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Interactions are included in the standard model of site percolation by specifying two numbers, po
and p„which are the probabilities of occupying a site on a lattice if none or at least one of the
neighboring sites are occupied, respectively. This is expected to be a better description of systems
where interactions betWeen neighbors can either enhance or deter site occupation. Monte Carlo
methods are used to simulate the irreversible growth of clusters starting from an empty two-

dimensional square lattice, and continuing through the percolation threshold. The value of the per-
colation threshold p, and other properties of the system depend on the parameter r =p& /po. For
r =1, the system corresponds to random percolation. As r~ 00, compact Eden clusters are pro-
duced, which link together to form larger, fractal clusters. As r ~0, neighboring sites become less

easily occupied, resulting in checked "domains" separated by antiphase boundaries. Several quanti-
ties are analyzed to determine the critical exponents v, y, and P, including the threshold distribu-

tion width, the mean cluster size, and the infinite cluster size. For all finite values of r, the data are
found to be consistent with the exponents of random percolation.

I. INTRODUCTION

The formation of many disordered systems can be de-
scribed by a growth process in which individual elements
randomly join together to form an interconnected, per-
colating network. Important examples include the gela-
tion of polymeric materials' and the growth of islands
on surfaces via atomic chemisorption. The most widely
used model for such systems is the percolation model, in
which sites (or bonds) on a lattice are occupied with a
probability p, independent of the occupation of the neigh-
boring sites. Nearest-neighbor sites are then considered
to be connected, resulting in clusters of varying sizes and
geometries. If the probability p is large enough, p )p„
one cluster will percolate through the entire lattice. This
"infinite" cluster corresponds to a gel in gelation, or to a
conduction path through metallic atoms across a surface.
Its formation signals a geometric phase transition, and
the region around p, can be analyzed for scaling behavior
and critical exponents.

In general, however, a physical system will have some
type of interaction between its individual elements. In
surface deposition, for example, the presence of neighbors
can either enhance or deter absorption at a site. Such in-
teractions will give rise to correlations which can affect
the properties of the system in important ways. Several
methods have therefore been proposed to introduce in-
teractions into the percolation model, ' the most studied
of which utilizes Ising correlation.

In this paper, a different type of interactive percolation
is considered. The basic model, along with several vari-
ations, was previously discussed by Evans, Bartz, and
Sanders in the context of cluster growth and statistics
before coalescence. It differs from Ising-correlated per-
colation in that the interactions are introduced in a way
that is a simple generalization of random site percolation.
Instead of using a single probability p to decide if a site

should be occupied, two probabilities are used, po and p &,

according to whether the site has no neighbors or at least
one neighbor, respectively. The concentration p is then a
function of po and p &, and random percolation is
recovered when po ——p &. Because the occupation of a site
now depends on the state of its neighbors, the site must
be chosen randomly. If the lattice is initially empty, clus-
ters will then be nucleating with a probability po, and
growing site-by-site at their perimeters with a probability

p, . This picture invites direct comparison with atomic
chemisorption on surfaces, where the deposited particles
randomly form islands which then grow and coalesce.
The analogy can be extended by requiring irreversible
growth, and by allowing sites to be visited more than
once. The concentration p will then monotonically in-
crease from zero, pass through a percolation threshold
p„and eventually saturate. The threshold p„the mean
cluster size S, and other properties of the system will de-
pend on po and p&, and will in general differ from their
random percolation values.

Of particular interest is the effect of the interactions on
the critical phenomena at p„i.e., whether or not they
will change the universality class. As is well known, the
behavior of a system at a critical point is due to the pres-
ence of a diverging length scale, before which all other
lengths become unimportant. For percolation. this
length scale is the connectivity length g, i.e., the range
over which two sites are likely to be part of the same
cluster. Modification of the critical exponents would
then be expected to occur only if the correlation length of
the interactions g is also divergent, so that a competition
can occur between g and g. In Ising-correlated percola-
tion, for example, it has been found that in two dimen-
sions, where the thermal critical point T =T„p=0.5
coincides with the percolation threshold p, ( T, ), the ex-

ponents do, indeed, differ from those of random percola-
tion. It is quite possible, then, that a similar situation
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might exist in the correlated cluster-growth model
presented here, although it may again be limited to a sin-
gle point in the phase diagram.

