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In this paper we use the recently developed transient-time-correlation function formalism (TTCF)
to study the transient rheology of classical fluids. We compare this approach to the calculation of
fluid transport properties using the Green-Kubo method (valid only in the linear-response regime),
with direct nonequilibrium molecular dynamics (NEMD) simulations, and with the NEMD subtrac-
tion technique. The various approaches are compared for a system undergoing isothermal, planar
Couette flow. Although less efficient than direct NEMD at large strain rates, the TTCF results
agree with direct NEMD to high accuracy. At low strain rates where direct NEMD is not applic-
able, the TTCF approach is clearly more efficient than the subtraction method.

I. INTRODUCTION

We have recently developed a formally exact descrip-
tion of nonequilibrium steady states.! Unlike earlier at-
tempts,2 our theory includes an explicit treatment of ther-
mostatting terms so that true steady states may be
achieved. The theory gives an exact representation of the
nonlinear response of classical many-body systems to the
dissipative perturbation induced by an external field. Our
theory relates the nonlinear thermostatted response to ex-
pressions which are both calculable and verifiable. A
number of nonlinear response theories that have been
proposed over the years lead to exact but mathematically
intractable results. The path towards tractability was
first shown by Kawasaki.’ Somewhat later Dufty and
Lindenfeld* and, independently, Cohen® developed alter-
native but formally equivalent forms for the nonlinear
adiabatic response. We use the term adiabatic to denote
the fact that these theories contained no thermostatting
mechanism® and thus were incapable of treating extreme-
ly interesting questions concerning the nature of that
state parallel to equilibrium, the nonequilibrium steady
state.

The nonequilibrium steady state is characterized by the
fact that although work is performed on the system
preventing its relaxation to equilibrium, heat is extracted
from it at precisely the rate required to balance the entro-
py production induced by the external forces. The mac-
roscopic properties of the system become independent of
time, and by definition, the steady state is stable with
respect to small fluctuations in the state-defining vari-
ables. (Of course not all thermostatted nonequilibrium
states are steady states.) In spite of these parallels with
true equilibrium states, many questions remain concern-
ing the nature of nonequilibrium steady states outside the
linear regime where local thermodynamic equilibrium is
valid. For example, a theory predicting the stability of
steady states from a microscopic variational principle—a
statistical mechanical version of the second law of
thermodynamics—is not known.

Two tractable representations of the adiabatic non-
linear response have been proposed: the so-called
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Kawasaki representation and the transient-time-
correlation function (TTCF) approach. We have recently
shown how these representations may be generalized to
include thermostatting terms. We have also shown how a
variety of other representations can be given. Of these
various representations the TTCF representation is the
one which is most amenable to direct application in com-
puter simulations and is of direct relevance to rheology as
it corresponds exactly to a stress-growth experiment.’
The Kawasaki representation and a third representation
proposed by the present authors are far more difficult to
evaluate numerically.®

The Kawasaki representation is, however, the one
which thus far has proved to be the most revealing in its
use as a nonequilibrium partition function. It leads to
steady-state fluctuation expressions for the derived prop-
erties, the specific heats,” the thermal expansion
coefficients, and the compressibilities.® These expres-
sions show how the derived properties are related to
steady-state fluctuations and steady-state time-correlation
functions. The corresponding expressions derived from
the TTCF representation are less useful because they re-
late the derived properties to equilibrium fluctuations and
to the more difficult to evaluate, transient-time-
correlation functions. A transient-time-correlation func-
tion is defined as the time-dependent correlation of fluc-
tuations in a phase variable evaluated at equilibrium (i.e.,
when the external perturbation is applied, usually taken
as t =0), and fluctuations in another phase variable eval-
uated at intermediate times during which the nonequili-
brium steady state is established, hence the term
transient-time-correlation function.

In this paper we compare the predictions of the ther-
mostatted TTCF formalism with a number of other ways
of calculating the nonlinear nonequilibrium response.
The other approaches compared include direct computer
simulation,!! nonequilibrium  molecular dynamics
(NEMD), a refinement of direct simulation known vari-
ously as the subtraction technique,'> or differential
NEMD, and the linear, Green-Kubo!3 response formulas.

