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Noise-reduced and anlsotropy-enhanced Eden and screened-growth models
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The effects of noise reduction and anisotropy enhancement on the Eden and screened-growth
models have been explored using computer simulations. In the case of the Eden model a transition
from an almost circular asymptotic shape to a diamondlike shape is observed with increasing noise
reduction or anisotropy enhancement. This shape transition is continuous and the asymptotic clus-
ter shape seems to be reached at quite small cluster sizes. For the screened-growth model a similar
transition from a more or less circular shape to a crosslike shape in the cluster envelope is observed.
The simulations are consistent with but do not provide strong support for the idea that noise reduc-
tion accelerates the approach to asymptotic behavior without compromising the asymptotic
geometric scaling properties of the clusters. As was found earlier for the diffusion-limited aggrega-
tion model, noise reduction causes the effective exponents describing the cluster geometry to oscil-
late with increasing cluster mass and this makes an unambiguous interpretation of the results im-

possible without a great deal of additional work. This oscillatory behavior is a consequence of the
formation of an almost discrete hierarchy of sidebranches with large amounts of noise reduction.

INTRODUCTION

Simple computer models for nonequilibrium growth
and aggregation processes have been of inteest for many
years. Recently, this interest has been heightened by the
realization that some of these models lead to the forma-
tion of fractal' structures and by the introduction of the
Kitten-Sander model for diffusion-limited aggregation
(DLA) which provides a basic description for a variety of
physical phenomena.

One of the main objectives of this work on growth
models has been to determine the geometric scaling rela-
tionships (fractal dimensionalities) which characterize
these structures in the asymptotic (large-size) limit.
Another quantity which has been of considerable interest
is the overall shape of the clusters, or aggregates generat-
ed by these models.

Initial prejudices based on the concept of universality
(and supported to some extent by computer-simulation
results) led to the idea that the geometric scaling relation-
ships and the overall culster shapes should be insensitive
to lattice details and other model details in lattice-based
models. However, as early as 1973, Richardson had
found a transition from a more or less circular shape to a
diamond shape in the square-lattice Eden model as the
probability p that each of the unoccupied surface sites
will be filled at each step in the growth process is in-
creased. More recent, much larger scale, simulations us-
ing Eden models with p~0 (i.e., only one site is filled at
each step in the growth process) have shown that the
overall shape of square-lattice Eden clusters deviates
slightly from that of a circle in the asymptotic (M~ ~,
where M is the cluster mass) limit. ' ' The formation of
diamondlike shapes has also been found in other models
that are more or less closely related to the Eden mod-
el. ' ' Recently, Savit and ZifF' have shown that the
shapes of the clusters grown using the algorithms of

Alexandrowicz' and Leath' change from a random
fractal (percolation cluster) for a growth probability p
equal to the percolation threshold value p, to a compact
diamond shape for p=1.0. For 0.705 ~p ~ 1.0, the clus-
ters have smooth faces with rounded corners and, for
p -0.705, the cluster has a smooth curved shape but still
displays the effects of lattice anisotropy. Savit and Ziff
have also shown how the qualitative features of these
shape changes can be understood in terms of a simple
random-walk model. Early small-scale simulations using
the DLA model ' led to the belief that the overall shape
and fractal dimensionality of clusters generated using this
model were insensitive to the lattice structure. However,
as clusters of larger and larger ' sizes were grown,
it became apparent that both the overall shape and
asymptotic scaling properties were sensitive to the lattice
structure. This work stimulated and was in turn stimu-
lated by the theoretical ideas of Turkevich and Scher
and Ball et al. which indicated that the structures gen-
erated by the DLA process should be sensitive to lattice
and other types of anisotropy.

It is now apparent that the overall shape of square-
lattice DLA clusters evolves from a more or less circular
shape via a diamond shape to a crosslike shape with in-
creasing cluster size M. However, a precise quantitative
description of the asymptotic structure still eludes us. A
variety of methods has now been found to generate cross-
like shapes in relatively small clusters using DLA-like
models by either reducing the noise ' or enhancing
the anisotropy ' in the growth process. The effects
of lattice anisotropy can also be seen in deterministic
models that are more or less closely related to DLA.