In the next section, the general characteristics of the
cluster-growth model of interactive percolation are de-
scribed, and its universality class is discussed. Argu-
ments are presented which limit any differences from ran-
dom percolation to the single point r = ~. In Sec. III,
numerical calculations of many of the properties of the
model at the percolation threshold are presented, and the
critical exponents are estimated for a range of finite r. As
argued, the exponents are found to be consistent with
those of random percolation. The conclusions are set
forth in Sec. IV.
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In general, the properties of the model, such as the
concentration p, will depend on the parameters p0 and

P&, and on the time t. Because p is a monotonic function
of time, however, it may be used in place of t. To charac-
terize the state of the system, it is then only necessary to
specify, in addition, the ratio r =p, iro since a uniform
scaling of p0 and p &

will affect only the time it takes to ar-
rive at the concentration p. The phase diagram then ap-
pears as in Fig. 1, which shows the dependence of the
percolation threshold p, on r.

When r & 1, the site occupation will be "ferromagnet-
ic" in nature, since sites that have occupied neighbors
will be preferred over those that do not. Cluster nu-
cleation will therefore be small, resulting in widely
separated clusters which can then grow radially in an
Eden-like manner. Eventually, these compact Eden
clusters, or "blobs, " will link together and form large,
fractal clusters, one of which will percolate through the
system. This can be observed in Fig. 2, which shows the
distribution of clusters at the percolation threshold for
several values of r. In each case, the infinite cluster is
shown in black, with all other clusters in gray; the blobs
are easily distinguishable for r ~ 100. The average blob
size is seen to be an increasing function of r, while the
density of blobs is a decreasing function. The overall
concentration of occupied sites also appears to be small-
er, in accordance with the decrease in p, observed in Fig.
1. A similar decrease in p, as the interaction strength in-
creases is observed in ferromagnetic Ising-correlated sys-
tems. '

When r ~ 1, on the other hand, the site occupation will
be "antiferromagnetic" in nature, since the presence of
occupied neighbors will be inhibitory. Initially, there-
fore, there will be many single-particle blobs, which will
only link together with difficulty. They will tend to lie on
one of two sublattices, forming next-nearest-neighbor-
connected domains separated by antiphase boundaries.
This is more easily seen when comparing with random
percolation in Fig. 2. The concentration is also notice-
ably greater as is reflected in Fig. 1. Again, this is similar
to the increase in p, observed in antiferromagnetic Ising-
correlated systems as the interaction strength increases. "

FIG. 1. The phase diagram of the cluster-growth model of
interactive percolation, showing the percolation threshold con-
centration as a function of r =p~ /po ~ Below r =1, the random
percolation value, the system behaves antiferromagnetically;
above, it is ferromagnetic.

At first glance, the percolative structures shown in Fig.
2 appear to be very different from each other. Consider,
however, when the value of r is large, and, instead of the
original particles, the blobs are taken to be the basic ele-
ments which join together to form percolating clusters.
Then, these pictures are very similar to random percola-
tion (on a smaller lattice). This suggests that as long as
all quantities are scaled by the linear blob size R0, the
properties of the system will not change. Then the criti-
cal behavior will be independent of r, and the universality
class will remain that of random percolation. Nonuniver-
sal quantities may differ, however, such as the percolation
threshold p, in Fig. l (the decrease of p, as r increases is,
in fact, expected, because the blobs have an increasing
coordination number ' z -R 0'

"). This renormaliza-
tion argument should also hold for smaller r, even though
the blobs are not so easily distinguishable. The only
place where it might break down is for r = ~, since there
R0= ~ also.

What, then, is the effect of the interactions? As dis-
cussed previously, they control the growth of the blobs,
once they have nucleated. However, they are not really
involved in linking the blobs together; this is strictly a
connectivity property resulting from the random place-
ment of the nucleating sites, which are ultimately of a
certain size. The correlation length, therefore, should be
comparable to the blob size f-RO, and will only diverge
when r= ~. The universality class will not then be
changed for all r ~ ~, in agreement with the preceding
discussion. This picture of the blobs as noninteracting
percolating elements makes the model here, for very large
r, similar to the continuum percolation problem with a
distribution of disk sizes. ' In that problem, the critical
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(a) r = 0.001

(c) r =10 (d) r = 100

(e) r = 1000 (f) r =10000
FIG. 2. Sample cluster distributions at the percolation threshold. The infinite cluster is black; all others are gray. (a) r =0.001; (b)

r = 1' (c) r = 10; (d) r = 100; (e) r = 1000; (f) r = 10000.
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FIG. 3. The cluster-size distribution n„for several values of
r. The data are for a lattice of size L =512. The arrows show
the associated blob size so for each r. 1/d

RQ =$0 (3.1)

ber of runs (i.e., configurations) that were averaged over
varied from 32000 for L =16 to 2000 for L =512. The
percolation threshold was determined using two spanning
rules, the first using either bottom-to-top or left-to-right
spanning of the lattice by a cluster to define p„,and the
second requiring spanning to occur in both directions,
defining p, 2.