In our case direct NEMD simply involves simulating a
classical fluid undergoing thermostatted planar Couette
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flow.!* The periodic boundary conditions that are em-
ployed are known as Lees-Edwards'> boundary condi-
tions. They replace the usual orthogonal periodic bound-
ary conditions with time-varying nonorthogonal periodic
boundaries that isochorically shear all the periodic im-
ages of primitive-cell particles at a prescribed strain rate.

Very close to equilibrium direct NEMD becomes very
inefficient because the signal-to-noise ratio goes to zero.
The systematic nonequilibrium response becomes compa-
rable or even smaller than the equilibrium fluctuations in
the phase variables of interest. Ciccotti et al.'?
developed a noise reduction modification of direct
NEMD which enables the computation of the systematic
nonequilibrium response at small but necessarily nonzero
fields. This subtraction method simply involves averag-
ing the difference of phase variables computed with and
without the perturbing external field. The two trajec-
tories begin from exactly the same point in phase space.
For short times the two phase-space trajectories are high-
ly correlated, meaning that the noise apparent in the
nonequilibrium trajectory is very similar to that seen in
the equilibrium trajectory. At larger times the two tra-
jectories become uncorrelated, and the noise in the
difference of the two trajectories returns. Unfortunately
the time at which the correlation disappears and the
noise returns is not usually long enough to enable a
clear-cut characterization of the steady-state averages.
Very recently we have used the TTCF formalism to cal-
culate the purely nonlinear shear viscosity, extending the
accessible range of field strengths to 7 orders of magni-
tude.!®

The Green-Kubo (GK) calculation of the nonequilibri-
um response proceeds completely differently. Linear-
response theory predicts that the nonequilibrium average
of a phase variable is related to the time integral of an
equilibrium time-correlation function. The linear
response can therefore be calculated by using an equilib-
rium simulation to calculate the appropriate time-
correlation function. Although much better behaved
than the subtraction technique, the GK method also be-
comes difficult at long times. The relative fluctuations in
the correlation function become large at long times. This
is more important than it might otherwise be, because of
the presence of long-time tail phenomena, at least for the
Navier-Stokes transport processes. The GK correlation
functions do not decay to zero in an exponential fashion
but rather in a slow power-law way. This decay is so
slow that in two dimensions, for instance, the integrals of
the GK correlation functions actually diverge. In three
dimensions the decay is fast enough to ensure conver-
gence but slow enough to make the calculation difficult.
The final limitation of the GK formulas is, of course, that
they are only valid for the linear response. They tell us
nothing about the variation of the transport coefficients
with the magnitude of the perturbing field.

The transient-time-correlation function approach is the
natural nonlinear generalization of the GK formulas. In
the zero-field limit the TTCF’s reduce to GK correlation
functions. (It is also true that the Kawasaki representa-
tion reduces to GK in this limit.) In contrast to the sub-
traction technique the TTCF approach can be applied at
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zero field where it is identical to GK. As we shall see, the
TTCF method is superior to the subtraction technique at
small fields. At large fields TTCF becomes less efficient
than direct NEMD.

Apart from the application of TTCF at zero field, both
the TTCF and subtraction approaches are hampered by
the fact that they both analyze the transient response. In
both cases the steady-state response is calculated by mon-
itoring the behavior of systems during the establishment
of the steady state. This is inconvenient and is inherently
less efficient than direct steady-state simulations.

II. TRANSIENT-CORRELATION FUNCTIONS
FOR PLANAR COUETTE FLOW

The equations of motion for an N-body system under-
going planar Couette flow can be written as

A _&‘_{_n
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. (1)
PiZFi—anPyi—aPi >

where n, is the unit vector in the x direction, y is the
strain rate, and p; is the momentum of particle i/ mea-
sured in a coordinate frame moving at the local stream-
ing velocity yy;. The term ap; is the Gaussian thermos-
tat. When «a is chosen to be
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the peculiar kinetic energy is a constant of the motion. If
we take the peculiar kinetic energy per degree of freedom
as a measure of the temperature, then the Gaussian ther-
mostat maintains the system at a constant temperature.
The transformation in (1) of the boundary condition
which drives planar Couette flow into the form of an
external mechanical perturbation is achieved by writing
the equations of motion in terms of the peculiar momenta
p;. These equations are known as the SLLOD equations
of motion for shear flow.!*

