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A criterion for determining the coupling and the exponent [E(rt,P) and g(rt, P)] of the one-
Yukawa generalized mean spherical approximation (GMSA), which better describes a given real
fluid, is suggested. The relative spatial configuration of the surface (

—=X~) where the compressibility
diverges, with respect to the surface (—:X&) bounding the region where physical solutions of the
GMSA equations exist, is studied in terms of E, g, and rt (the packing fraction). Xr is found to lie

always in the physically accessible region and to become tangent to Xz along the g axis; that conse-
quently will be the locus of the critical points of the real systems. By the aforesaid criterion we

show that the Baxter solution of the adhesive hard-sphere model can be obtained from the limit of
the GMSA solution as (~00. The study of the limit (~0 shows that the GMSA critical indices
are generally different from the mean-field ones and that their values depend on the way g ap-
proaches zero as one moves along the critical isochore and the critical isotherm. Attention is also
called to the fact that, as $~0, E(rt, g)/g' has a minimum at r)=0.128, a value rather close to the
critical densities of the real fluids.

I. INTRODUCTION

The generalized mean spherical approximation'
(GMSA) of a real fluid consists in approximating the
direct correlation function (DCF) by a sum of Yukawa
terms in the region external to the core, i.e.,

N

c,„,(r, g, P) = g K„(r),P)exp[ g„(ri,—P)(r —1)]lr,
n=1

r ) 1 . (1.1)

(Here r1 and p denote, respectively, the packing fraction
and the inverse temperature, while the hard-core diame-
ter has been taken equal to 1.) The use of this approxi-
mation is quite advantageous for the high degree of
analyticity in the resulting expressions of the thermo-
dynamica1 potentials as well as of the structure functions.
However, its practical application in order to predict the
thermodynamical behavior of real systems is severely lim-

ited by the poor knowledge of c,„,(r, g, P). Following
Waisman's original suggestion, recently the equations
of state of some realistic Quid models, obtained by Monte
Carlo (MC) calculations, have been used in order to
determine the parameter K and g, present on the rtght-
hand side (rhs) of Eq. (1.1) with N & 2. It has turned out
that the structural properties, predicted by the resulting
GMSA, agree satisfactorily with the corresponding MC
ones. This result suggests that the GMSA, even at the
level of a single Yukawa contribution, is able to grasp the

()0, 0&ri&nv'2/6. (1.2)

We shall denote by E =Ka(r), g) the exPlicit (local) ex-
pression of the surface Xa, which wraps RoMs. Besides,
the GMSA equations predict that the inverse isothermal
compressibility is zero on a variety which will be denoted
by &x.

We assume now for a moment that the c,„,(r, ri, p)
relevant to a real fluid is known. It appears natural to
ask the following questions: (a) How can one determine
the best K(ri, p) and g(q, p) to be used in Eq. (1.1)? (b) If
one lets r1 and p explore the region physically allowed
to the fluid, do the corresponding image points
[t),g(r1, )t3), K(r),P)] always belong to AoMs? (c) Which is

main physical features of the real fluids, provided K and g
are chosen to be suitably dependent on ri and p. Howev-
er, the aforesaid analyses dealt with fluids that do not
have a critical point; therefore we do not know whether
the former conclusion can be extended also to the critical
region.

The aim of this paper is to analyze this issue as well as
to discuss whether the structure of the region allowed to
the GMSA parameters has some relevance with the phase
diagrams of the real systems. '

With N =1 in Eq. (1.1), the thermodynamical poten-
tials and the structure functions calculated by the GMSA
will depend only on ri, g, and K, henceforth referred to as
the natural GMSA parameters. The GMSA equations
yield a physically acceptable solution ' ' in a parameter
region (—:RoMs) more restricted than the one deter-
mined by the obvious constraints
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P[pXT(q, P)) ' =P =1 pc(O—, g,P),
Bp

(1.4)

where XT(g,p), p, and c(O, rt, p) denote, respectively, the
isothermal compressibility, the number density, and the
Fourier transform (FT} of the DCF evaluated at zero
momentum transfer or, equivalently, the zeroth momen-
tum of the DCF. Starting from the decomposition

c(r, rt, p) =c;„,(r, ri, p)+c,„,(r, rt, p), (1.5)

where the supports of c;„,and of c,„, are, respectively, the
regions r & 1 and r ~ 1, the GMSA is able to reconstruct
c;„, from c,„„when this is a sum of Yukawa terms. From
Eq. (1.5), the zeroth momentum of the DCF is the sum of
the corresponding momenta of c;„, and c,„,. The condi-
tion (1.3) with n =0 assures that, outside the core, the
Yukawa approximation has the same momentum of c,„,.
Then, by Eqs. (1.4) and (1.5) the thermodynamics will be
exactly reproduced if the c;„„obtained by solving the
GMSA, has the same momentum of the exact c;„,. Of
course, generally this will not happen. However, due to
the boundedness of the support and to the continuity of
the c;„, resulting from the GMSA, one can reasonably ex-
pect that the GMSA c;„,( , OPS) be, in general, rather
close to the exact value. Clearly, if we require in Eq. (1.3)
the equality of the next-higher-order momenta up to the
highest possible order ( =M ), the resulting Dirichlet ex-
pression of c,„, will have a FT whose McLaurin expan-
sion, truncated at the Mth order, will be equal to that of
c,„,(h, g, P). By the same argument invoked above, it is
reasonable to expect that the c;„,(h, q, p), resulting from
the GMSA, be almost exact up to terms O(h ). This
greater accuracy, by duality, will then reflect in a more
accurate description of the radial distribution function at
larger distances.

The previous discussion represents the main
justification of assumption (1.3). In the following we shall
analyze some of its consequences. The results and some
analogies, that will be noted later, give further support to

the ( g, g, K ) point representing the critical point ( g„p, )

of the system in the GMSA natural space? (d) Do the
lines representing the coexistence lines of the real fluids

lay on X&?
In the following we shall try to answer the last three

questions after assuming that the answer to the first one
is the following'? The best g(7?,p) and K (ri, p) are obtained
by requiring that the largest possible number of the next
momenta of the Dirichlet' ' approximation of c,„,(r, g, p),
starting from the zeroth one, are equal to the corresponding
moments of c,„,(r, rt, p). For our GMSA with N = 1, this
amounts to requiring that

K(rt, P) J r " ' exp[ g(ri—,P)(r —1)]du
r)1
= f r "c,„,(r, rt, P)du, n =0, 1, . . . . (1.3)

r)1
In the following sections we shall work out the conse-
quences of (1.3), which represents the main hypothesis of
the paper. Let us try to justify the assumption. We recall
the compressibility route to the thermodynamics

T

the assumption. We note that (1.3) represents the key
which allows us to associate to a given fluid in the partic-
ular thermodynamical state g, P the corresponding point
g, g, K in the natural GMSA space through the relations

0=0rt»»
K=K(g, P) .