The fact that noise reduction and/or anisotropy
enhancement leads to clusters with an overall shape very
similar to that exhibited by very much larger clusters
grown without noise reduction suggests that we might
also be able to learn about the asymptotic geometric scal-

Q~1988 The American Physical Society



38 NOISE-REDUCED AND ANISOTROPY-ENHANCED EDEN AND. . . 419

ing properties associated with models such as DLA by
using relatively small clusters with noise reduction or an-
istropy enhancement. However, at this time, the rela-
tionship between these models and DLA is not well un-
derstood, and the DLA process itself is not at all well un-
derstood.

In an attempt to obtain insight into the eft'ects of noise
reduction and anisotropy on nonequilibrium growth
models, simulations have been carried out using both the
Eden and the screened-growth models. ' ' While the
Eden and screened-growth models are not yet fully un-
derstood, there is a satisfactory theoretical basis for un-
derstanding their properties, and their asymptotic frac-
tal dimensionalities seem to be well determined. In this
paper the results obtained from the Eden and screened-
growth models are described.

320 LATTICE UNITS

COMPUTER SIMULATIONS

Simulations were carried out using a simplified version
of the original Eden model in which surface sites (unoc-
cupied sites with one or more occupied nearest neighbors)
are selected randomly and filled with equal probability.
After each site has been filled, new surface sites are
identified and added to the list of sites from which the
random selection is made. Noise reduction is carried out
using the procedure introduced by Tang and by Kertesz
and Vicsek. Surface sites are selected at random, as in
the ordinary Eden model, but are not actually occupied
until they have been selected m times. The case m =1
corresponds to the ordinary Eden model. Anisotropy
enhancement is carried out using the method developed
by Matsushita and Kondo for DLA. A closely related
model has been developed by Chen and Wilkinson. In
this model, growth is carried out on a square lattice, but
only those sites with coordinates (i,j) satisfying i = Ik and

j= In can be filled where I, k, and n are integers. The in-
teger l characterizes the degree of anisotropy and the
case l = 1 corresponds to the ordinary Eden model.

In the case of the screened-growth model, the surface
sites are selected at random with relative probabilities
given by

m = IOO

320 LATTICE UNITS

—(A/r, )P;~ e
j=1

where P, is the growth probability associated with the ith
surface site and r, is the distance between the ith surface
site and the jth occupied site in the growing cluster (M is
the total number of occupied sites). The parameter A
can be given any value, but in our simulation a value of
1.0 was used. The parameter e determines the fractal
dimensionality (D =e).' ' In the noise-reduced mod-
el, a record is kept of how many times each of the surface
sites has been selected and these sites are filled after they
have been selected m times. Anisotropy enhancement is
carried out in the same manner as that for the Eden mod-
el described above.

320 LATTICE UNITS

FIG. 1. Square-lattice Eden clusters grown with noise-
reduction parameters m of 10, 100, and 1000. Each cluster con-
tains 50000 occupied sites.
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RESULTS

Figure 1 shows three clusters generated using the Eden
model with noise-reduction parameters m of 10, 100, and
1000. Each cluster contains 50000 sites and ordinary
Eden model clusters of this size appear to be round, al-
though a very small distortion towards a diamondlike
shape probably exists even at this relatively small size.
Figure 1 shows a transition from a more or less circular
shape at small m to a sharp diamondlike shape at large
values of m. Although Eden clusters do show a small de-
viation from a circular shape' ' and theoretical con-

L=3

550 LATTICE ITS

L= IO

950 LATTICE NNTS

FIG. 2. Superposition of the unoccupied interface sites for
Eden clusters containing 5000, 10000, 20000, 40000, 80000,
160000, 320000, and 500000 occupied sites. The results ob-
tained with a noise-reduction parameter m of 10 and 100 are
shown.

