the experiment it was observed that in certain re-
gions aperiodic-relaxation-type oscillations are observed
which are characterized by alternating fast and slow
phases, where in the fast phase the amplitude of the
reAected microwaves changes very rapidly and in the
slow phase it changes much more gradually, typically by
an order of magnitude or more [see Fig. 6(a)]. There has
also been observed a related behavior pattern in which
rapid spikes in the response are separated by long dor-
mant periods of irregular length. This latter case has
been the subject of much interest recently and there has
been the suggestion that there may be a route to chaos by
irregular periods. ' We will now present a mechanism
which can explain both types of behavior and discuss
some of its effects on the dynamics of the experimental
system.

The simplest system which can exhibit this type of be-
havior is a two-mode system, represented by the complex
variables c, and c2. The mode c, will be called the
"strong mode;" it is assumed that the pumping level is
above the Suhl threshold for this mode. The mode cz will
be called the "weak mode;" it is assumed that the pump-
ing level is below the Suhl threshold for this mode. In the
absence of coupling between c

&
and c2, we would expect

that the origin of c
&

would be a saddle point so that this
mode would be attracted to a nonzero fixed point, while
the origin would be stable for c2 so that this mode would
decay to zero. However, due to intermodal coupling, the
stability of the origin for c2 can be affected by the ampli-
tude of c&. When coupling is included the stability cri-
terion for c2 ——0 is

{a} O

U wE
(b)

S S

~ Rec,
U S S

S

S S

S
S

S

FIG. 8. Stability curve for cz ——0 (the weak mode) as a func-
tion of c l (the strong mode). S=stable, U= unstable. Four dis-
tinct cases occur as discussed in the text: (a) Case 1, (b) Case 2,
(c) Case 3, (d) Case 4.

where a =
~

D
~

—
~

F ~, b = AD'+DA' BF'e—
FB'e'~, and—c=

[
A

[
—(B [

. Since for cases 2,
3, and 4, a and c are both positive, a solution for

~
c&

~

exists only if b is more negative than —v'4ac (in which
case there are two solutions).

Now that we have analyzed the stability of the weak
mode, we can proceed to explain the nature of the oscilla-
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tions. We will suppose that c, and c2 both start at some
small but finite value. Then c& will increase, approaching
a nontrivial fixed point and cz will decrease towards zero.
Assuming that the nontrivial fixed point for c, lies in (or
possibly across) a zone of instability for cz, the phase
path of c, will eventually enter this zone. Beyond this
point c2 will begin to increase. Under certain conditions,
which we will not specify precisely but will demonstrate
in Sec. IV, this can lead to a relaxation oscillation, with
the fast phase occurring after c, reaches the instability
boundary and the slow phase occurring when c& and c2
both go back to values near 0. The reason that c, can re-
turn to a point near zero is that the origin for c, is a sad-
dle point and therefore an orbit near the stable manifold
may come quite close to the origin before escaping again.
Orbits of the type we are describing are nearly homoclin-
ic as they pass very close to a saddle point in the four-
dimensional c&,c2 space. In the event that the weak
mode has a focus at the origin, the orbit may be of the
Silinkov type (see Guckenheimer and Holmes for dis-
cussion), which is known to imply the existence of hor-
seshoes and other complicated behavior. The distinction
between relaxation oscillations and aperiodic spiking lies
in the length of the dominant phase for the weak mode
(examples of both are given in Sec. IV). During the dor-
mant phase, the amplitude of c2 decays exponentially.
Consequently, a moderately long dormant phase can easi-

ly result in the amplitude of c2 decaying to the thermal
magnon level. This introduces stochasticity into the
dynamics —something which might not ordinarily be ex-
pected for oscillators whose peak amplitude is many or-
ders of magnitude above the thermal level.

IV. NUMERICAL SOLUTION OF SPIN-WAVE
EQUATIONS

In order to fully explore the behavior of the spin-wave
equation [Eq. (65)], it is necessary to use numerical
methods, particularly when two more more interacting
modes are involved. In this section we will discuss the
procedures used to perform the numerical analysis and
then present the results, many of which can be compared
to the experimental results of Sec. II.