(1.6a)

(1.6b)

(1.7b)

The first equation defines, in the GMSA natural space,
the geometrical surface which is made up of all the ther-
modynamical states of a class of fluids, while the second
equation singles out the behavior of a particular fluid. In
fact, Eq. (1.7b) defines, so to speak, the internal structure
of the surface (1.7a) by assigning on it the isotherms
characteristic of a particular fluid belonging to the class
determined by the considered K(ri, g) variety. (See Fig.
1). Clearly the interparticle potentials of the fiuids form-
ing a particular class may have different functional ex-
pressions. However, for a set of fluids obeying a particu-
lar law of corresponding states, ' we shall find that the set
is contained in a class. Moreover, since the peculiarities
of each fiuid belonging to the set are accounted for by an
appropriate rescaling of the thermodynamical variables,
both Eqs. (1.7a) and (1.7b) are the same for each fiuid of
the set.

From this discussion it is clear that the analysis of the
structure of the region RoMs will yield restrictions con-
cerning only the varieties K(rt, g). From our analysis it
will turn out that the restrictions are particularly predic-
tive in the two limiting regions (~0 and g~ ao. For this
reason, most of the subsequent discussion is devoted to
the analysis of these limits. In fact, we shall show that
the critical points have to lie on the g axis while the
Baxter' solution of the adhesive hard sphere (AHS) mod-
el corresponds to a suitable limit of the GMSA solution
as g~ oo.

A brief outline of the paper is the following. In Secs. II
and III, we briefly sketch Baxter's derivation of the
Percus-Yevick solution of the AHS model (Sec. II) and
the He)ye and Blum" derivation of the GMSA equations
(Sec. III}. In this way, besides emphasizing some aspects
which will be later discussed, all the mathematical ex-
pressions required in the subsequent analysis will have
been explicitly written down, so as to make the paper
self-complete and its reading easier. The original results
of the paper are discussed in Secs. IV and V. The former
is devoted to the analysis of the characteristic GMSA
surfaces and to the study of their behavior at small and at
large g, while the latter (Sec. V) is divided into two parts.
In the first we discuss the critical behavior, while in the
second we show how the Baxter solution can be obtained
from the GMSA solution. A conclusion, Sec. VI, sum-
marizes the main results while four appendixes report
some intermediate algebraic expressions.

These questions show that each real fluid is characterized
by a particular surface in the GMSA space. In fact, solv-
ing Eq. (1.6a) with respect to p and substituting the result
in Eq. (1.6b}, one gets

(1.7a)
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II. THE AHS MODEL

The adhesive hard-sphere model is obtained from the
square-well model

c(r,p, 13)=c' '(r, p, f3)

=
I 1 —exp[u(r)] jg(r, p, P), (2.2)

$(r)/kT= u(—r)=+ ao, r &1

= —in[a/12'(a —1 }), 1 & r & a

=0, cz &r (2.1)

where p denotes the dimensionless density. From Eq.
(2.1) it appears evident that c,„,(r,p, P) can be different
from zero only in the interval [l,a], which shrinks to a
point in the limit defining the AHS model. This limit re-

quires that the Mayer f bond be

by taking the limit +~1+ at fixed ~, which can be
identified with the temperature.

Baxter obtained the explicit solution of the Percus-
Yevick (PY) approximation of this model. This approxi-
mation amounts to assuming that

f (r) = —I+( I/12m)5(r —1), 0& r & 1

=0, 1&r . (2.3)

Then one concludes that c,„,(r, p, f3) is proportional to
5(r —1). In order to find the exact expression of
c,„,(r,p, P), we recall that the PY approximation neglects
the contributions due to the parallel and to the bridge
graphs. Thus one gets

g (r) =1+h(r) = [1+f (r)][1+N(r)],
c(r)=f(r)[1+N(r)],
N(r) =h(r) —c(r),

(2.4a)

(2.4b)

(2.4c)

where N ( r ), the sum of the nodal graphs, has to be con-
tinuous at r = 1. Let us now put

N(1) = —1+i(p,P)r, (2.5)

where the moment A, is an unknown function of the densi-
ty p and of the temperature. From Eqs. (2.4b), (2.3), and
(2.5) one finds that

c,„,(r,p, f3)=(1 /12m) 5(r —l)[1+N(1)]
=(A, /12)5(r —1), (2.6)

while from Eq. (2.4a) it turns out that

h(r)= —1+(A/12)5(r —1), r &1 (2.7)

and thus the cancellation of 5-like contributions on the
right-hand side of Eq. (2.4c) is assured.

As Baxter' has shown, the solution of the aforesaid
model is obtained through the following steps. First, one
introduces the function Q(k) as the solution of the equa-
tion

Q(k)Q( —k) =1 pc(k, p, P), — (2.8)

FIG. 1. A schematic picture of the configuration of the sur-
faces K&+ and K~+ is reported. No physically acceptable solu-
tion can exist below Kz, which is the lowest surface in the
figure. Note that for greater clarity we have chosen the positive
direction of the K axis pointing downward. For this reason the
surface E~, where the isothermal compressibility diverges, ap-
pears to lie above K&+. Finally, the third surface depicts the
E(g, g} variety associated to a class of fluids, while the solid
lines illustrate the isotherms relevant to a particular fluid. One
should note that the critical point of the fluid corresponds to the
point on the g axis, which is the tangency point for the three
surfaces. At temperatures smaller than the critical one, the iso-
therms will have the schematic shape of the curve Pz. This ends
on the curve c and reappears on the right from the curve c'. In
this way, c and c' represent the coexistence lines of the fluid in
the GMSA natural space.

where

c(k,p, 3)}=3f exp(ik r)c(r, pP)dv .

Baxter proved that, when c (r) has a finite range a,

Q(k)=1 —2np f exp(ikr }Q(r)dr, (2.8a)
0

where Q (r) is real and continuous throughout [0, ~ ] and
it vanishes identically in [a, ~ ]. Moreover, he showed
that the Ornstein-Zernike (OZ) equation can be converted
into the following set of equations:

rc(r) = —Q'(r)+2mp f Q'(t)Q(t r)dt, 0&—r & a,
I'

(2.9)
rh(r}= —Q'(r)+2mp f (r —t)h(

~

t r~ )Q(t)dt . —
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For the PY approximation of the AHS model, Eq. (2.9)
can be explicitly solved by using Eqs. (2.7) and (2.4c) and
the continuity properties of Q (r). One obtains

Q(r)=a(r 1—)/2+b(r —1)+A./12, 0&r &1, (2.10)

N

Q (r) =8(1—r)g 0(r)+ g d; exp[ g—, (r —1)], (3.2)

Q(r) obeys Eq. (2.9) with a= ~ and has the following
form:

a =
I 1+rl[2—A(1 —q)] I /(1 —q)

b = —g[3—A(1 —g)]/2(1 —71)

and

with

(2.11b) go(r) =a(r 1—)/2+b(r —1)

+ g c; [exp[ —g, (r —1)]—1I . (3.3)

—([r(1 rl)+—rl] rj(2—+q)/6I ' )/g,
where rl = op/6 is the packing fraction.