' The quantities discussed below which are
functions of p (t) were all calculated at a particular time
and then averaged. The various critical quantities, how-
ever, were calculated at criticality and averaged (the time
of criticality varies from run to run).

The major focus of this section is the calculation of the
critical exponents of the model. For this purpose, the
same scaling relations are used as are usually defined for
random percolation. " However, the discussion of renor-
malization in Sec. II indicates that instead of the single
particles used in random percolation, the percolation
here is based on the compact blobs which are qualitative-
ly visible in Fig. 2 for large r. These blobs have some
bulk size sQ, and a linear size RQ defined by

exponents were also found to be unchanged from those of
ordinary random percolation.

These considerations can be illustrated more quantita-
tively by examining the cluster size distribution n, which
is shown at the percolation threshold in Fig. 3. For each
curve r & 1, the arrows point to the appropriate blob size
so (as calculated in Sec. III). Two effects are apparent
from this figure. The first is that, as s/so~~, n, be-
comes independent of so. In other words, the number of
very large clusters s &&sQ does not depend on the size of
the blobs which make them up. This shows the relative
unimportance of the blob size at larger length scales, and
in particular at the critical point where the connectivity
length g is diverging. The other effect is the variation in
the curves when s &$Q. For r & 1, the only difference
from random percolation is a slight increase in the num-
ber of clusters present at small s. This is related to the
larger concentration at p, in the antiferromagnetic re-
gime (see Fig. 1), since p = g, sn, for p &p, . For r ~ 1,
the number of clusters present for small s is greatly re-
duced, which is to be expected since most of the clusters
are either the blob size so or larger (composite). This is
responsible for the reduction in critical concentration
when r is large.

The above argument are intended to establish the plau-
sibility of the random percolation universality class for
this model. In Sec. III, Monte Carlo simulations and a
finite-size scaling analysis are used to support this con-
clusion.

P =sQnQ, (3.2)

where n, Q is the number of blobs per unit volume, i.e., the
concentration of nucleating sites. Figure 4 shows RQ as a
function of r at p, (extrapolated to L = ao ). When r =1,
it is seen that the blob size is not one, as might first be ex-
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since the blobs are compact Eden clusters. Therefore,
whenever a bulk size s or a linear size R appears in the
random percolation scaling relations, it is expected that
the same relations should apply to the present model with
s replaced by s/so and R replaced by R /Ro. The numer-

ical results will then provide an important test of this re-
normalization assumption.

The average blob size sQ can be quantitatively defined
through the relation

III. NUMERICAL RESULTS

The simulations of this cluster-growth model were car-
ried out using standard Monte Carlo techniques' on a
square lattice with periodic boundary conditions, using
sizes L = 16—512 and values of r =0.01—1000. The num-
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FIG. 4. The linear blob size Ro as a function of r.
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linear fit to Ro (shown in Fig. 4) yields an exponent
co=0.40+0.04, which is close to this value; better data at
larger r may improve the agreement. It should be noted
that the blob size for r =1000, Ro =11,is large enough to
unduly affect the data collected for lattice sizes up to
L =128 [see Fig. 2(e)]. The remaining two sizes exam-
ined, L =256 and 512, will not, therefore, provide results
of much precision.

Because of the finite size of the lattices used, the per-
colation threshold has a distribution of values about its
average value, given by a width W(L) =[(p,(L) )
—(p, (L) ) ]' . Finite-size scaling arguments ' equate
the connectivity length g-(p, —p) with the lattice size

L, resulting in the relations

(3.3)

1/1n L

FIG. 5. Finite-size-scaling analysis for the connectivity ex-

ponent 1/V. Solid circles are the values at p, &,
' open circles are

measured at p, &. The horizontal line indicates the accepted
value, 1/v= 3.

Vt
=—+ [const+0(L ")] .

—ln8 1 1

lnL v lnL
(3.4)

The data for the distribution width 8'therefore provide a
direct determination of the critical exponent v. The stan-
dard analysis' ' defines an L-dependent exponent vL,
which approaches the correct value v as L ~~

pected; this is because a blob can form through random
occupation of neighboring sites as well as through
enhanced occupation. RO=1 is therefore only expected
for r—:0 (p, =0). For r ~~1, it appears that Ro increases
algebraically with r, Ro-r . Such a result, with co= —,',
was predicted by Evans, Bartz, and Sanders in their
analysis of the cluster statistics of this model. A non-

When 1/vL is plotted versus 1/lnL, the data should then
lie asymptotically close to a straight line, with a small
amount of curvature due to the correction-to-scaling
term O(L "). The results of this analysis are shown in

Fig. 5, for both definitions of the percolation threshold

p, . Although there is some amount of scatter, the data
are all consistent with the random percolation value
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FIG. 6. Finite-size-scaling analysis for the percolation threshold p, . Solid circles are the values at p, &, open circles are measured at
Pc2 ~
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1/v= —,', which is indicated by the horizontal line. It is

interesting to note that the result for r = 100,
1/v=0. 78+0.03, is very close to —,

' despite the significant
curvature present. The latter is presumably due to the
finite-size effects that become more important as the blob
size increases.