Isothermal response theory! shows that the adiabatic
rate of change of the internal energy H,= 3, (p?/
2m +®P), plays an essential role in determining the ther-
mostatted response. The adiabatic derivative of the inter-
nal energy dH, /dt is usually written as —JF,, where J is
the dissipative flux and F, is the external field. Strictly
speaking this is only true when the adiabatic incompressi-
bility of phase space (AIT")! is satisfied. AIT is satisfied
by all the commonly used NEMD algorithms including
the SLLOD equations of motion for Couette flow. If
AIT is not satisfied, the form of the response equations is
modified somewhat. For planar Couette flow J is easily
seen to be the shear stress P, times the system volume V'

(Ho)¥=—JF,=—¢ S p—"‘r:—y—"

+y:F

xi

— P, V. 3)

If a canonical ensemble (or isothermal ensemble!”) of sys-
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tems is suddenly subject to a constant shearing deforma-
tion at £ =0. If we use the notation B(z,) to denote the
field-dependent, thermostatted value of an arbitrary
phase variable at time #, then the time-dependent average

(B(t,)) can be shown to be
(B(2,))=(B(0))—ByV [ ds(B(s,)P,(0)) . (@

This expression relates the nonequilibrium value of a
phase variable B at time ¢, to the integral of a transient-
time-correlation function [the correlation between P, in
the equilibrium starting state, P,,(0), and B at time s
after the field is turned on]. The time-zero value of the
transient correlation function is an equilibrium property
of the system. For example, if B =P,,, then the time-
zero value is P,fy(O) ). Under some, but by no means all
circumstances, the values of B (s) and ny(O) will become
uncorrelated at large times. If this is the case, the system
is said to exhibit mixing. The transient-correlation func-
tion will then approach (B(t,, ) (P,,(0)), which is zero
because (P,,(0))=0. For systems that exhibit mixing,

y
Eq. (4) can, therefore, be rewritten as

(B(1,))=(B(0)) —ByV [ ds(AB(s,)P,(0), (5
where
AB(s)=B(s)—(B(s)) .

Although the adiabatic systems treated by Dufty and
Lindenfeld* do not lead to stationary states, there is some
evidence that mixing occurs.'® In the absence of a ther-
mostat d(B(z,)) /dt does not go to zero at large times,
and its value is related to the functional dependence of B
upon the temperature. Turbulent or quasiperiodic sys-
tems, however, are not expected to exhibit mixing.

It is trivial to see that in the linear regime the
transient-correlation-function expression for the system
response reduces to the usual Green-Kubo expression

(B(t,))=(B(0))—ByV [ ds(AB(s)P,,(0)) . (©6)

The Green-Kubo expression for the linear response is
identical in form to the corresponding transient-
correlation relation except that the time evolution in the
second term on the right-hand side is governed by the
field-free thermostatted propagator in the linear case and
by the thermostatted field-dependent propagator in the
nonlinear regime. The Green-Kubo correlation function
is an equilibrium correlation function. We know that in
the thermodynamic limit there is no difference between
the thermostatted equilibrium time-correlation function
and the corresponding Newtonian or adiabatic correla-
tion function.'®

The coincidence at small fields of the Green-Kubo and
transient-correlation formulas means that unlike direct
NEMD, the transient-correlation method can be used at
small fields. This is impossible for direct NEMD because
in the small-field limit the signal-to-noise ratio goes to
zero. The signal-to-noise ratio for the transient-
correlation function becomes equal to that for the equi-
librium Green-Kubo method—a small, but nonzero num-
ber. Thus at small fields the efficiency of the transient-

correlation method is comparable to that of Green-Kubo.
The transient-correlation-function method forms a bridge
between the Green-Kubo method which can only be used
at equilibrium, and direct NEMD which is the most
efficient strong-field method.

It is also easy to see that at short times there is no
difference between the linear and nonlinear stress
response. It takes time for the nonlinearities to develop.
The way to see this is to expand the transient-time-
correlation function in a power series in Yt (assuming
such an expansion exists). The first term in this series for
the response of the shear stress is just BV(Pfy), the
infinite frequency shear modulus, G . Since this is an
equilibrium property its value is unaffected by the strain
rate and is the same in both the linear and nonlinear
cases. If we look at the response of a quantity like the
pressure whose linear response is zero, the leading term
in the short-time expansion is nonlinear in the strain rate
and in time. The linear response, of course, is the first to
appear.