(2.12) The unknown parameters a, b, c;, and d; are determined
by solving a set of algebraic equations. [See Eqs. (25) and
(28) of Ref. 11.' ] When N = 1, setting

III. GMSA 5=d„d5= —c, , (3.4)

N

c,„,(r,p, P)= g K; exp[ g;(r——1))/r, (3.1)

Following very closely the paper by Hdye and Blum, "
we report the main GMSA equations. These authors
have shown that in the GMSA case one can still use
Baxter's formulation, i.e., Eq. (2.9), although the external
DCF is no more identically null beyond a. In fact, they
showed that, when the external DCF is a linear combina-
tion of Yukawa terms

the aforesaid set of equations reduces to the following
quartic equation in 5 (Refs. 11 and 7)

36' 5 —X(g, g)5 +. 12rlK5 KY(rl, g—)5+K =0 . (3.5)

Once the physical root of Eq. (3.5) has been determined,
the unknown quantities d, a, and b are simply determined
by the following expressions:

d =[( K+5Y) exp( ——g)+E(g, g)5 ]/F(g, g)5

8 pb v(g ) 5exp( g) [(1+2'—6q/g)[d —1 —d(1+() exp( —g)]+3rl dg exp( —g) j,
(3.6)

(3.7)

and

8b pv ( rI )5 exp ( g )
b =b'av(rl)+ [ [3g/2+ (1—4rl ) /g][d —1 —d(1+g) exp( —g)] —(1—4g)d g exp( —g)/2 ] . (3.8)

For the definition of E, F, X, Y, ap Y, and b PY we refer to
Appendix A, while here we recall that the isothermal
compressibility XT is related to a by

I

throughout the physically accessible (rl, g) plane, with
particular care to the small- and large-g regions.

P(pX7 )
' =Q'(0) =a ' .

IV. THE GMSA CHARACTERISTIC SURFACES

(3.9) A. The null-discriminant surface Xz

The surface which folds the region WoMs is essential-
ly' given by the condition

The previous formulation makes evident that the
GMSA admits physically acceptable solutions only in a
subset of the (g, g, K ) space. This region (denoted by
AoMs), in fact, corresponds to the one where Eq. (3.5) ad-
mits a physical real solution. This property of the
GMSA has been first noticed by Waisman. The subse-
quent work of many authors ' has yielded a consider-
able simplification both in the GMSA equations and in

the expression of the thermodynamical potentials, even in

the case of GMSA's involving more than one Yukawa
term. In this paper we shall go one step further. On the
one hand, we shall obtain the explicit algebraic expres-
sions both of the surface X~ and of the surface Xz. [See
Eqs. (4.5) and (4.13), respectively. ] On the other hand, we

shall discuss their relative spatial configuration

5(K, (,q)=0, (4.1)

where b, is the discriminant of Eq. (3.5). With some alge-
bra the latter can be explicitly evaluated. We define

x =X/36', y = Y/6g, K =E/6g (4.2)

r:—x —y,
y&

=—(27r +72yr +56y r 32y r —16y4)/4, —

y2—=y &

(4.4)

and find that

b, =(K /27)( 64k r +Ky, +y2)—:(E—/27)hz, (4.3)

where
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The nontrivial solutions of Eq. (4.1) are

K+ =6~t (~g)
=6q[y, + (y, +256r y z )

' ~ ]/128r

K; =6qt (q, g)

=6g[y I
—(y & +256r yq )' ]/128r

They coincide when

y, +256''y2=0 .

(4.5a)

(4.5b)

(4.6a)

ishes, i.e., we have to look for the solution of

a(q, g, K)=0 . (4.10)

We shall denote by Kr(g, g) the solution of this equation.
Its explicit algebraic expression can be obtained through
the following steps. First one solves with respect to d the
linear equation obtained by equating to zero the lhs of
Eq. (3.7). Then one substitutes the result on the lhs of
Eq. (3.6) and one solves the resulting linear equation in K.
With the following definitions:

Straightforward, albeit long, algebraic calculations con-
vert (4.6a) into

A =2 I'—A, rl, g—=2 I'— (4.11a)

y'P, (r/y )=0,
where

(4.6b) A (
EF, (rt, g} f, (rt—, g)F

FI(n 4)
exp( g), (4.1 lb)

Ps(t):—729t +3888t +8208t
where F, and f, are defined in Appendix A (see Eqs.
(A7a) and (A7d)], one gets

+6592t —24032t"—5120t K=5A, /2+5 Aq/2 . (4.12)

+512t +1024t+256 .

It has four real roots, t, , i =1, . . . ,4, which are

—3.5720, —0.221 01, 0.355 17, 1.1996 .

Then the equations

x(g, rl) —(I +t;)y(g, lr)=0, i =1, . . . ,4

(4.6c)

(4.6d)

(4.7)
5r* ——[—8 i+(8, 808' )]' —/Bo,

where

(4.13)

Then one solves Eq. (3.5) with respect to K, and by
equating the result to (4.12), one gets an equation in the
unknown 5. After eliminating the trivial double solution
5=0, one is left with a quadratic equation whose solu-
tions are

will determine the boundaries of the region, contained in
the physical g, g half-strip, where b turns out positive.
We have found no numerical solutions of Eq. (4.7) in the
physical (g, rt) region numerically accessible. Thus we
conclude that the varieties (4.5a) and (4.5b) exist
throughout the region g & 0 and 0 & rt & 1. Besides, by us-
ing the large-g asymptotic expansions of the quantities X
and I' reported in Appendix A [see Eqs. (All) and
(A12)], one finds that

Kq+ =9/ /512rt~+ oo,

16 rt(2+q) ~ 4 +
(1—rt)

(4.8a)

(4.8b)

while, by using the small-g asymptotic expansions report-
ed in Appendix A [see Eqs. (A16) and (A20)], one finds

2

K+ =g' 0+,~pe

24'
(1+2g)'

K~ ~—
96rt(1 —g )

(4.9b)

From this analysis one concludes that the image of the
region physica1ly accessible cannot be larger than the
(g, g, K) region delimited by the two surfaces (4.5a) and
(4.5b). (See Fig. 1.)