Each spin-wave mode is represented by a complex vari-
able ck which contains both amplitude and phase infor-
mation for that mode. From Eq. (65), we obtain one
equation for each mode, which is coupled to all other ex-
cited modes through the interaction parameters Rkk,
S&i, , and T~, and to the microwave pumping field

through the parameter Gz. Our analytic results provide
rough estimates for these parameters. They cannot be
specified exactly from the theory for two reasons: (1) we
do not know for certain which spin-wave modes in the
sample are being excited and involved in the dynamics,
and (2) the plane-wave approximation used in Sec. III A
can yield only approximate values for the interaction pa-
rameters of the spherical modes. We typically set the
spin-wave damping yi, to 1 & 10 sec ' and Gk to
1.414&10 W ' sec ', which results in a Suhl thresh-
old of about 5 mW as is observed experimentally in the

single-mode region. T~ and Skk are estimated to be on
the order of 10' or 10 G sec, but may vary consid-
erably depending on which modes are involved. In order
to simulate the effect of a sequence of modes as was ob-
served experimentally, we will not assume that the modes
all have zero detuning [i.e., b,0&&0 in Eq. (65)], but will

instead choose a sequence of equally spaced values for

hfdf

which will typically extend from some negative
value to some positive value, where hfz =b,Q&—I2vr. If
the excitation level is low, only those modes with detun-
ings closest to zero will be excited. The remaining modes
will be below threshold and will remain at zero ampli-
tude. From the observed field spacing of the modes (0.16
G) we can estimate the frequency spacing using
b,f,~, =y 6 H/2', obtaining approximately 500 kHz.

In the case of excitation of a single mode alone, the an-
alytic results of Sec. III B determine the location and sta-
bility of all fixed points. There is always at least one
stable fixed point and the numerical results indicate that
the system is always attracted to one of these; no periodic
or chaotic attractors are observed. For appropriate pa-
rameter values hysteresis may be observed as was indicat-
ed in the theoretical treatment.

When two modes are allowed to be excited we first find
periodic auto-oscillations. A particularly interesting
form is observed, as shown in Figs. 9(a) and 9(b). Here
mode 2 is exhibiting an asymmetric orbit while mode 1 is
exhibiting a symmetrical orbit of twice the period.
Symmetrical orbits are possible because of the inherent
inversion symmetry of the equations. When asymmetric
orbits occur they always come in complimentary pairs
[c'(t)= —c(t)]. The nature of coupling between modes
allows the type of behavior observed —since the square of
c, appears in the equation for c2, a change sign of c, (to
the opposite point on the symmetric orbit) has the identi-
cal influence on c2.

By changing the parameters we find that this orbit may
undergo a bifurcation. There are many parameters which
could be adjusted to accomplish this, such as power input
or pump frequency, however, in Figs. 9(c) and 9(d) we
have chosen to synchronously shift the detunings bfz of
the modes. This is equivalent to shifting the value of the
dc magnetic field in the experiment. (We are assuming
that all modes in the sequence have identical field depen-
dence of their frequencies. ) The result is interesting:
mode 1 exhibits a symmetry-breaking bifurcation while
mode 2 simultaneously exhibits period doubling. Further
shifting the frequencies produces a cascade of period-
doubling bifurcations for both modes, leading to a chaot-
ic orbit [Figs. 9(e) and 9(f)].

The numerical study for two modes also reveals behav-
ior similar to the relaxation oscillations and aperiodic
spiking found for the experimental system. An example
of this behavior is shown in Fig. 10. The mechanism for
this behavior was discussed previously in Sec. III C.
There is a "strong mode" which is above its threshold,
and a "weak mode" which is initially below threshold but
which can become excited for brief periods when
sufficient excitation is supplied via the nonlinear coupling
of the strong mode. Characteristically there is a slow or
dormant phase during which the weak mode is decaying
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closer and closer to zero and the strong mode is changing
at a relatively slow rate. At a certain critical point in the
orbit of the strong mode, which is marked with an arrow
in Fig. 10(a), a fast or active phase commences during
which both modes [Figs. 10(a) and 10(b)] change rapidly.
This is typically two or more orders of magnitude faster
and also shorter in duration than the slow phase. The de-
cay of the mode during the dormant phase may be
extreme —it has been observed in some cases in the nu-
merical study to decay by over 10 orders of magnitude.
This wi11 easily take any experimental system to the
thermal level, thus introducing a stochastic element into
the dynamics. Orbits with a short dormant phase tend to
have the "relaxation oscillation" appearance as in Fig.
10(d) [compare to experimental Fig. 6(a)], while orbits
with a long dormant phase may tend to have the "spik-

(b)

ing" appearance, Fig. 10(c). This dormant period may
become arbitrarily long for certain parameter values.
This is because the orbit is approaching a saddle loop or
homoclinic bifurcation which occurs when the orbit con-
tacts the saddle point at the origin. Beyond this point a
transition must occur to another attractor —typically, a
nonzero fixed point for the strong mode and zero for the
weak mode. It should also be noted that the relaxation
and spiking behaviors do not have to be irregular —they
may, for appropriate parameter values, be perfectly
periodic. In some cases a cascade of period-doubling bi-
furcations to chaos has been observed to occur over ex-
tremely small changes in parameters (&0.1% change).
This has the appearance, on first examination, as an
emergence of irregularity of the orbit starting at a critical
parameter value.