[

L=30

I 700 LATTICE UNITS

FIG. 3. Eden growth on a square lattice with anisotropy
enhancement. Clusters grown with the parameter I (described
in the text) set to values of 3, 10, and 30 are shown.
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siderations predict a deviation from a hyperspherical
shape on high-dimensional hypercubic lattices, ' there is
no indication that the asymptotic shape for square-lattice
Eden clusters is a diamond.

In Fig. 2 the unoccupied perimeter sites are shown for
clusters containing M=5000, 10000, 20 000, 40 000,
80000, 160000, 320000, and 500000 occupied sites. The
length scale used to display the perimeters is proportional
to M' and the perimeters for clusters of different sizes
are superimposed. Figure 2 sho~s the results obtained
using a noise-reduction perimeter of 10 and the results
obtained with m =100. This figure demonstrates that the
shape of the cluster does not change significantly when
the cluster mass is changed by a factor of 100 (i.e., the
length scale is changed by a factor of 10). It seems that

the asymptotic shape is reached quite quickly in this
model. It should be noted that, unlike the clusters gen-
erated using the model of Savit and Ziff, ' the shapes of
these clusters cannot be described in terms of Hat faces
with rounded corners. Instead, the faces of the cluster
are slightly curved even for very large values of m (Figs.
1, m = 100,1000 and Fig. 2, m = 100).

Figure 3 shows some typical results obtained from the
modified Eden model in which growth is allowed only in
sites for which the coordinates (i,j) satisfy i =1k and
j=ln for 1=3, 10, and 30. Again, a transition from a
more or less circular shape to a diamond shape can be
seen.

Clusters grown using the screened-growth model with
values for the screening exponent e [Eq. (I)] of 1.25, 1.5,

0=1.25, %=3

1800 LATTICE UNITS

,

0=1.25, m =10

1800 LATTICE UNITS

Qn= s.as, m = too

1800 LATTICE UNITS

0 = 1.25, m = 500

1800 LATTICE UNITS

FIG. 4. Clusters grown using the noise-reduced screened-growth model with noise-reduction parameters of 3, 10, 100, and 500. In
all cases the screening-function exponent E has a value of 1.25 and A [Eq. (I)J is 1.0.
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and 1.75 for several values of the noise-reduction parame-
ter m are shown in Figs. 4—6, respectively. These clus-
ters were grown from the center of 1800X1800 square
lattices and, in most cases, the growth process was con-
tinued until the clusters either grew to the edge of the lat-
tice or reached a size of 20000 occupied lattice sites. For
small values of E (e = 1.25, Fig. 4), the effects of the lattice
anisotropy become very strong for quite small values of
m and, for large values of m (Fig. 4, m ) 10), the arms of
the cluster reach the edge of the lattice with little or no
branching corresponding to an effective fractal dimen-
sionality of 1. However, it is likely that sidebranching
would occur for suSciently large clusters and that the
asymptotic fractal dimensionality (for finite m) might be
larger than 1.0.

Figure 5 shows the results obtained with e set to a
value of 1.5. The clusters seem to exhibit a quite linear

structure on short-length scales but are branched on
longer-length scales. This might lead us to expect a
crossover from an effective fractal dimensionality of =1
on short-length scales to a limiting asymptotic (M~ ~ )

value which might be equal to the screening exponent e
on long-length scales.

Figue 7 shows the two-point density-density correla-
tion functions that were obtained from clusters grown
with a screening exponent e of 1.5 and noise-reduction
parameters of m=3, 10, 30, and 100, respectively. The
coordinates from five clusters were used to obtain C(r)
for each value of m, using all of the distances from 2000
randomly selected occupied lattice sites to calculate C(r)
for each cluster. The correlation functions shown in Fig.
7 are reasonably linear over almost two decades in r (dis-
tance) for all four values of m. There is no indication of
the anticipated crossover and the results shown in Fig. 7

()
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0=15, m=3

1400 LATTICE UNITS

i

D=1.5, m=10

1700 LATTICE UNITS

D =15, m=100

1800 LATTICE UNITS

0 =1.5, m =500

1800 LATTICE UNITS

FIG. 5. Clusters grown using the noise-reduced screened-growth model with e= 1.5 and m =3, 10, 100, and 500.
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suggest that the fractal dimensionality might vary con-
tinuously from 1.5 for m = 1 to 1.0 for m ~ ao.