B. The infinite-compressibility surface Xz

In order to complete the analysis of the geometrical
features of the parameter space (g, g, K) we have to deter-
mine the surface where the inverse compressibility van-

Bo=( Aq+12rt)

8, —:Aq(A, —F)+12rtA, —2X,

8,=—A, (A, —2I') .

(4.14)

1+2'
24'(1 —g)

(4.15)

Physically the interesting region is the one where K is
the positive and thus we shall be confined to it. One con-
cludes that at very large g the surface where the compres-
sibility diverges is below the surface K& .

Although the behavior of Kr+ at very small g can be
obtained by analyzing the small-g behavior of the roots
(4.13), we have directly analyzed the quantity a (rt, (,K)
as g and K tend to zero inside the physical region:
0&K &Ka+(g, g). In order to meet this condition we

The substitution of (4.13) in (4.12) yields the sought after
algebraic exPressions of Kr(rl, g}. Although these exPres-
sions are still rather involved, one can analyze their be-
havior both at large and at small g. In particular, in the
former region, by using the asymptotic expressions re-
quired in Appendix A [see Eqs. (All) —(A15)], one finds
that the leading term of the discriminant of Eq. (4.13) is

[12(1—rt)rig'/( I+2rl )]'

and thus it is always positive. Since A; and 8, are 0 (g)
while 80 and Bz are O(g ), one concludes that, as g~ ~,
the 5& have finite limits. These are given by Eq. (A15}.
Then from Eq. (4.12) it follows that Kr =0 while
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have analyzed the small-g behavior of a(rl, (,K) by as-
suming that

K =~(t))P,
a(i)) &0, m&2 .

(4.16)

(4.17)

One should refer to Appendix B for details on this
analysis. The main conclusion is that

a =apv+0(g) when tn&2,

while

(4.18)

r, (rl): 1 ——[1 24')lr—(rl) /a pv ]' (4.19b)

The results (4.18) and (4.19) are particularly interesting.
Indeed, (i) If one lets ~(t)) go to zero, one finds that
a~ap~, as one should expect, since in this limit one
practically recovers the case m & 2. (ii) Expression (4.19b)
makes sense only when

K( 7/ ) & 0 pv /24rl (4.20)

48rla(rl) 2a—pvr, (t))a= +a i(rl)g+o(g) when m=2,
2apvr (g)

(4.19a)

where the later convenience the term 0(g) has been writ-
ten in an explicitly factorized form and

A. Critical behavior

We show now that the GMSA can predict, although in
an approximate way, many aspects of the critical behav-
ior of real systems. In order to find out where the critical
points have to be located in the natural GMSA space, we
recall that in the early 1960's Green' pointed out that
the HNC approximation of the DCF at the critical point
must be long ranged. Subsequent important papers by
Fisher and by Polyakov have shown that this is true in
general. In fact, they showed that at the critical point the
CF for large distances decreases as

(5.1)

with g positive and depending only on the space dimen-
sionality. ' By Green's argument' one deduces that

1c(r,g„P,)-, r »1 .
~5—g

(5.2)

This behavior implies that in approaching the critical
point the zeroth moment of c,„, is finite while the second
one diverges as r". According to the criterion (1.3), the

GMS scheme. It should be noted that the two issues cor-
respond to study the GMSA limits: (~0 and g~ ac, re-
spectively.

Moreover, when one considers the equality sign in (4.20),
one sees that (4.16) becomes equal to (4.9a). In other
words, the condition 0 &K &Ka (i),g) implies the va]idi-
ty of (4.20) at very small g. (iii) Finally, from Eqs. (3.9),
(4.18), and (4.19a), one sees that the inverse compressibili-
ty becomes null, i.e., XT

' ——a =0 only when

~(t))=apv/24'f/=Ko(rl) co=2 . (4.21)

In conclusion, inside the physical parameter region and
in the limit (~0, the surface Xr becomes tangent to the
surface Xa along the rl axis, while Kp(t)) turns out to be
equal to apv/24tl. Besides, the first surface lies below
the second at very small and at very large g due to the
conditions (4.20) and (4.15), respectively. Outside these
regions, the relative geometrical configuration of Kz+ and
of E&+ has been explored numerically rather thoroughly
throughout the physical (rl, g) half-strip, and we have al-
ways found

K~+(t), g) &Ka (i),g) .

0
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Therefore we conclude that the variety X& lies always
below the variety X&,

' in the positive half-space I( & 0
(see Figs. 1 and 2).

V. APPLICATIONS

The relative geometrical configuration of X& and Xz is
particularly interesting for its consequences on the idea of
approximating the external DCF by a single Yukawa
term. In fact, we shall discuss two topics: (i) What kind
of critical behavior can be obtained by the GMSA and (ii)
How Baxter's result on the AHS model fits in the former

FIG. 2. (a) Sections of the Kz+ /g surface, at fixed g values,
are shown for different g values. The curves refer to the values
[=0.001 (—); 0.1 (---); 10.0 (- -); 50.0 {-"-);100.0 ( . ), re-
spectively. We note that (i) on the figure's scale the first two
curves also represent Kz+ /g . In fact, a magnification of the
scale by a factor of 10 is necessary for observing some
difference. (ii) For the third curve (the dash-dotted line) the
vertical scale must be multiplied by a factor of 10. Consequent-
ly, differences with the shape of the corresponding K~+ /g curve
shown on the right have already become appreciable. (b) The
curves show the g sections of the surface K~+(g, g)/g for the
three highest g values reported before.
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best one-Yukawa GMSA must be characterized by the
same momenta and thus it is determined by the two fol-

lowing conditions:

tial and PE is the dimensionless coupling constant. From
this approximate equation and by Eq. (5.5} and (5.6) one
obtains

K(g,P) =a(g„P, )g (5.3) ~p(rl, )=yp(13, c)/(2 rI—) .

with

a.(g„P, ) = f r c,„,(r, rI„P, )dr .
1

(5.4)

(5.5)

However, the GMSA resulting from Eqs. (5.3) and (5.4)
will describe a critical behavior only if it yields a diver-
gent compressibility. In the second part of Sec. IV we
have studied the behavior of a(g, (,K) at very small g,
and we have found that it tends to zero only when

In the last two columns of Table I we have reported re-
spectively the values of P, s and those of ao(g, ). They are
sufficiently close to conclude that y (x) is linear in the
range x =1.