With three modes some new phenomena emerge. One
of these is the occurrence of quasiperiodic behavior with
two incommensurate frequencies. An example of this is

E
Strong mode (a) Weak mode

(b)

Re Cz Re Ct

E
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point
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(0, 0)
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FIG. 9. Computed behavior for two modes. (a) Phase por-
trait for periodic oscillations, symmetric mode; hf, = —300
kHz, b,f, =200 kHz. (b) Symmetric mode. (c) Period doubling
of asymmetric mode; hf, = —385 kHz, hfdf ——115 kHz. (d)

Symmetry breaking of symmetric mode. (e) Chaotic orbit fol-
lowing period-doubling cascade; Af ~

———410 kHz, Af2 ——90
kHz. (f) Power spectrum of chaotic orbit, f,„=2.5 MHz. For
all figures, P,„=0.027 W, y&

——1X10 sec ', Gz ——1.4l4X1o
sec ', Ski, ——4.078X10' G sec for all k and

Tzz ———1.896 X 10' G ' sec ' for k =k' and =0 for k&k', and
R j,z

——0 (assumed negligible) for all k and k'.

f (MHz)

FIG. 10. (a) Aperiodic spiking; strong mode (mode 1). Ar-
row marks point of stability loss for weak mode (mode 2). Ori-
gin is at center of figure as indicated. bf, = —200 kHz,
hfdf ——300 kHz. (b) Weak mode. (c) Time series for aperiodic
spiking behavior. (d) Time series for relaxation oscillations.
Af, = —175 kHz, hfdf

—325 kHz. (e) Fast Fourier transform
for time series in (d). All figures have P,„=0.0135 W and the
other parameters are the same as in Fig. 9.
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{a) {b)

shown in Fig. 11. The three modes do not have exactly
the same frequency, but rather are spaced equally in fre-
quency by a small amount to simulate the effect of a
series of modes as was observed in the experiment. Natu-
rally, all must be very near to half of the pumping fre-
quency, and it is the detuning which plays an important
role in the dynamics. The quasiperiodic orbit lies on a
two-torus in the phase space. By strobing every cycle we
can make a Poincare section of the orbit. For a quasi-
periodic orbit below the transition to chaos these points
all lie on a closed curve —the intersection of the two-
torus with the surface of section. The section may be
defined in various ways; in Fig. 11(a) the section points
are the maximum value of Imc& for each cycle. The orbit
shown can be found to emerge from a simple periodic or-
bit in a Hopf bifurcation (see discussion in Guckenheimer
and Holmes ). In the Poincare section, the periodic or-
bit appears as a single point. This point spawns a circle
at the bifurcation point which initially grows in size in
proportion to the square root of the change in the param-
eter from its value at the bifurcation. While mode 1 and
mode 2 (not shown) are exhibiting asymmetric orbits,
mode 3 has a symmetric quasiperiodic orbit as shown in

Fig. 11(b). Section points on this orbit are made simul-
taneously with those of mode 1. They occur twice each
cycle because the basic period here is twice that of mode
1. The symmetry causes a restriction on the frequencies
that appear in the spectrum. The spectrum for mode 1 is
shown in Fig. 11(c). Here the allowed frequencies are all
two-component harmonics of the form f „=mf,+nf2
The choice of f, and f2 is not unique, but it is generally
preferable to choose the two highest peaks. Figure 11(d)
shows the spectrum for mode 3. Here the allowed peaks
are those for which m +n is odd. This can be shown to
result from the symmetry of the orbit.

By changing the parameter values away from the Hopf
bifurcation point, the two-torus on which the orbit lies
grows larger and becomes less smooth. At a certain criti-
cal point the orbit may become chaotic and the torus be-
comes fractal. This is the quasiperiodic route to
chaos. ' In Figs. 12(a) and 12(b) is shown a Poincare
section of such a chaotic orbit and its power spectrum.
This was reached by shifting the frequencies of the three
modes synchronously, to simulate the effect of shifting
the dc magnetic field in the experiment. The orbit is near
to a period-5 phase locking, as can be seen in the five-

pointed character of the section and in the spectrum.
There remain some surprisingly sharp peaks in the spec-
trum considering the complexity shown in the Poincare
section.