Figure 8 shows the dependence of ln(M'~'/R ) on

ln(M), where Rg is the radius of gyration for the same set
of clusters (a=1.5, m=3, 10, 30, and 100). For all four
values of m, M' 'R seems to be approaching a constant
value (different for each value of m). This suggests that
D&, the effective fractal dimensionality that is obtained
from the scaling relationship

Rs-M~ (Dp 1/——P),
has a limiting (M —mao) value equal to that of the
screening-function exponent c,. However, plots similar to
that shown in Fig. 7 for noise-reduced square-lattice
DLA show pronounced oscillations in the effective ex-

ponent P as the cluster mass changes, and it is quite pos-
sible that similar oscillations occur in the screened-
growth model. Consequently, the results shown in Fig. 7
could be misleading.

As the clusters grow, the distance co, at which the par-
ticles are deposited from the closest lattice axis passing
through the origin (growth site), can be measured and
averaged over small increments in the cluster mass and
over a number of clusters. Figure 9 shows the depen-
dence of co on M can be represented reasonably well by

(3)

where the exponent v~ has a value of about 0.62. For the
cases m=30 and 100, the dependence of v~ on M can be
represented reasonably well by Eq. (3) for the largest clus-

'~

L. j.

0=1.75, m =3

800 LATTICE QNITS

0=1.75, m=10

900 LATTICE UNITS

-' L.

0 = 1.75, 01 = 100

1000 LATTICE UNITS

0 = 1.75, m = 500

1100 LATTICE UNITS

FIG. 6. Clusters grown with the noise-reduced screened-growth model using a screening-function exponent e of 1.75 and noise-
reduction parameters m of 3, 10, 100, and 500.
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FIG. 7. The two-point density-density correlation functions
C(r) obtained from the screened-growth model using the pa-
rameters @=1.5, 3=1.0, and noise-reduction parameters m of
3, 10, 30, and 100.

FIG. 9. Dependence of ln(co) on 1n(M) for @=1.5 screened-

growth clusters with noise-reduction parameters m of 3, 10, 30,
and 100. co is the mean deposition distance from the closest
cluster axis averaged over 5% increments in M and over several

clusters (five for m =3 and 100, ten for m =10 and 30).

ter sizes. However, this cannot be the true asymptotic
behavior, since vj =1 for m =30 and v~=1.5 for m =100.
A related quantity is the angle 58 between the vector
from the origin to an occupied site and the vector along
the nearest lattice axis. The angle 58 has been averaged
over 5% increments in the cluster mass and over several
clusters to obtain the quantity 58. Figure 10 shows the
dependence of ln(58) on ln(M) obtained from the same
set of clusters which were used to generate Fig. 9. In this
case oscillations in 58 with increasing cluster mass can be
clearly seen for m =10,30 and, particularly, m =100.

Figure 11 shows clusters grown using the screened-
growth model (e=1.5) in which growth is restricted to
lattice sites with coordinates (i,j ) satisfying i =Ik,j =In,
where i, k, and n are integers. In this case the effects of
lattice anisotropy are relatively weak.