Having discussed the location of the critical point, for
completeness we now have to discuss the critical behavior
resulting from the one-Yukawa GMSA. We have already
used the property that in approaching the critical point,
g(ri, P), the inverse correlation length of the one-Yukawa
GMSA of the DCF, must go to zero. Thus it appears
natural to assume that

a(ri„P, )=/co(ri, ) . (5.6)
ZT( ).}

I
&r I

'+Z, ( ).}
I &, I

(5.8)
In this way lr(ri, P} turns out perfectly determined and in-
dependent of the temperature. This property, combined
with Eq. (5.5), implies that the external DCF's of two
different fluids, having different critical temperatures but
the same critical packing fraction, have approximately
the same zeroth momentum. The present knowledge of
the c,„,'s of the real systems does not allow us to check
this result. However, Eq. (5.6) contains further physical
information worth pointing out. Using the apY definition
of Eq. (Ala}, ~0(ri) becomes

ao(71) =(1+2ri) /24'(1 —g) (5.6a)

c,„,=y (Ps)lr ", r & 1, (5.7)

where the function y is characteristic of the fluid poten-

The dependence of Iro(g) on g implies by Eqs. (5.6} and
(5.5) that the overall attractive contribution, accounted
for by c,„„turns out to be larger both at small and at
high densities. This appears physically quite sound. At
small densities a large attractive contribution is required
in order to compensate for the rather large average dis-
tance between particles, while at larger densities the
stronger attractive effects are required for overcoming
the dominant repulsive ones. From Eq. (5.6a) the small-
est effective attractive contribution is found at the
packing-fraction value go

——0. 128. Let us consider the
collection of real fluid systems. Since by a suitable rescal-
ing one can always make the diameter of the effective
core of each fluid equal to 1, the repulsive forces in the
rescaled systems will turn out equal. It is now tempting
to assume that the smaller the effective attraction, the
higher the probability that the system does physically ex-
ist. In this way one would expect that the critical pack-
ing fractions of the real fluids are distributed around the
value go. The results reported in the sixth column of
Table I show that this property is reasonably verified al-
though the distribution appears slightly shifted toward
the right.

It is known that at the critical point the large-r behav-
ior of h (r) is the same, independent of the particle in-
teraction. Then, from Eq. (5.2), one could write in first
approximation

where sr=—(T —T, )/T„c,„—= (r) rj)/g„—and Zr and

Z„are positive quantities depending on the particular
fluid. Clearly the real positive exponents vz and v„speci-
fy the ways the second moment of the DCF diverges as
the critical point is approached along the critical isochore
or the critical isotherm, respectively. Due to the OZ
equation and to the universal behavior of the CF in the
critical region, the quantities vz and v„have to be univer-
sal too, as it will appear more clearly later. For these
reasons they will be referred to as the critical indices of
the correlation length of the DCF. By the preceding
GMSA analysis one can easily express the well-known
critical indices in terms of the former ones. To this aim
we recall that, for any fluid, Kfl(ri, g) becomes tangent to
Kr+ and to Kz+ at the critical point (see Fig. 1). It ap-
pears natural to assume that on Ef&, a turns out analytic
with respect to g. Then, from Eq. (4.19a) and by Eq.
(4.21), one finds that

P(pXr) '=a f(ri, )g' . (5.9)

The scaling properties of the isothermal compressibility
are evident and from Eq. (5.9) it immediately follows that

y =2vr, 5=2v„+1 . (5.10)

These relations allow us to determine the critical indices
of the DCF from the knowledge of the well-known ones.
Vice versa, the latter ones can be expressed in terms of
the former ones, since we are allowed to take as indepen-
dent the indices 5 and y. We must note, however, a seri-
ous limitation of the GMSA's, involving a finite number
of Yukawa terms, in describing the critical behavior of
the real systems. This shortcoming is essentially related
to the fact that the approximation (1.1} is unable to yield
the noninteger power-law behavior of the DCF at the
critical point, described by Eq. (5.2). In particular, in the
case of the one-Yukawa GMSA, one finds that (see Ap-
pendix C for details)

exp[ —
~
a&(g)

~ g r p/a(1v2rI)]
h(r, . . . )-g

r

r »1 . (C9)
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TABLE I. In the fourth and fifth column we report the critical temperature and the critical density
relevant to the fluids present in the first column. These values have been taken mostly from the Hand-
book of the American Institute of Physics T. he second and third columns report, respectively, the value
of the coupling constant (in units of kz ) and that of the characteristic length of the potential. The ana-
lytic expression of the latter is the square-well, the Stockmayer, or the (6-12) Lennard-Jones one, de-
pending on whether in the last column one finds, respectively, SW, Stm, or other symbols, respectively.
In fact, V and g denote that the LJ parameters have been determined by virial or by viscosity measure-
ments, respectively. Besides, in the first rows, the symbol QM specifies that the determination of the LJ
parameters has been carried out by the quantum-statistical method. The data inside square brackets
refer to the electric dipole moment and are given in Debye units. These data have been mainly taken
from Ref. 25. (Actually, in the table we report only the most typical cases, including the ones which lie
farther from the minimum. ) The sixth column shows the critical packing fraction. In evaluating this
quantity we have simply identified the core radius with 0. This fact most likely yields an overestimate
of the core for the LJ and for the Stm potentials. One sees that the values are scattered around

go ——0. 128, the mast likely GMSA value, although they are more frequent in the higher-density region.
Finally, the penultimate and the last column allow us to compare the dimensionless coupling constant
with the ~0(g, ) value, which should approximate the zero moment of the DCF. Moreover, we note that
the value of Kp(g) at the most likely density value go is 0.888, a value quite close to the values reported
in the last coIumn. This result is mainly a consequence of the shape of Ko('g) around the minimum, as
one can see from the solid line shown in Fig. 2(a).

Fluid 6, /kB 0 (A) T, (K) g
cm'

He

H2

Ar

10.22

36.7

119.8

95.3
53.7

2.556

2.928

3.405

3.70
3.299

5.2

32.9

150.72

126.26

0.0693

0.0308

0.5308

0.311

0.091

0.122

0.165

0.177
0.147

1.96

1.12

0.795

0.755
0.426

0.937

0.889

0.919

0.941
0.896

QM

QM

V

SW

C12 357.0
257.0

4.115
4.400

417.16 0.573 0.178
0.217

0.856
0.616

0.943
1.050

CO2 189.0
205.0
119.0

4.486
4.07
3.917

304.2 0.468 0.303
0.226
0.201

0.621
0.673
0.391

1.503
1.083
0.999

H20 380.0[1.83] 2.65 647.4 0.326 0.106 0.587 0.904 Stm

HCl

NH3

360.0

692.0
320.0[1.47]

3.305

2.902
2.60

324.55

406.41

0.420

0.235

0.132

0.107
0.077

1.109

0.787
0.787

0.888

0.993
0.993

SW
Stm

CC14 327.0
469.0

5.881
4.294

558.3 0.558 0.233
0.091

0.586
0.840

1.110
0.937

V
SW

CHC13 327.0
1060.0[1.05]