More complicated versions of the relaxation oscilla-
tions are sometimes seen for three modes (as well as the

(a)
j
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FIG. 11. Computed quasiperiodic behavior for 3 modes. (a)
Mode 1 for quasiperiodic orbit, circles mark Poincare section.
(b) Mode 3: this mode exhibits a symmetrical orbit while mode
1 is asymmetrical. Mode 2 is similar to mode 1. (c) Fast
Fourier transform for mode 1, vertical range 150 dB. Contains
two component harmonics f „=mf,+nf, , where f, and f,
may be chosen to be the largest peaks in the spectrum. (d) Fast
Fourier transform for mode 3. Symmetry restricts peaks to
those for which m +n is odd. All figures have P;„=0.027 W,
hf, = —336 kHz, hf z

—164 kHz, hf, =664 kHz,
S« ——3.971X10" G 'sec ' for k=k' and =4.265X10"
G sec ' for k&k', and other parameters are the same as in
Fig. 9.

FIG. 12. (a) Poincare section of chaotic orbit, following
quasiperiodic transition to chaos. Proximity to period-5 locking
produces five points on the figure, hf, = —334.5 kHz,
hf, =165.5 kHz, b f, =665.5 kHz, other parameters are the
same as in Fig. 11. (b) Fast Fourier transform for orbit in (a).
(c) Computed Silnikov-type orbit for 3 modes. Only mode 3, the
"weak mode, " is shown. P;„=0.24029 W, hf, = —300 kHz,
Af2 —200 kHz, hf, =700 kHz, other parameters are the same
as Fig. 9. (d) Time series for this orbit.
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variety previously described). Figures 12(c) and 12(d)
show a case in which only the third mode is of the
"weak" variety, while the other two modes are normally
oscillating at a high level. The excitation which the weak
mode receives from the pump and from the "strong"
modes is just sufficient to allow it to grow at a slow rate
from an initially very small amplitude. This growth may
extend over several orders of magnitude in amplitude,
lasting for a hundred cycles ore more of the strong mode

25—

20—

lo-

oscillation. Finally, when the size of the orbit becomes
comparable to the size of the strong mode orbits, a rapid
interaction phase occurs involving all three modes and
leads to the return of the weak mode to a very low ampli-
tude and then the process repeats (approxiinately). This
appears to be an orbit of the "Silnikov" or spiral saddle
type (see Guckenheimer and Holmes ), for which the ex-
istence of "horseshoes" and other complex behavior have
been explicitly shown.

This representation of the system as a series of equally
spaced modes may be taken to the limit of an infinite
series. The reason that this procedure is valid is that only
those modes with relatively small detuning can become
excited and interact with the other excited modes.
Modes which decay to zero have no effect on the excited
modes. Thus we need to include in the computer simula-
tion only those modes in the series with sufficiently small
detuning (positive or negative) to become excited. The
necessary number may be found by extending the series
one mode at a time until the new modes added are ob-
serve to be inactive. Since the series is infinite, its behav-
ior in parameter space is periodic with respect to syn-
chronously shifting the frequencies by the mode spacing.
In Fig. 13 one period of the computed parameter space
diagram is shown. In this region, all of the types of be-
havior discussed previously may be found: stable fixed
points (zero and nonzero), hystersis, auto-oscillations,
period doubling, quasiperiodicity, chaos, and relaxation
oscillations. Indeed, this figure and detailed caption aptly
summarize the behavior of our model.

a s I s I I I a a I I I s s I 1 I I i I I I I I

l00 200 300 400 500
(kHz)

FIG. 13. Computed parameter-space diagram for mode
series. Mode frequency shift f, vs applied power P,„(sifht cor-
responds to change of dc field in experiment). The dynamics in-
volve the active participation of zero, one, two, or three modes.
At higher powers than shown in the figure additional modes
may become involved. We label the modes as follows: mode 1

has bf, =f, —500 kHz, mode 2 has hf2 f„mode 3 ha——s
bf, =f, +500 kHz. ST1 and ST2 are the Suhl thresholds for
excitation of modes 1 and 2, respectively, when all other modes
are set to zero (this is actually a symmetry breaking bifurcation
for the stable fixed point at zero). SN1 is a saddle-node bifurca-
tion of nonzero fixed points below Suhl threshold [see Fig. 7(e)].
Hysteresis is observed when traversing the region between SN1
and ST1. Crossing 0, in the direction of the arrow a Hopf bi-
furcation occurs in which a limit cycle involving modes 1 and 2
emerges from a fixed point. This is of the type shown in Figs.
9(a) and 9(b). This oscillation undergoes a period-doubling bi-
furcation upon crossing the line labeled )&2. Beyond this a cas-
cade of period doublings occurs on route to chaos. On ap-
proach to the line H2, mode 3 becomes active and the two-mode
solution we have been following is abruptly lost. H2 actually
corresponds to a secondary Hopf bifurcation from a three-mode
periodic orbit (on the left side) to a three-mode quasiperiodic or-
bit (on the right side), of the type shown in Fig. 11. Hb corre-
sponds to another primary Hopf bifurcation, this time involving
modes 2 and 3. Relaxation oscillations occur above the line ST1
in the section below its intersection with ST2. Onset appears to
occur at the Suhl threshold ST1.