For simplicity, it will now be assumed that the value
v

3
is appropriate for a11 val ues of r. It can then be put

back into (3.3}to determine p, ( ~ }. The extrapolations to
L = 00 are shown in Fig. 6 for each value of r [the result-
ing values p, ( ~, r) were shown in Fig. I]. It is clear from
these figures that the percolation threshold has a strong
dependence on r; small variations in the value v used,
such as those seen in Fig. 5, do not change this con-
clusion.

The next quantity to be examined is the average cluster
size S, defined by

s n,
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Near p„Sis expected to diverge as

S-s ip, —p i

(3.5)
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FIG. 8. Finite-size scaling analysis for the cluster-size ex-

ponent y/v. Filled circles are the values at p, &', open circles are
measured at p, &. The horizontal line indicates the accepted
value, y/v= z4.

' ri~
S(p ) sc 0 g (3.7)

so that that the critical exponent ratio y/v can be deter-
mined from the L dependence in the same way as v. For

The dependence on so is clearly seen in Fig. 7, which
shows S as a function ofp for several different values of r.
In addition to the increase in peak height as r, and hence
so, increases, it can also be seen that the peak position de-
creases with r, which is further verification of the results
of Figs. 1 and 6. In a finite system,

the entire range 0. 1 ( r g 100, it has the value 1.69+0.02,
which, while somewhat less than the expected value
y/v= 4~ =1.79, is very consistent. Equation (3.7) has an

explicit dependence on Rc, which follows from the renor-
malization assumption of Sec. II. It can therefore be used
to provide another determination of y/v. Figure 8 shows
the extrapolation plot for lnS/lnRD as a function of
1/lnRO, for the four largest lattice sizes. The values ob-
tained, y/v=1. 78+0.08, are in better agreement with
the expected value (shown in Fig. 8 by the horizontal
line) than the previous data, but are somewhat wider
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FIG. 7. The average cluster size S as a function of p, for
several values of r. The results shown are for a lattice of size
L =512.

FIG. 9. The infinite cluster density P„asa function of p, for
several values of r. The results shown are for a lattice of size
L =512.
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spread. In any case, the near-convergence to a single
value and the linear extrapolations visible in Fig. 8 are
due to close agreement with the Ro dependence of (3.7),
which implies that the renormalization assumption is,
indeed, valid.

The infinite cluster has a density P which, near p„is
expected to scale like

P. —Ip, —p I' (3.8)

%hen p „

is plotted for the different values of r, as in Fig.
9, the variation of p, with r is agai. n apparent. In a finite
system, (3.8) becomes

(3.9)

and then the critical exponent ratio P/v can be deter-
mined as before. From the L dependence, it is found that
P/v=0. 103+0.005, again independent of r. This is very
close to the expected value 4', =0.1042. From the Rp
dependence, P/v=0. 104+0.016; the value is again close
to the expected result, but the estimated error is much
larger. Note that, since P„is the mass of the infinite
cluster s„perunit volume L", and s„-L defines the
fractal dimension D, these results also give an estimate
D =d —P/v= l.897+0.005.

IV. CONCLUSIONS

In the preceding sections, an extensive analysis of the
cluster-growth model of interactive percolation has been
presented. By simple rescaling of the sizes and lengths
that exist in the model by the average blob size so and the
linear blob size Ro, respectively, the observed critical be-
havior in the ferromagnetic and antiferromagnetic re-
gimes can be explained. In every case, the measured ex-
ponents are the same as those of random percolation,
within the errors. This is strong evidence, therefore, that,
despite the presence of interactions in the model, the
universality class is unaffected, and at large enough
length scales, random percolation is recovered.

The only case where this may not be true is at the point
r = 00, p =p, ( ~ ), which is similar to the thermal critical
point in Ising-correlated percolation in that the correla-
tion length g is divergent in both cases. Unlike the Ising
model, however, this point of the phase diagram is unob-
tainable, since the initial state is p =0, and the cluster nu-
cleation probability po is zero.
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