5.430
2.98

536.54 0.496 0.210
0.035

0.609
1.976

1.027
0.581

C2H6 243.0
230.0
244.0

3.954
4.418
3.535

305.43 0.2056 0.131
0.183
0.094

0.796
0.753
0.799

0.888
0.954
0.928

V
'9

SW

C2H4

CqH2

199.2

185.0

4.523

4.221

282.65

308.53

0.218

0.2308

0.227

0.210

0.705

0.600

1.086

1.027

V

CH3OH 507.0
630.0[1.66]

3.585
2.40

513.2 0.272 0.124
0.037

0.901
1.228

0.888
1.510

7l

Stm

CS~ 488.0 4.438 552.0 0.441 0.160 0.884 0.911
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The expression of the denominator would imply that

ran =0, a mean-field value, but the presence of the factor g
in the numerator implies that at the critical point the
numerator factor is not finite and dijferent from zero as
the correct scaling requires. The presence of the factor

is nothing but a caricatural attempt of the GMSA to
reproduce a decrease faster than r '. Moreover, from
Eq. (C9), the inverse correlation length of the CF is
characterized by the two indices,

v =2vT, vc ——2v

The comparison with Eq. (5.10) yields

v=y, v, =5—1.

(5.11}

(5.12)

The first of the (5.12) relations is not obeyed by the mea-
sured critical indices and the observed structure factors
do not show the behavior predicted by Eq. (C9). Thus we
have to conclude that, as expected, the critical behavior
predicted by the GMSA (Ref. 23) is not satisfactory.

B. Baxter's solution of the AHS model

According to Eq. (2.6), this solution requires a 5-like
behaved c,„,(r, ri, p). By our assumption (1.3), the best
GMS approximation of c,„, by a single Yukawa term has
to reproduce the maximum number of next momenta of
(2.6), starting from the lowest one. In this case the mo-
menta of the exact c,„, can be exactly and easily calculat-
ed and thus Eq. (1.3}yields

2n +1
d exp( —g)

dg
&~~s exp(0)—

A, (ri, r)
12

n =0, 1, . . . . (5.13)

One sees that all these conditions can be fulfilled, provid-
ed

(5.14)

and

A(ri, r)
&~~s(n r) =

12
(5.15)

In particular, Eq. (5.14) assures the equality of the ranges
of c,„, and of its one-Yukawa approximation, while Eq.
(5.15) assures that the limit of this approximation is equal
to the exact c,„, of the PY approximation of the AHS
model. In other words, in the case of the Baxter solution
of the AHS model, the limit (5.14) and the condition
(5.15) guarantee that the Dirichlet approxiination of c,„,
become exactly equal to the latter. Since both the GMSA
and Baxter's solution method use the core condition in
order to determine the DCF in the region internal to the
core, it is clear that the aforesaid limit of the GMSA
solution, with the condition (5.15), yields the Baxter solu-
tion of the AHS model. Besides, one should also note
that Eq. (5.15) already takes into account the exact value
of A,(ri, r) that Baxter obtained by exploiting the continui-
ty of N(r, ri, p) at the core border.

In order to be sure that no mathematical surprise

comes out from the limit procedure, we have directly cal-
culated the limits of the most important quantities.
Leaving the details in Appendix D, we have found that

a =apv 2 A+O(g ),i)(1—i) ) —1

(1 —ri)
(5.16)

b =bpv+ 2
A, +0(g ')

2(1 —i) )
(5.17)

Once we substitute Eq. (2.6) for A. , Eqs. (5.16) and (5.17)
coincide with Eqs. (7.31) of Ref. 16. In the same limit,
using Eqs. (5.16), (5.17), (D4), and (D5), the equality of
the Q(r), defined by Eqs. (3.5) and (3.6), with the corre-
sponding function used by Baxter [see Eq. (7.30) of Ref.
16] is immediate. In this way the proof is complete.

It is interesting to discuss how the phase diagram of
the AHS model (see Fig. 12 of Ref. 16) fits into the struc-
ture of the RoMs region. We recall that when the tem-
perature ~ becomes smaller than a characteristic value
r, (=0.0976), the Baxter solution does not exist in a
range of densities depending on the value of ~. One
should note that this lack of solutions is not due to the
fact that the trajectory of the (ri, g, E~„s) representative
points meets with the surface X~ as g~ ~. This in fact is
not possible, since, as g~ ao, Ez+ increases as g, see Eq.
(4.8a), and thus it lies far above E„„s(ri,g), which ac-
cording to Eq. (5.15), increases only linearly. One con-
cludes that the AHS diagram is not determined by the
surface Xz. On the contrary, it is determined by the
boundary of the holomorphy domain of the function

(ri, r) I, n fac.t, the coexistence line is made up of the
branch points of the analytic function (2.12), which, by
Eq. (2.5), represents the suin of the nodal graphs of the
PY approximation of the AHS model.

Before trying to give a heuristic answer to the question
whether the images of the coexistence lines of the real
fluids have to lie on Xz we make some preliminary re-
marks.

The application of the criterion (1.3) to the one-
Yukawa GMSA generally yields a unique determination
of K and g, since one requires the equality of the first two
moments. Moreover, far from the critical region one ex-
pects that (= 1 and that K=0 at sufficiently high tem-
peratures. Thus, in the GMSA natural space, the
representative points of the systems in the above specified
physical conditions will lay below X& and thus also below
Xz. Let us imagine now that a fluid, starting from one of
these configurations, continuously approaches a point on
the coexistence line. If the image of this line lies on X&,
one of the following possibilities ought to take place. The
trajectory of the best image points (ri, g(ri, p), E(i),p)) is
continuous, and thus it crosses X& or it is discontinuous
and thus it avoids the crossing of X& by making a jump.
Due to the nonlinearity of the constraints (1.3), the latter
possibility cannot be excluded on purely mathematical
grounds, although it appears physically rather odd. The
former possibility implies that, in the neighborhood of
the point where the trajectory crosses Xz, the GMSA
would predict a divergent compressibility and thus it
would yield a poor description of the real fluid behavior.
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The results of a recent GMSA analysis of the HS fluid
do not find any indication of such a behavior. In fact, the
trajectory of the first pole of the FT of the total correla-
tion function (CF), h(z, p), reported in Fig. 5 of Ref. 4,
shows that the compressibility is always far from becom-
ing divergent, while the resulting K and g, see Fig. 2 of
Ref. 4, depend continuously on the density, even beyond
the freezing density. From a practical point of view, the
GMSA fluid variety, i.e., Eq. (1.7a), can be determined by
Eq. (1.3} only when c,„, is known. Consequently, the
mapping (1.6) can no longer be defined beyond the coex-
istence line. If the variety (1.7a) were made up of (at
least) two pieces, one above and one below Xr, then the
coexistence line could be mapped just at the intersection
of the variety (1.7a) with Xz. The results just mentioned
above and the analyzed solution of the AHS model
strongly suggest that the variety (1.7a) is continuous and
that the latter's border represents the coexistence line in
the GMSA natural space. Consequently, from the
knowledge of Xz and X& we can only get some bounds on
the regions of existence of the fluid phase, in the sense
that the physically allowed parameter region must be
smaller than the one bounded by X&, which in turn is
smaller than the one bounded by Xz. In the same way,
one expects that the parameter region where an accurate
approximation or even the exact integral equation for the
two-point translationally invariant CF does not admit
solution is larger that the former ones and smaller than
the region where the equation for the one-particle density
admits nonuniform solutions.