III. NUMERICAL RESULTS

Computer simulations were carried out for two
different systems. The first was a system of 72 soft disks
[¢=4€(o /r)'?] in two dimensions at a reduced density of
p*=po?=0.6928, a reduced temperature T*=kT /e=1
for a range of the strain rates, y*=y(m/e)"%o
=du, /dy(m /€)"/?a. This state point has been studied
previously? although not at this system size. A fourth-
order Runge-Kutta method with a timestep of 0.005¢*
[t*=t(a(m/€)'/?)7!] was used to integrate the equa-
tions of motion. The potential was truncated at r*=1.5.

The second system was studied more extensively. It
consisted of 256 Lennard-Jones particles with the poten-
tial truncated at the Lennard-Jones potential minimum
r.=r*ac=2"%g. The system was three dimensional and
the density was set to p* =po®=0.8442, while the tem-
perature was T*=kT/e=0.722. A second-order
Runge-Kutta integrator with a reduced timestep of
0.0025¢* was used. The Runge-Kutta method was used
rather than the more common Gear or leapfrog algo-
rithms because unlike the latter, the Runge-Kutta
method is self-starting. Since we are interested in the
transient response we need to be able to calculate the sys-
tem trajectories from a specified initial phase. The Gear
and leapfrog algorithms only achieve accuracy after an
initial startup period and are, therefore, unsuitable for
calculating transient responses.

In each simulation the direct average of the shear
stress, pressure, normal stress difference, and thermostat
multiplier a were calculated along with their associated
transient-correlation functions using typically 60000
nonequilibrium starting states. For the three-dimensional
system each nonequilibrium trajectory was run for a re-
duced time of 1.5 (i.e., 600 timesteps). Each 60000
starting-state simulation consisted of a total of 54 million
timesteps made up of 2 15000 600 timesteps at equi-
librium and 4 15000X 600 perturbed nonequilibrium
timesteps. The reader is referred to Ref. 1 for details of
the symmetry mappings employed in the simulations.
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In Fig. 1 we present the results obtained for the re-
duced shear stress P;y:ny(crz/e), in two dimensions.
The imposed reduced strain rate is unity. The values of
the shear stress calculated from the transient-
correlation-function expression agree within error bars
with those calculated directly. The errors associated with
the direct average are less than the size of the plotting
symbols whereas the error in the integral of the
transient-correlation function is approximately +2.5% at
the longest times. Although the agreement between the
direct simulation results and the TTCF prediction is very
good, it must be remembered that the total response for
the shear stress is the sum of a large linear effect which
could be correctly predicted by the Green-Kubo formula
and a smaller ( ~25%) nonlinear effect. Thus the statisti-
cal agreement regarding the TTCF prediction of the in-
trinsically nonlinear component of the total response is,
therefore, approximately 10%.

The shear-induced increase in pressure with increasing
strain rate (shear dilatancy) is an intrinsically nonlinear
effect and is not observed in Newtonian fluids. The
Green-Kubo formulas predict that there is no coupling of
the pressure and the shear stress because the equilibrium
correlation function (Ap(2)P,,(0)) is exactly zero at all
times. In Fig. 2 we present the direct and transient-
correlation-function values of the difference between the
pressure p*=p(o’/e) and its equilibrium value
(Ap*=p*—p¢). The agreement between the direct aver-
age and the value obtained from the transient-
correlation-function expression at y*=1.0 is impressive.
It is important to note that the agreement between theory
and simulation shown in Fig. 2 is a test of the predictions
of the theory for an entirely nonlinear effect. It is a more
convincing check on the validity of the TTCF formalism
than are the results for the shear stress because there is
no underlying linear effect.

The results for the x-y element of the pressure tensor
in the three-dimensional system are given in Fig. 3.
Again the agreement between the TTCF prediction and
the direct simulation is excellent. We also show the
long-time steady-state stress computed by conventional
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FIG. 1. The direct and transient-time-correlation-function

results for the shear stress in two dimensions at p* =0.6928,
T*=1, and y*=1.0. A typical error bar for the direct is less
than the size of the symbols, while for the transient-time-
correlation function it is typically 2.5% at t*=1.
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FIG. 2. The direct and transient-time-correlation-function
results for the pressure in two-dimensions at p*=0.6928,
T*=1,and y*=1.0.