V. SUMMARY AND CONCLUSION

Excited spin waves in YIG form a weakly damped—
nearly Hamiltonian —system, which displays a great
variety of interesting nonlinear phenomena. This study
focused on the behavior of spin waves excited parametri-
cally at 9.2 GHz in a spherical sample via the first-order
Suhl instability. The data are primarily for perpendicular
pumping, and with the dc field parallel to the [111}or
easy axis of the crystal, but with some data for other
orientations of pumping and crystalline axes. The ob-
served phenomena include (1) fine structure, the excita-
tion of single spinwave modes; (2) dynamics in the fine-
structure regime, involving the interaction of a small
number (1,2,3, . . . ) of spin-wave modes, these typically
exhibit such phenomena as periodic auto-oscillations
(typically 100 kHz), cascades of period doublings to
chaos, and quasiperiodicity; (3) low-frequency relaxation
oscillations (typically 1 kHz) and aperiodic spiking (typi-
cally at somewhat higher frequencies); (4) high-amplitude
collective oscillations, presumably involving the coopera-
tion of many modes, these exhibit period doubling, quasi-
periodicity, phase locking of multiple frequencies, and
various types of chaotic orbits; (5) abrupt emergence of
high-frequency noise; (6) hysteresis at the Suhl threshold
in which the system jumps from a quiescent to a tur-
bulent state; and (7) in some cases, a systematic increase
in auto-oscillation frequency with pumping power.

A first-principles theoretical analysis has been present-
ed, based on the many earlier works on parametric exci-
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tation of spin waves, but developed here explicitly for the
study of the nonlinear dynamics of excited spin-wave
modes. The theory explicitly includes the effects of crys-,
talline and shape anisotropy. Also included are the in-
teractions with the resonator (used to intensify the mi-
crowave field) and coupling to the waveguide. The
overall result is a set of nonlinear equations [Eq. (65)]
coupling the spin-wave modes with each other and with
the pumping field, each mode being represented by a
complex amplitude. A stability analysis has been made of
the trivial and nontrivial fixed points of the equations of
motion, and it has been shown how this can lead to hys-
teresis at the Suhl threshold, an effect which was ob-
served in the experiment.

Some theory is presented regarding relaxation oscilla-
tions and aperiodic spiking behavior, based on the idea
that there are weak modes which are only active during
short burst phases, which may be instigated when the
amplitude of a strong mode reaches a critical threshold.
This type of oscillation provides a natural way for sto-
chasticity to enter into the experimental dynamics be-
cause during the dormant phase of the weak mode it can
easily decay to the thermal magnon level. After this the
squbseuent dynamics become unpredictable. This
analysis may be related to the work on irregular periods
by Waldner et al.

A detailed study is made of the behavior of the spin-
wave equations of motion using numerical iteration.
Many detailed similarities are found between these model
calculations and the experimental data. A series of equal-
ly spaced (in frequency) modes is studied, similar to that
which was observed experimentally. For two modes, au-
tooscillations are observed which exhibit novel symmetry

characteristics. Relaxation and spiking behaviors are
also observed experimentally, exhibiting the behavior of
interacting weak and strong modes discussed in the
theory. Cascades of period-doubling bifurcations are ob-
served, leading to chaos, in the experiment and in the
model. For three modes quasiperiodicity is first ob-
served, along with the phase-locking phenomena, Hopf
bifurcations, and the quasiperiodic route to chaos, both
in the experiment and in the model. Orbits nearly homo-
clinic to a spiral saddle point of the Silinkov type are also
observed. The case of an infinite series of modes is also
considered. It is possible to study this due to the fact
that only a few modes in the series have sufficiently small
detuning to be excited. The type of behavior is periodic
under a synchronous shifting of all of the frequencies of
the modes by the frequency spacing of the modes; this
shifting corresponds to the effect of changing the dc field
in the experiment. The model behavior is summarized by
a parameter-space plot (putnp power versus frequency
shift) showing the locations of various bifurcations and
behavior patterns. On the whole, the experimental be-
havior, believed to be generic, can be understood from
the model. Both experiment and model have shown a
great wealth of interesting dynamical phenomena.
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