VI. CONCLUSIONS

Over the recent past years, in studying the GMSA, the
emphasis shifted toward the approximation of the poten-
tial. This point of view limits severely and unnecessarily
the usefulness of the method. Besides, it gives more im-
portance to the surface X& than appears physically sensi-
ble. We hope that this conclusion appears clear or at
least reasonable, from the discussion carried through in
this paper. In fact, the behavior of the GMSA in the crit-
ical region looks quite sound due to the tangency proper-
ty of Xz and of X&. However, the exact critical behavior
can never come out from a truncated Dirichlet approxi-
mation of the DCF, since this approximation is unable to
reproduce the branch point which, according to the gen-
eral theory of the second-order phase transition, must be
present in the FT of the DCF. The fact that X& lies
below Xz is also interesting, since it may be taken as an
indication of the easy access to the region of the metasta-
ble states. In other words, the meeting with the coex-
istence line is not due to the core e6ects, as described by
the GMSA, but is due either to the fact that c,„, ceases to
make sense —as indicated by the AHS model solution-
or, more likely, to the fact that fluctuations, at the level
of one-particle functions, can no longer be neglected.

The minimum r)0 in ~0(g) is worth a final mention. On
the one hand, the existence of the former g0 appears
reasonable, since the GMSA accounts for a balance be-
tween attractive and repulsive forces. On the other hand,
an accurate GMSA is possible for any potential and in

fact any point on the g axis can be a critical point. Con-
sequently, the critical density g, of a real fluid need not
be necessarily equal to g0. The latter value, however, re-
quires the least attraction, and for that reason we con-
cluded that it has more chance of being met in nature as,
indeed, it seems to happen.
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APPENDIX A

We report the definitions of the quantitites introduced
in Sec. III,

and

0pv = ( I + 2Y/ ) /( 1 —7/ )

b'av =——3g/2(1 —q)

(Ala)

(A lb)

Y=( QpvS —bpY T

[6' /('( —I rl ))—
X [2—g —2(1+()exp( —g)]—:-,

where the following definitions have been used:

S =(12'/g )[1—g /2 —(1+()exp( —g)],
T= ( 12' g/) [1—g —exp( —g)],

(A2a)

(A2b)

(A3a)

(A3b)

&( [2—2g —(2—g ) exp( —g) ]—:-[, (A4)

E = —6q+, (1+2q—6g/g)S12'
g(1 —q)

, [3g/2+(1 —4g) /g] T,
g(1 —g)'

F: 2(F,S—F~ T)+F3, —12'
g(1 —g)

while F„Fz,and F3 are defined in the following way:

(A5)

(A6)

F =—f (n k)[I —(1+0)exp( —0)]

+ 3gg exp( —g),
F =f (r), g) [I—( I+g) exp( —g) ]

—[( 1 —47) ) /2]g exp( —g),
F3 =——6g[1 —exp( —g)]

with

(A7a)

(A7b}

(A7c)

and

fi(n ()= I+2r) 6nC— — (A7d)

f2(g, g) =—3g/2+(1 —4q)/g . (A7e)

:-=[18') /g (1—r)) ][2—g —(2+()exp( —g)] . (A3c)

Quantities X, E, and F are given by

X=6g[gexp( —g) —[6g/g (1—g)]
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Besides the former definitions, which are essentially the
Cummings-Smith' ones, it will be useful to know that
E—F can be written as

E —F=exp( —g) —621[2—exp( —g)]

E/F =—,1+12'
8bpv 8bpv 10 4

+O(g ) (A18)

1

(Ses —Te T), (A8)
12'

g(1 —2) )

Y apvg+bpvg + 2 g 2 g +o62)(8+21 ) 3 10+271
120( 1 —

21 ) 720( 1 —21 )

where

es —=g(1 2))+( I 4g) 6g

and

1 —g 2 —5g 1 —4gg+
2

+

(A9)

Finally, the quantity r, defined by Eq. (4.4a), is given by

and

X
36'

Y f
6g

2

621(1—21) 12m](1 —g)
10— (3+0

6021(1—g)

(A19)

(A20)

X Y

(6' } 6'g
(A10)

We report the leading asymptotic expansions at large g
of some quantities which are referred to in the paper.
From Eq. (A4) one finds

X=36 2 2+rl 2(1+2rl) +O(g ex ( —g))
(1—

21 )'g (1—
21 )'g'

(A 1 1)

APPENDIX B

In order to analyze the behavior of a(K, g, rl) as
K =so(g)P and (~0 the knowledge of the physical root
of the quartic equation (3.5) is required. By combining
the former limits and the small g limiting behavior of X
and Y resulting from Eqs. (A19) and (A20) we obtain that
the coefficients of Eq. (3.5) have the following small-g be-
havior:

K -~0(21)g +o,
while from Eq. (A2) one gets

Y=g+ +, +O(g '}6g 18' (A12) X-
KY-~,(g)ap„P"+o,

18'
2g+O .

(1—
21 )

(Bl)

From the definitions (4.11) one gets

A, =g+o, A, = " g+o.1221(1—2) )

1+2' (A13)
g(2m —I )/3 gm/2 gm

—1 (B2}

Standard Newton analysis yields that the four roots
behave as

From the definition (4.14) and from (A13) one obtains
2

Bo= +O(g},1+2'

&i =O(g), &|= —g'+O(g) .

Using these results, from Eq. (4.13) it follows that

1+22)

1221(1—21 )

(A14)

(A15)

For the sake of making the derivation of our analysis
easier, we report some intermediate algebraic results con-
cerning the asymptotic expansion of some quantities at
small g. In particular, these are

The physical root, however, is the last one and corre-
sponds to 5f K/Y+o. In——fact, it is the smallest one
and has the right virial limit.