NEMD. It is clear that our time limit for the integration
of the transient-time-correlation functions is sufficient to
obtain convergence of the integrals (i.e., to ensure relaxa-
tion to the nonequilibrium steady state) for the shear
rates considered here. We also show the Green-Kubo
prediction for the stress. A comparison of the linear and
nonlinear responses shows that the intrinsically nonlinear
response is only generated at comparatively late times.
The response is essentially linear until the stress
overshoot time (¢* ~0.3). The figure also shows that the
total nonlinear response converges far more rapidly than
does the linear GK response. The linear GK response
has obviously not relaxed to its steady-state limiting value
at a t* value of 1.5. This is presumably because of long-
time-tail effects which predict that the linear response re-
laxes very slowly as ¢ ~!/2, at long times.

In Fig. 4 we show the corresponding results for shear
dilatancy in three dimensions. Again the TTCF predic-
tions are in statistical agreement with the results from
direct simulation. We also show the steady-state pressure
shift obtained using conventional NEMD. Again it is ap-
parent that t*=1.5 is sufficient to obtain convergence of

ny
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FIG. 3. The direct and transient-time-correlation-function
results for the shear stress in three dimensions at p* =0.8442,
T*=0.722, and y*=1.0. The linear-response contribution to
the shear stress is given by the integral of the Green-Kubo equi-
librium time-correlation function with error estimates shown.
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FIG. 4. The direct and transient-time-correlation-function
results for the pressure in three dimensions at p*=0.8442,
T*=0.722,and y*=1.0.

the TTCF integral. Although it is not easy to see in the
figure, the initial slope of the pressure response is zero.
This contrasts with the initial slope of the shear stress
response which is G . This is in agreement with the pre-
dictions of the transient-time-correlation formalism made
in Sec. II. Figures 1 and 3 clearly show that at short time
the stress is controlled by linear-response mechanisms. It
takes time for the nonlinearities to develop, but paradoxi-
cally perhaps, convergence to the steady-state asymptotic
values is ultimately much faster in the nonlinear, large-
field regime.

Comparing the statistical uncertainties of the transient
correlation and direct NEMD results shows that at re-
duced strain rates of unity conventional NEMD is clearly
the most efficient means of establishing the steady-state
response. For example, under precisely the same condi-
tions after 54 million timesteps, the TTCF expression for
ny is accurate to 1£0.05%, but the directly averaged
transient response is accurate to £0.001%. Because time
is not wasted in establishing the steady state from each of
60000 time origins, conventional steady-state NEMD
needs only 120000 timesteps to obtain an uncertainty of
+0.0017%. If we assume that errors are inversely pro-
portional to the run length then the relative uncertainties
for a 54-million timestep run would be =0.05%,
1+0.001%, and 0.00008%, respectively. Steady-state
NEMD is about 600 times more accurate than TTCF for
the same number of timesteps. On the other hand, the
transient-correlation method has a computational
efficiency which is similar to that of the equilibrium
Green-Kubo method. The main difference being that for
GK calculations time origins can be taken more frequent-
ly than for TTCF’s. For TTCF’s time origins cannot be
taken more frequently than the time interval over which
the TTCF’s are calculated. The advantage of the TTCF
formalism is that it models the rheological problem of
stress growth,” not simply steady shear flow, and we can
observe the associated effects such as stress overshoot and
the time development of normal stress differences.

Figure 5 shows the transient responses for the normal
stress differences, P,,-P,, and P, -P,, for the three-
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-0.2 T T
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time

FIG. 5. The transient-time-correlation-function results for
the normal stress differences P,,-P,, and P,,-P,, in three dimen-
sions at p*=0.8442, T*=0.722, and y*=1.0. The arrowed
points on the right-hand side are the steady-state NEMD re-
sults.

dimensional system at a reduced strain rate of unity. The
normal stress differences are clearly more subtle than ei-
ther the shear stress or the hydrostatic pressure.
Whereas the latter two functions seem to exhibit a simple
overshoot before relaxing to their final steady-state
values, the normal stress differences show two maxima
before achieving their steady-state values (indicated SS in
the figure). As before it is apparent that t*=1 is
sufficient time for an essentially complete relaxation to
the steady state.