DISCUSSION

The asymptotic shape of Eden clusters is determined
by the structure of the growing surface. A variety of nu-
merical studies and theoretical considerations has

shown that the width of the surface or active zone g is
related to the height h and width L for growth on a strip
with periodic boundary conditions by

g-L~f(h/Lr), (4)

where the exponent P has a value of about —,'. For small
values of x, the scaling function f(x) has the form
f(x)-x (v= —,'), so that g-h and y=P/v=1. 5. In the
limit x »1 (h »Lr), the number of surface sites is
directly proportional to the strip width L,

N, =aL, (5)

but the coeScient a in Eq. (5) is slightly dependent on the
direction of growth. The dependence of a on growth
direction has been measured directly for Eden model C
(Ref. 13) (in which occupied surface sites are randomly
selected and growth occurs in a randomly selected unoc-
cupied nearest neighor). It is the variation of a with
growth direction which determines the shape of Eden
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0.3
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FIG. 8. Dependence of ln (M' '/Rg ) on ln(M) for screened-
growth clusters growth generated using a=1.5 and m=3, 10,
30, and 100. The same set of clusters was used to generate Figs.
7 and 8.

FIG. 10. Dependence of ln(58) on ln(M) obtained from the
same clusters which were used to generate Fig. 9. Here 58 is
the angle between the vector from the origin to the last occu-
pied lattice site and the vector along the nearest lattice axis.
The quantity 58 is the average over 5% mass increments and
over all clusters with the same value of m (3, 10, 30, or 100).
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e =1.5 1=3 a=1.5 I =10
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a*1.5 I & 50
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FIG. 11. Clusters grown using the screened-growth model with coordinates (i,j) satisfying i = Ik and j= In (with I, k, and n being
integers). Clusters generated using a screening exponent e of 1.5 and I=3, 10, and 30, respectively, are shown.

clusters. For the simplified Eden model A (Ref. 46)
used in this work, the anisotropy in a has been inferred
from the shape of large clusters. '

Very recently, simulations have been carried out for
Eden growth on strips of width I. using the noise-
reduction method discussed above. A value of
0.326+0.015 was found for the exponent v, indicating
that the exponents in the scaling form given in Eq. (4) are
not changed by noise reduction.

Wolf' has shown how the shape of Eden clusters can
be obtained from the direction dependence of the growth
velocity (direction dependence of a) using a Wulff con-
struction ' approach. However, no theory has yet been
developed for the direction dependence of the growth ve-
locity for any version of the Eden model. The formation
of a diamond shape can be associated with a smooth sur-
face. As the growth process becomes more random, the

cluster surface becomes rougher and the shape deviates
from a diamond towards a circle. For m =1, the surface
is quite rough and the deviation from a circular shape is
so small that it has only recently been detected. '

Noise-reduction parameters m less than 1 have no mean-
ing in the context of the models described above. Howev-
er, the number of surface sites associated with an Eden-
model cluster of a given size can be increased by associat-
ing a growth probability selected at random from a distri-
bution of probabilities as each of the surface sites is
formed. In this way, it might be possible to approach
more closely a circular shape in the limit M ~ 00.

The anisotropy-enhanced and noise-reduced models
are very closely related. The anisotropy-enhanced mod-
els can be considered in terms of growth on a square net-
work of bonds. Only after I growth events is a bond filled
and growth onto adjacent bond is possible. In view of
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this, it is not surprising that noise reduction and anisotro-

py enhancement lead to similar results.
In the case of the screened-growth model, oscillatory

behavior similar to that found earlier for noise-reduced
diffusion-limited aggregation makes unambiguous inter-
pretation of the simulation results difficult. However, the
results seem to be consistent with the idea that noise
reduction does not change the asymptotic scaling behav-
ior associated with the cluster geometry. However, there
is a distinct change in the cluster shape for even quite
small values of the noise-reduction parameter m, and the

results presented here do not provide very strong support
for a universal fractal dimensionality (D =e) independent
of the value of m.

The oscillatory behavior found in noise-reduced DLA
and screened-growth models appears to be related to the
development of an almost discrete hierarchy of side-
branches. This feature can be seen clearly in Figs. 5 and
6. For example, in Fig. 5, when m = 10, the cluster exhib-
its three generations in the growth hierarchy, while when
m = 100 and 500 (with larger noise-reduction parameters),
only two generations can be seen.
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