When m =2 the former four roots behave exactly in the
same way and a further analysis is required in order to
isolate the physical one. To this aim we set

in Eq. (3.5) and then we divide by g . By using, once
more, the small-g asymptotic behaviors (Bl), the quartic
equation (3.5) becomes

(2+a )(2—apv~/V62)+a)+o =0 .

4—21 3 5 —221 P
2 12 40

(2+21)g + (4—2))P
12 8 80

(A16a)

(A16b)

The solutions are easily obtained and the physical solu-
tion turns out to be

a PY [ 1 —( 1 —242)z/a pv ) ]
6f ——

12g
g+o

(1—21) (1—7]) 2 5 (1—2))

apvr, (2) )
g+o .

12m]
(B3)

(A17)
By combining these results with the small-g expansions,
reported in the final part of Appendix A, and, of course,
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by some algebraic manipulations, one obtains Eq. (4.18),
i.e., the leading term in the small-g expansion of
a (g, K, g).

For the reader's greater convenience, we report here
some intermediate steps in the derivation of the aforesaid
results.

We found it convenient to write Eq. (3.7) as

K =so(q)g'+o, (BSa)

5f ~ +0 e

12'
(B8b)

d = —12'/g +O(g ) (BSc)

By using Eqs. (A17) and (A18), it is easy to show that

ba—:a —apv = —Sbpv(A ~+Ay —A3),
with

5 exp(g) E ('9 4)
F( g)

f

(B4) and then, from Eq. (B6), by Eqs. (A16b) and (A7c), that

b =12ri5I/g +o(g ') =apv(g)/g+o(g ) . (B8d)

APPENDIX C

and

5 exp(g) A

FiY
2= F

(B5a)

(B5b)
c(z, g, (,K) c(z, g, (,K)

1 pc(z,—q, g, K)
(Cl)

The behavior of the correlation length of the CF at the
critical point is now worked out in the one-Yukawa
GMSA. The FT of OZ relation yields

KF& K—
5(F 5

By using Eqs. (A18), (A19), and (A16a) one obtains

(1—g) (1—71) (6+q) (2 12

(B5c)
where c(z, ri, (,K ) represents the analytic continuation of
the FT of c (r, ri, g, K). Moreover, the GMSA's necessari-
ly yield meromorphic c(z, . . . )'s. The large-r asymptotic
behavior of the CF is determined by the zero of
$(z, g, (,K) closest to the origin. Thus we have to ex-
pand c(z, . . . ) at small z's. From Eqs. (2.8) and (2.8a)
one immediately gets

A, = +O(g),
PY

2)(z, g, (,K)=Q (0)+z (QzQ(0) —Q, )+O(z ),
where

(C2)

1

8(b pv

2
q + qk +O((2)

6 5 Q& =——12rii f r exp(ikr)Q(r)dr
~ z

0

From the latter results, by using the fact that
5I =K/Y=a(ri)P '/apv, when m p 2, one finds that

= —12'pig I

Qz =12'f r Q(r)dr —= 12gqz .
0

(C3)

(C4)

apY
A3 +

8bp
Using Eq. (3.2) with N =1 and the definitions (3.4), one
obtains

and Eq. (4.18) follows.
When m =2, one finds that

, —A, ~— 1
[24qa( g ) —a pvr (7/) ]2 2

16bpYapvr (g) and

q, = —a/8 b/6+5 ex—p(g)/g

+d5[1+g+g /2 —exp(g)]/g (C5)

and Eq. (4.19a) is proved.
In the following we shall need the asymptotic behavior

of b(ri, g, k) in the case m =2. In order to evaluate it, we
note that from Eqs. (3.8) and (A7e) it follows that

Ab =—b —bpY

qz
———a /15 b /12+25 exp(—g)/g

+2 d 5[1+g+ g'/2+ g'/6 —exp(g) ]/g' . (C6)

The knowledge of the leading asymptotic term for the
quantities present on the rhs of Eqs. (C5) and (C6), ie.
Eqs. (4.19a), (BSa), (B8c), and (B8d), immediately yields

8bpv 5I exp( g }
[d(ri, g, K )F~(g, g) =f~(g, g)], (B6) aPY( 1 —2g)

q, = +o(g '),
12gg

(C7a)

while d, defined by Eq. (3.6), can be written as

(36' 5& —X5&+12riK ) exp( —g) +E/F (B7)

apY —1z+O(g ) .
6qg

(C7b)

Substituting in Eq. (C2), recalling Eq. (3.9}as well as that

after having used Eq. (3.5). Recalling now that near the
critical point r, (q)=1 by Eqs. (4.21) and (4.19b), Eqs.
(Bla) and (B3) become

a('q 0)=ai('94+o
with a

&
(g) an unknown g function, one finds that
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2
apY(1 —2g)

2)(z, . . . ) =a, ( t) )g +z +o. 5f=—= +O(g ) .
E A,

12
(D2)

We recall now that

h(r, . . . }=(4mlr) J k sin(kr)h(k, . . . )dk
0

=(2tr/r)9' f k exp(ikr)h(k, . . . )dk

The use of the residue theorem and Eq. (C8) allow us to
get

3(2
h(r, . . . )=

3',a pY(1 —2t))

exp[ —
~
at(t))

~ g r/apv(1 —2g)]

r »1 . (C9')

Equations (5.16) and (5.17) have been obtained by
evaluating the limits of (3.7} and (3.8) as g~ ae, knowing
that Eqs. (Dl) and (D2) hold true. This job becomes
rather easy once one notices that

d —1 =exp( —g)[ —K+5Y+R(q, g)],
where R (ri, g) denotes the expression inside square brack-
ets on the RHS of Eq. (A8). Algebraic manipulations
yield

8bpv5 R +5Y E-
PY

g
f) F5p

—d(1+ g) +3rigd

This relation proves that the inverse correlation length of
the CF is O(g ). Moreover, at the critical point, Eq. (C9')
predicts that h(r, . . . )~0. We think that this result is
only a caricatural attempt of the GMSA to reproduce a
CF which decreases faster than r '. Finally, the singu-
larity present as g~ —,

' cannot be taken seriously, since it

only indicates that in Eqs. (C7) we have to account for
the next-higher-order terms.

8bpv5
b =bpv 3g 1 —4g

2

R+5Y E-
F 2

1 4ri (d—
2

Since

K=
12

APPENDIX D By using the fact that at large g,

R(g, t))= —12')+O(g '),
d =1+0(exp( —g)),

(D3)

(D4)

the asymptotic behaviors of the coefficients of the quartic
equation (3.5) follow immediately from Eqs. (All) and
(A12). In this way one finds that the physical root
behaves as c, = —A, /12+0(g ') . (D5)

Equations (5.16) and (5.17) follow quite easily and almost
itnmediately. Moreover, from Eqs. (3.4), (D2), and (D4)
one finds that
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