Figure 6 shows the shear stress for the three-
dimensional system at the comparatively small field
y*=10"3 At this field strength conventional steady-
state NEMD is swamped by noise. However, the sub-
traction technique can be used to substantially improve
the statistics. Figure 6 compares the results obtained us-
ing the subtraction method with results obtained using
the TTCF approach. It is important to note that both
the subtraction and TTCF techniques are based on an
analysis of the transient response of systems. The results
compared in Fig. 6 were computed for exactly the same

Xy
-0.0005 1
- Subtraction
—  Transient
-0.0015 1
-0.0025

0.0 0.5 1.0 1.5

time
FIG. 6. The subtraction and transient-time-correlation-
function results for the shear stress in three dimensions at
p*=0.8442, T*=0.722,and y*=10"3.
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system using exactly the same number of simulation
timesteps. The only difference between the two sets of re-
sults is how the data were analyzed. It is well known that
at longer times the subtraction method fails because the
equilibrium and nonequilibrium trajectories become
decorrelated thus destroying the noise-reduction mecha-
nism. This is clearly evident in Fig. 6 where at longer
times, during which we expect the slow nonlinearities to
complete the relaxation to the steady state, the subtrac-
tion technique becomes very noisy. We believe the su-
periority of the TTCF formalism for small shear rates is
due to the judicious use of the symmetry-related starting
states. This removes the small fluctuations in (P,,(0))
which magnify the tail of (B (¢)P,,(0)) and would other-
wise make the resultant nonequilibrium shear stress fluc-
tuate. The starting states ensure that the only nonzero
contribution to the transient-time-correlation function
comes from correlations between B (¢) and P,,(0).

Figure 7 shows the corresponding results for shear di-
latancy. Here the subtraction technique is essentially
useless. Even the TTCF method becomes somewhat
noisy at long times. The TTCEF results clearly show the
existence of a measureable, intrinsically nonlinear effect
even at this small-strain rate.

IV. CONCLUSION

Over the years a number of numerical comparisons
have been made between the Green-Kubo expressions
and the results of NEMD simulations. In this paper we
have taken this comparison one step further. We have
compared NEMD simulation results with our thermos-
tatted, nonlinear generalization of the Green-Kubo for-
mulas. We have presented convincing numerical evi-
dence for the usefulness and correctness of the transient-
time-correlation function formalism. This theory is the
natural thermostatted, nonlinear generalization of the
Green-Kubo relations. Our simulation data unambigu-
ously shows that at very small external fields, the TTCF
formalism provides the most efficient presently known
means of calculating transport properties. That is for the
same number (and length) of nonequilibrium trajectories
the TTCF formalism is superior to the subtraction tech-
nique. For strong fields, of order unity in reduced units,
conventional NEMD is the most efficient known tech-
nique.

The recent study by Ryckaert et al.!? of the Lennard-
Jones fluid at a dense liquid-state point found no evidence
for a nonanalytic variation of the viscosity with strain
rate. This result is not surprising as it has long been real-
ized that the coefficient of the y!/? dependence increases
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FIG. 7. The subtraction and transient-time-correlation-

function results for the pressure in three dimensions at
p*=0.8442, T*=0.722,and y*=10"2.

dramatically as the glass transition is approached, and for
the state point they consider the coefficient is very small.
Indeed the strongest evidence for the square-root depen-
dence is from the Lennard-Jones triple-point data. Some
recent mode-coupling theory?! work gives more support
to the connection between the glass transition and
square-root behavior of viscosity (in this case the frequen-
cy dependence of 7). We believe the numerical results
presented here are the most accurate produced to date.
Each state point consists of 60 000 nonequilibrium trajec-
tories covering a time range of 0<t < 1.5 (by contrast in
Ref. 13 the longest simulation consisted of only 1400
nonequilibrium trajectories and a time range of
0<t<0.8.

Although we have concentrated in this paper on using
the TTCF formalism for direct numerical computations,
it is apparent that perhaps the most important applica-
tion of the theory of nonequilibrium steady states will
turn out to be the derivation of steady-state fluctuation
formulas and sum rules, a nonequilibrium generalijzation
of the equilibrium fluctuation relations. As at equilibri-
um these relations should prove useful in characterizing
the thermodynamic stability of systems near nonequilibri-
um phase transitions.
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